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Abstract. The paper presents a novel mathematical model for a-priori computation of the 
swirling flow at Kaplan runners outlet. The model is an extension of the initial version 
developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial 
velocity and of the variable rothalpy. Simple analytical expressions are derived for these 
additional data from three-dimensional numerical simulations of the Kaplan turbine. The final 
results, i.e. velocity components profiles, are validated against experimental data at two 
operating points, with the same Kaplan runner blades opening, but variable discharge. 

1.  Introduction 
The main advantages of Kaplan turbines are the wide ranges of gate opening and heads which can be 
guaranteed and because of the vertical arrangement, the possibility of installing high capacity units under 
low heads. It should be noted that the mechanical complexity of adjustable blade turbines is counter-
balanced by the flat efficiency diagrams and stable hydraulic behavior in a wide range of discharges and 
heads [2]. 

The hydrodynamics of Kaplan turbines is a more than a century old subject that benefits from a 
large body of both theoretical and experimental investigations (Anton [3], Krishna [4]). Traditionally, 
the main subject of these studies has been the turbine runner, with the development of powerful and 
reliable tools for designing the runner blades. When developing a new runner for existing turbines 
refurbishment, usually the draft tube remains unchanged. As a result, the new runner should be the 
best match for the existing draft tube within a wide operating range. In order to achieve this goal, there 
are two main approaches: i) develop several runner geometries using geometric parameterization and 
use a-posteriori analysis (usually numerical) to assess the turbine performance; ii) optimize the 
swirling flow at the draft tube inlet, then design the runner accordingly. The second approach is 
currently used for swirl optimization at the design operating point. However, since modern hydraulic 
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turbines should operate within a wide range it is essential to optimize the swirl at runner outlet over 
multiple operating regimes in connection with the existing draft tube. 

The Turbine-99 (T-99) workshops have been organized in order to assess the capacity of simulation 
tools for calculation of flow in hydraulic draft tubes [5-7]. The model turbine studied in at T-99 is a 
1:11 scale of a power station, and the Kaplan runner model has a diameter of 0.5 m, Fig. 1. The 
Reynolds number based on runner diameter and average discharge velocity is 1.75x106. 

 

 
Figure 1. T-99 cross section (left) and top view (right), [8] 

 
The T-99 test case consists of data for two operating points. The first operating point is on-cam, i.e. 

top-point (T case) on the propeller curve denoted BEP, with discharge 0.522 m3/s. The second 
operating point is off-cam, i.e the right-leg (R case) on the propeller curve labeled FL, with discharge 
0.554 m3/s. Both operating regimes have the same head, 4.5 m, and runner speed, 595 rpm, for the 
Kaplan turbine model. Two velocity components measured with LDV system just downstream of the 
runner (section Ia) are available [8]. 

The main purpose of the paper is to introduce and validate a quasi-analytical model for computing 
the axi-symmetric velocity field at the outlet of the Kaplan runner, for variable operating regimes, 
without knowing the runner geometry. Such a model is useful in the preliminary design stages, for 
optimizing the swirl ingested by the draft tube within an operating range.  

Section 2 presents the mathematical model for swirling flow at runner outlet of hydraulic turbines 
as well as the variational formulation with associated constrains. Next, the swirl-free velocity for the 
T99 Kaplan runner outlet is computed in Section 3, while the rothalpy and radial velocity distributions 
are evaluated in Sections 4 and 5, respectively. The swirling flow at the T99 Kaplan runner outlet is 
computed using the mathematical model developed in this paper. The analytical profiles are validated 
against experimental data and numerical results in Section 6. The conclusions are drawn in the last 
section.  

2.  Mathematical model for swirling flow at a runner outlet 
The mathematical model for the swirling flow downstream a Kaplan runner is derived under a set of 
simplifying assumptions, based on a two-dimensional model of inviscid steady axisymmetric swirling 
flows in turbomachines. We present in this section the mathematical derivation as well as the 
numerical algorithm for solving the boundary-value problem. 

2.1.  Axisymmetric steady swirling flow in turbomachines 
The simplified mathematical model used in this paper is derived from a more general model for 
axisymmetric swirling flows in turbomachines, based on the steady Euler equation written in a 
coordinate system rotating with the runner, 

( ) BI∇× × = −∇ +V W F , (1)



 
 
 
 
 
 

where V  is the absolute velocity,  W  the relative velocity, with axial, radial and circumferential 
components ( ) ( ), , , ,z r z rW W W V V V Rθ θ= −Ω , respectively, 2 2I P V RVθρ≡ + −Ω  is the relative 
specific energy or rothalpy, BF  is a fictitious body force acceleration that replaces the effect of the 
blades on turning the flow, Ω  is the runner angular speed, and ( ), ,Z R θ  are the cylindrical 
coordinates. A typical hub-to-shroud streamsurface in the bladed region can be geometrically 
described as 

( ) ( ), , , constantZ R Z Rθ θ ϕΘ = − = , (2)
where  ( ),Z Rϕ  is the so-called blade wrapping angle. The constantΘ = streamsurface for the relative 
flow is associated with the blade shape for an infinite number of blades, infinitely thin. The blade body 
force acceleration BF  is normal to such a streamsurface, along the unit normal vector 
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On the constantΘ = streamsurface we have two tangent unit vectors, 1 W=τ W , along the streamline 
in relative flow, and 2 1B= ×τ n τ . The flow tangency condition can be simply written as 1 0B⋅ =τ n , or 
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When projecting Eq.(1) along the 2τ direction, we obtain the so-called principal equation for 
axisymmetric turbomachinery swirling flow, 
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2.1.1.  Streamfunction formulation. Eq.(5) is more conveniently expressed using the Stokes’ 
streamfunction for incompressible axisymmetric flows, Ψ , defined as 

1 1andz z r rV W V W
R R R Z
∂Ψ ∂Ψ

= = = = −
∂ ∂

, (6)

thus automatically satisfying the continuity equation 0∇ ⋅ =V . Moreover, projecting Eq.(1) along the 
direction of 1τ  gives the Bernoulli’s theorem in relative flow, 0I⋅∇ =W , i.e. the rothalpy is a 
function only of the streamfunction, ( )I Ψ . As a result, the last term in the right-hand side of Eq.(5) 
simply becomes ( )d dR I− Ψ , i.e. 

( ) ( )1 1 d
d
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Z R Z R R R Z R R Z
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 (7)

2.2.  Axisymmetric steady swirling flow at a runner outlet 
The principal equation (7), together with the flow tangency condition (4), can be used either in the 
design mode (given RVθ , find Ψ and ϕ )  or in the analysis mode (given ϕ , find Ψ and RVθ ). In this 
paper we consider the analysis mode, focused on the swirling flow at runner outlet. 

2.2.1.  The swirl-free velocity. For vanishing radial velocity, the flow tangency condition from Eq.(4) 
can be written using the so-called swirl-free velocity, sfV , as defined in Eq.(8) below. As shown by the 
velocity triangle at the runner outlet, Fig. 2, the swirl-free velocity is the value of the axial velocity 
which corresponds to vanishing circumferential velocity at each radius.  



 
 
 
 
 
 

As a matter of fact, the swirl-free velocity 
profile ( )sfV R  is a convenient way to 
describe the blade geometry at the trailing 
edge, instead of the more traditional 
relative flow angle. In a first 
approximation, when no severe flow 
detachment is present, ( )sfV R  does not 
depend on the operating point. 
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Figure 2. Velocity triangles at runner outlet.  

2.2.2.  One-dimensional swirling flow model at runner outlet. Assuming that the local flow changes in 
the axial direction are negligible (parallel or columnar swirling flow), one can simplify Eq.(7), using 
Eq.(8), into a one-dimensional swirling flow model, 
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where we have introduced the modified radial coordinate Y . It is convenient to re-write Eq.(9) into a 
dimensionless form by considering a reference length refR and a reference velocity ref ref= ΩV R , 
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Given the swirl-free velocity profile ( )sfv y  and the rothalpy variation ( )i ψ  , Eq.(10) with additional 
conditions, allows the computation of the axial velocity profile. The circumferential velocity 
immediately follows as ( )sf1 zv r v vθ = − . 

2.2.3.  Variational formulation for the constrained swirling flow problem. 
The differential model from Eq.(10) has an equivalent variational formulation which is more suitable 
for developing robust numerical algorithms. Let us consider the functional ( )F ψ  defined as, 

( )
tip

hub

2 2dF 2 ( ) d
d 2

y

y

c c i y
y y
ψψ ψ

⎡ ⎤⎛ ⎞
⎢ ⎥= − + +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫  (11)

In order to find the solution that cancels the Fréchet differential of this functional, 
( ) ( )0lim F F 0ε ψ εη ψ ε→ ⎡ ⎤+ − =⎣ ⎦ , we consider an arbitrary perturbation of the streamfunction, ( )yη , 

which vanishes at the boundaries. After integrating by parts we obtain 
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Since ( )yη  is arbitrary and vanishes at the boundaries, it follows that it is the solution of the 
differential Eq.(10) that corresponds to an extremum of the functional from Eq.(11).  



 
 
 
 
 
 

We can now state the full variational problem for the swirling flow downstream the Kaplan runner: 
given the dimensionless volumetric flow rate, q , the dimensionless flux of moment of momentum, 
m , the rothalpy variation, ( )i ψ , and the swirl-free velocity profile, sf ( )v y , find the axial velocity 
profile ( )zv y  which minimizes the functional with constraints, 
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The first term in the functional F( )zv  was modified to accommodate a contribution of the radial 
velocity, by replacing 2 2zv  with ( )2 2 22 2m z rv v v= + , consistent with functional form for two axi-

symmetric swirling flows, Wang and Rusak [9]. Note that the integral constraints (12b) and (12c) 
correspond to the two integral quantities that characterize the swirling flow downstream a turbine 
runner. 

2.3.  Fourier-Bessel series approximation for the axial velocity 
In order to solve numerically the constrained variational problem given by Eqs. (12) we need an 
approximation for the unknown function zv . We have introduced such an approximation in [1], using 
a Fourier-Bessel series as follows,  
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where iλ  are the zeros of the 1J  Bessel function, i.e. ( )1 0iJ λ = . The series approximation for the 
axial velocity automatically satisfies the discharge constraint (12b). The streamfunction approximation 
immediately follows as, 
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We obviously have ( )hub 0yψ =  and ( )tip 2y qψ = , thus the discharge constraint (12b) is satisfied, as 

expected. Both approximations (13) and (14) have leading terms corresponding to a constant axial 
velocity profile, which are corrected with a linear combination of modes with vanishing discharge. 

Inserting this approximation in the functional (12a), together with the integral constraint (12c), 
leads to a problem for the unknown mode amplitudes 1 2, , , Na a aK .  

3.  Swirl-free velocity for a Kaplan runner outlet 
The swirl-free velocity is computed using data for axial and circumferential velocity components, 
respectively, using the definition from Eq.(8). 



 
 
 
 
 
 

For example, Fig. 3 shows the dimensionless 
sfv  computed from experimental data (circles) 

or numerical results (dashed lines) for the 
Kaplan turbine investigated in the present 
paper. As we have found for Francis turbines, 
[1], a linear fit with respect to the 
dimensionless radius squared is accurate 
enough to represent the swirl-free velocity 
within our simplified model, i.e. 

(0) (1)
sf sf sf( )v y v v y= + .                  (15) 

The fit coefficients are found from 
experimental data for the Kaplan runner 
investigated in the paper as (0)

sf 0.2027v =  and 
(1)
sf 0.0756v = , respectively. 

Figure 3. Swirl-free velocity profile. 

4.  Rothalpy variation for Kaplan turbine 
The dimensionless rothalpy is computed from 
the numerical velocity and pressure fields, 
and plotted versus the streamfunction in 
Fig.3. Simple linear fits are considered, given 
the simplified assumptions of our swirl 
model, resulting at BEP (T case) 
( ) 0.002959 0.86488i ψ ψ= − − , and at FL (R 

case) ( ) 0.029479 0.88227i ψ ψ= − , 
respectively. Note that the rothalpy is defined 
up to an arbitrary additive constant, and as a 
result only the gradients of the above linear 
fits are relevant for the minimization of the 
functional (12a). The rothalpy variation is 
due to the fact that the straight guide vanes 
are located in the flow turning region for low 
head turbines, and as expected the rothalpy 
decreases from hub to shroud.  Figure 4. Rothalpy variation with the streamfunction 

5.  The radial velocity at a Kaplan runner outlet 
The radial component of the velocity at the runner outlet plays an important role in achieving accurate 
numerical results for the draft tube flow field. A first approximation of the radial velocity component 
was developed for the T-99 test case by Bergström [10] assuming a linear distribution of the flow 
angle. Cervantes and Gustavsson [11] further analyzed this radial velocity component an attempt to 
develop a more rigorous approach. On the other hand, when computing the radial velocity one needs 
to evaluate the axial derivative of the streamfunction, as shown in Eq.(6). It is clear that within the 
present model, which considers the flow only on a survey cross-section it is impossible to completely 
evaluate axial derivatives. However, an approximation for the radial velocity can be found if we 
consider only the gradients of the hub and shroud walls, hubdr dz and tipdr dz , respectively. Using the 
streamfunction expression, Eq.(14), and taking into account the expression for the axial velocity, 
Eq.(13), one can show that, 
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In our case, we have hub 0.212dr dz = −  and 

tip 0.0466dr dz =  from the geometry shown in 
Fig.1. In order to check the accuracy of Eq.(16) 
we plot the ratio ( ) ( )r zv r v r  computed from 
numerical simulations of the full 3D flow in the 
Kaplan turbine runner, Fig. 5. One can see that 
the simple analytical expression from Eq.(16) is 
in excellent agreement with numerical results. 
Such an agreement is to be expected as long as 
the flow tangency conditions at the hub and 
shroud, respectively, are satisfied. When the 
flow detaches from the hub, as it is the case for 
partial discharge regimes, the simple analytical 
approximation is no longer valid. 
 Figure 5. Radial / axial velocity components ratio. 

6.  Swirling flow at a Kaplan runner outlet 
The annular survey section shown in Fig.1 has the hub and tip radii hub 0.098R m=  and tip 0.236R m= , 
respectively, with the corresponding modified dimensionless radial coordinate values hub 0.154y =  and 

tip 0.891y = . The best efficiency operating point (T case) is defined by the dimensionless discharge 

BEP 0.1567q = and the dimensionless flux of moment of momentum BEP 0.8080E-2m = , respectively. 
The corresponding values for the full load point (R case) are FL 0.1693q =  and FL 0.3831E-2m = . Note 
that the above values have been determined by numerical integration of the experimental data, and as 
expected the results obtained with the mathematical model presented in section 2 are in excellent 
agreement with the measured velocity components as shown in Figs. 6 and 7. 
 

Figure 6. Axial, radial and circumferential 
velocity components at the BEP (T case) operating 
point.  

Figure 7. Axial, radial and circumferential 
velocity components at the FL (R case) operating 
point. 



 
 
 
 
 
 

7.  Conclusions 
The paper presents a quasi-analytical mathematical model for computing the swirling flow at the outlet 
of Kaplan runners, operated on a propeller curve with constant head and variable discharge. Compared 
to the initial version of the model [1], we introduce additional terms to account for radial velocity 
component and for the variable hub-to-tip rothalpy. The analytical expressions for these terms are 
assessed against numerical data from full three-dimensional simulations, since neither the radial 
velocity nor the rothalpy are available from measurements. Next, we use available experimental data 
to find so called swirl-free velocity profile, and to validate the computed results. 

From practical point of view, the present model is intended for optimizing the swirl ingested by the 
draft tube, within an operating range, before actually designing the runner. In doing so, the model 
parameters are subject of optimization for the best draft tube response to the swirl emerging from the 
Kaplan runner. 
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