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Orientational correlations in confined DNA
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We study how the orientational correlations of DNA confined to nanochannels depend on the channel diameter
D by means of Monte Carlo simulations and a mean-field theory. This theory describes DNA conformations in the
experimentally relevant regime where the Flory–de Gennes theory does not apply. We show how local correlations
determine the dependence of the end-to-end distance of the DNA molecule upon D. Tapered nanochannels provide
the necessary resolution in D to study experimentally how the extension of confined DNA molecules depends
upon D. Our experimental and theoretical results are in qualitative agreement.
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The conformations of biopolymers in living systems are
often affected by confinement [1,2]. Examples include actin
and its analogs in the gel-like cytoplasm [3], DNA segregation
in bacterial chromosomes [4], and the dense DNA packing in
eukaryotic chromosomes [5], in bacterial spores [6], and in
viral capsids and tail tubes [7–9]. Restrictions of the available
conformations fundamentally influence function, for example
in the case of DNA condensation [10,11].

Single DNA molecules confined in nanofluidic channels are
a powerful model system for studying the physics of confined
biopolymers in well-controlled environments [12–14]. Under-
standing the behavior of this model system is thus a first step
toward understanding the effects of confinement on polymers
in more complex biological systems. The principal difficulty
is that since the persistence length of DNA (�P ≈ 50 nm) is
below the diffraction limit for visible light, its microscopic
configurations are not directly observable in the fluorescence
microscope. To infer the statistics of local conformations it is
therefore crucial to understand theoretically how such local
conformations determine large-scale observables such as, for
example, the extension R of the confined DNA molecule
[Fig. 1(a)].

Two generally accepted theories exist for how the extension
of a DNA molecule varies as a function of channel diameter
D. De Gennes’ scaling theory [15], valid for wide channels
(D � �P ), predicts that R ∝ D−2/3. It is based on the notion
that a DNA molecule can be divided into a sequence of
“blobs” [Fig. 1(a)], and that the DNA within a blob follows
Flory scaling [16]. Odijk’s theory [17], by contrast, describes
the conformations of very strongly confined DNA (D � �P )
as almost stiff segments deflecting from the channel walls
[Fig. 1(b)].

Between these asymptotic limits, the local mechanisms
determining the extension of the molecule are not understood,
yet this regime is where most experiments are conducted. This
third regime spans at least an order of magnitude in D and
cannot be understood in terms of either asymptotic picture.
Several authors have attempted to understand the dependence
of the extension upon the channel diameter in this regime in
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terms of power-law relations of the form R ∝ D−α [18–20].
Instead we demonstrate that this third regime can be success-
fully analyzed in terms of the orientational correlation function
Cz(s1,s2) = 〈t z(s1)t z(s2)〉. Here t z(s) is the z component of the
unit tangent vector at contour distance s from the beginning of
the chain [Fig. 1(b)]. Angular brackets denote a time average.
A surprisingly simple picture emerges: The orientational
correlations of confined DNA exhibit three distinct behaviors
that can easily be separated. At short separations the correlation
function decays exponentially. We show that the parameters
of this decay depend upon D and discuss the mechanisms
behind this dependence. At larger separations, self-avoidance
dominates the correlations, giving rise to a plateau in Cz which
can be understood in terms of a mean-field theory. This theory
applies in the experimentally relevant range where the DNA
conformations cannot be described in terms of statistically
independent blobs [Fig. 1(d)]. Moreover, the theory shows that
the dependence of the extension upon D is not of power-law
form for the range of parameters that are easily accessible in

FIG. 1. Schematic illustration of different regimes for confined
DNA. (a) The de Gennes regime (D � �P ). (b) The Odijk regime
(D � �P ). (c) The Odijk regime with hairpin formation (D � �P ).
(d) A snapshot from Monte Carlo simulations (described in the text)
of a semiflexible chain confined to a square channel with diameter
D = 4.45�P .
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experiments and numerical simulations. Despite the fact that
the mean-field theory is not based on the notion of blobs, it
predicts that R ∝ D−2/3, consistent with de Gennes scaling,
in the asymptotic limit of very long DNA in wide channels.
However, in experiments and simulations, the contour length
is usually not long enough for the asymptotic regime to be
reached. We show that in this case end effects (quantified by
the decay of Cz at very large separations) substantially modify
the fluctuations of R. We test our model by Monte Carlo
simulations of a semiflexible, self-avoiding polymer, and by
experimentally measuring the dependence of the extension R

of a confined DNA molecule upon D in tapered nanochannels
(where the channel diameter D varies gradually along the
channel) [21], that provide the necessary D resolution to
test the theoretical predictions. We find qualitative agreement
between the theoretical and experimental results.

A DNA molecule in solution is commonly described as a
wormlike chain of persistence length �P ≈ 50 nm and contour
length L, where different pieces interact through a screened
repulsive electrostatic potential. In order to simplify the theory,
we instead consider a semiflexible chain of N spherical
monomers of diameter a, with a bending potential Ui/(kBT ) =
−κ(ti · ti−1). Here ai = ati points from the center of monomer
i to the center of monomer i + 1 and ti is the unit tangent
vector. κ is a dimensionless measure of the stiffness. Defining
�P = κa, the wormlike chain can be recovered in the limit
κ → ∞, a → 0, �P = κa = const. Since the electrostatic
interaction is short-ranged, it can be approximated by a
hard-core potential with an effective width weff which depends
on the ionic strength of the solution. Let us constrain the centers
of the monomers to a square channel of width and height D,
extending along the z direction. The end-to-end distance of the
chain is given by rz = a

∑
i t

z
i , where t zi = ti · ẑ (Fig. 1). We

characterize the orientational statistics of the confined DNA
molecule by the correlation function Cz(i,j ) = 〈t zi t zj 〉. Since
the confinement breaks the symmetry, the z component of the
tangent behaves very differently from the x and y components.
The relevant correlation function is thus Cz(i,j ), as opposed
to 〈ti · tj 〉. The latter function has been studied for free DNA
[22–24], for strongly confined DNA (D < �P ) [25,26], and
for strongly confined actin filaments [27,28].

In our simulations, non-neighboring monomers interact
by a hard-core potential with effective width weff = a. We
use N = 800, κ = 8, and a = 1, corresponding to a DNA
molecule with weff ≈ 6 nm and contour length L ≈ 5 μm
(assuming �P ≈ 50 nm). The model and the parameters are
similar to the ones in Ref. [20]. The simulations implement
the Metropolis algorithm, with crankshaft trial moves [29].
The resulting orientational correlation functions Cz(i,j ) are
shown in Fig. 2 for two different values of the channel size
D, and Figs. 3(a) and 3(b) show sections of the correlation
functions corresponding to the region between the dashed lines
in Fig. 2 (left).

Cz(i,j ) is seen to exhibit three distinct behaviors we
now describe in turn. First, when |i − j | � κ , the effect
of self-avoidance is expected to be negligible compared to
the effect of stiffness. For an unconfined chain (D � �P )
the correlation function decays as Cz(i,j ) = α2 exp{−|i −
j |/β} in this region, with α2 = 1/3, β = κ . The results of
our simulations show that the decay remains approximately

FIG. 2. (Color online) Correlation functions Cz(i,j ) from Monte
Carlo simulations, constrained to square channels. Left: D = 2 �P ≡
2κa. Right: D = 4.45�P . Regions where Cz > 0.15 are white.
Dashed lines mark the section that is shown in Figs. 3(a) and 3(b).

exponential for smaller channels (D � �P ), Fig. 3(b). We
have fitted α and β, and find that both parameters depend
upon D [Fig. 3(c)]. We see that α increases as D decreases,
reflecting a tendency of the segments to align with the
channel direction. This observation is consistent with recent
experimental findings [14]. The parameter β quantifies the
initial decay of orientational correlations of confined DNA.
We expect that for D � �P , the parameter β is determined
by the probability of hairpin formation. The corresponding
free energy was calculated in Ref. [30]. However, a theory
for β in this regime is lacking, and β must be determined by
simulations. This also applies in the case of the wider channels
we consider here.

Second, for |i − j | � β, the tangent vectors at i and j are
independently oriented, except for the fact that self-avoidance
swells the chain. Thus, Cz(i,j ) = 〈t zi 〉c〈t zj 〉c , where the
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FIG. 3. (Color online) (a), (b) Sections of the correlation function
Cz(i,j ). Blue (upper) line: D = 2 �P . Red (lower) line: D = 4.45�P .
Cz is averaged over all values with |i + j − N | < 10, i.e., between
the dashed lines in Fig. 2. Dotted lines: estimates of the plateau level
Cz = 〈t z〉2

c from Eq. (1). Dashed lines: exponential fits for |i − j | �
κ . Dash-dotted lines: 〈t z

i 〉c〈t z
j 〉c (hardly distinguishable from solid line

for D = 2�P ). (c) Estimates of the decay parameters α2 (red circles),
β (blue crosses), as a function of D/�P . (d) 〈t z

i 〉c [with α(D) and β(D)
taken from (c)] as a function of i for D = 2 �P (blue, upper line) and
D = 4.45�P (red, lower line). Dotted lines: estimates of 〈t z〉c from
Eq. (1).
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subscript defines an average conditional on rz > 0. Whereas
〈t zi 〉 = 0 due to the z symmetry of the problem, 〈t zi 〉c takes
into account the fact that strong confinement breaks the z

symmetry: rz is rarely close to zero for a long chain in a
thin channel. Figure 3(a) shows that this factorization of Cz

works very well for thin channels. The question is now how
〈t zi 〉c depends on i. For monomers far from the ends, 〈t zi 〉c

is expected to be independent of i (in this case we write
〈t zi 〉c = 〈t z〉c); compare Fig. 3(d). As a consequence, a plateau
in Cz(i,j ) develops, clearly seen in Figs. 2 and 3(a). We show
below how the bias 〈t z〉c (and thus the level of the plateau) can
be estimated by a mean-field argument. Fig. 2(right) shows
results for a channel that is so wide that a plateau does not
clearly develop for a chain of this length. This fact is also
apparent in Fig. 3(a), solid red line.

Third, the bias 〈t zi 〉c is expected to be smaller close to
the ends, as the chain is more flexible there. This is clearly
seen in Fig. 3(d) and gives rise to a further decay of Cz(i,j ),
seen in Figs. 2 and 3(a). We note that such end decay has
been observed in other contexts too [22,24,26]. However, a
quantitative theory for the onset and shape of the decay for
confined DNA molecules is lacking.

We now discuss the implications of our results for Cz for the
extension of a confined DNA molecule. Let us first consider
the limit of very long chains (N → ∞). Neither our study
nor other experimental and simulation studies achieve this
regime, but it is nevertheless instructive to consider. In this
limit, fluctuations are negligible, and the extension is almost
equal to the end-to-end distance, which in turn is determined by
the correlation function. Thus, R2 ≈ 〈r2

z 〉 = a2 ∑
i,j Cz(i,j ).

Since the contributions to the sum from the first and third
regions scale linearly with N , whereas that from the second
region grows as N2, the extension is determined by the bias,
R2 = N2a2〈t z〉2

c , as N → ∞. We note that in this limit, the
extension R scales linearly with L = Na, as it must when
self-avoidance dominates the extension.

We now demonstrate how the bias 〈t z〉c (and thus R for
N → ∞) can be estimated by a mean-field argument. One way
to obtain the correct average 〈· · ·〉c for a self-avoiding polymer
is by first generating all configurations of the corresponding
ideal polymer (i.e., with spatial overlaps allowed), and then
remove all configurations where two or more monomers
overlap. If Pideal(rz) is the probability distribution of rz for
the ideal chain, the distribution for the self-avoiding chain is
given by P (rz) ∝ Pideal(rz)A(rz), where A(rz) is the fraction
of ideal configurations with end-to-end distance rz that are
free of overlaps. Estimating the functions Pideal(rz) and A(rz)
leads to an approximate expression for P (rz). Let us start
with Pideal. Unless the channel is very thin (D � �P ), the
correlation function C ideal

z (i,j ) decays rapidly to zero for
|i − j | > κ . Assuming that the correlation decays exponen-
tially as C ideal

z (i,j ) = α2 exp{−|i − j |/β}, where 1 � β �
N , the distribution Pideal(rz) is a Gaussian function, with zero
mean and variance 〈r2

z 〉 ≈ Na2α22β. We now estimate A(rz)
by a mean-field argument, similar to the one used in deriving
the Flory expression for the extension of a free self-avoiding
chain [15,16]. If we divide our polymer into Nβ = N/(2β)
effective monomers of length 2βa and width a, they are
essentially independently oriented. If we make the mean-
field assumption that these effective monomers are uniformly

and independently distributed within the available volume
V = rzD

2, the probability for two given monomers to collide
is p = ξ/V . Here ξ is the excluded volume of an effective
monomer. We approximate ξ by the value for a stiff rod
of the same length and width [31]: ξ = (π/2)a3[4β2 + (π +
3)β + π/4]. Since there are Nβ(Nβ − 1)/2 ≈ N2

β/2 possible
collisions, the probability of no collisions is A(rz) = (1 −
p)N

2
β/2 = [1 − ξ/(rzD

2)]N
2
β/2. With these expressions for Pideal

and A, we find P (rz). Differentiation yields the most probable
end-to-end distance, and thus an estimate of the bias:

〈t z〉c ≈
(

ξ (D)α2(D)

4β(D)aD2

)1/3

. (1)

Note that α2 and β (and thus ξ ) depend on D. The prediction
of Eq. (1)—with α(D) and β(D) taken from Fig. 3(c)—is
compared to simulation results in Figs. 3(a) and 3(d). The
agreement is surprisingly good considering the shortcomings
of the mean-field theory: First, the expression for the excluded
volume assumes that the effective monomers are randomly ori-
ented stiff rods, while in reality they have complicated shapes
and have a tendency to align with the channel. This assumption
overestimates the bias by an unknown factor in the region
where α2 � 1/3. Second, our theory assumes that monomers
are uniformly distributed within the channel, whereas in fact
monomers are more likely to be found in the center of the
channel than near the walls. This assumption underestimates
the bias by a factor of order unity, for all values of D.

Equation (1) shows that the dependence of R on D is not
of power-law form in the limit N → ∞, except for very wide
channels, where α2 → 1/3 and β → κ [Fig. 3(c)]. In this
limit, Eq. (1) gives R ∝ D−2/3, in agreement with de Gennes
scaling. We emphasize that our derivation is not based on
the notion that DNA within a blob of size D follows Flory
scaling, but directly takes into account the confinement of the
DNA molecule in the channel. The theory is valid for channels
so thin that DNA conformations cannot be described in terms
of statistically independent blobs [Fig. 1(d)]. Flory scaling is
not relevant to this regime, neither is the question which Flory
exponent should be used (ν = 3/5, 1/2, or 0.588) [20,32].

For finite values of N the situation is yet more complicated,
as the relative areas of the three regions in the correlation
function change with D. This is a second reason why the
dependence of rz upon D is in general not of power-law form.

We have verified these conclusions by Monte Carlo simu-
lations. Figure 4(a) shows the measured end-to-end distance√〈r2

z 〉 as a function of D compared with the scaling law
rz ∝ D−2/3. Also shown is 〈t z〉c obtained from Eq. (1), with
α(D) and β(D) taken from Fig. 3(c).

√〈r2
z 〉/L and 〈t z〉c show

qualitatively the same behavior, neither of them depending as
a power law upon D. However, the shape of the curves is
clearly different. This is a consequence of the fact that the first
and third regions contribute to the extension—as D increases
(at fixed N ), the end decay starts earlier, thus decreasing the
extension faster than predicted by Eq. (1). For even larger
values of D, the second region vanishes, and the value of 〈r2

z 〉
approaches that of free chain.

In order to validate the results from theory and simula-
tions we measured the extension of YOYO-labeled λ-phage
DNA (see Ref. [12]). The extension was measured as a
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FIG. 4. (Color online) DNA extension from simulations and
experiments.

√〈r2
z 〉/L from simulations (blue diamonds) and 〈t z〉c

from Eq. (1) (solid blue line) compared to de Gennes scaling (dashed
blue line). Extension of λ-DNA (48.5 kbp, L ≈ 20 μm [12]) as a
function of D = √

DhDw in 180 nm deep nanofunnels studied at
0.5x TBE (red crosses). The “error bars” show the standard deviation
of the distribution of extensions, at a given D [33]. Also shown is
experimental data at 0.5x TBE from Fig. 5 of [18] (black circles).

function of confinement in tapered nanochannels, with a fixed
height (Dh = 180 nm) and a gradually increasing width (from
Dw = 50 nm to 650 nm). In tapered nanochannels the DNA
extension can be measured continuously as the width increases
(for experimental details and data for additional ionic strengths
we refer the reader to the Supplemental Material [33]). For
practical reasons the experimental conditions could not be
fully reproduced in the simulations as follows: Whereas the
simulations were performed in square channels, in the experi-
ment the aspect ratio varies with confinement. Experiment and
simulations also differ in that the experimental contour length
is approximately 4 times longer, and that the extension R is not
identical to the end-to-end distance rz. Furthermore, there is
no well-established consensus in the literature on the effects of
intercalators on the persistence length of DNA [34–37] nor is
the effect on the effective width known. Finally, the interaction
between the DNA and the channel walls could lead to a lower

effective diameter. For these reasons it is hard to compare
simulations and experiments quantitatively, and we restrict
ourselves to noting that they are in qualitative agreement, as
shown in Fig. 4. In particular, the extension curve is always
steeper than predicted by de Gennes scaling, and does not obey
a power law. Both observations are in accordance with Eq. (1)
and are also consistent with the observation that the end-decay
regions grow with increasing channel size.

The results summarized in this paper pose many new
questions. First, our theory includes the scaling prediction of
de Gennes for D � �P , but what does the transition to the
Odijk regime look like? Second, how do our results cross over
to the known orientational correlations of unconfined DNA
[24]? Third, it is necessary to understand how the increased
fluctuations near the ends of the molecule depend on the
channel dimension D and the properties of the DNA molecule.
Fourth, we have seen that the parameters characterizing the
initial exponential decay of the correlation function depend
upon D. This effect is not quantitatively understood. Fifth,
we have analyzed a simplified model disregarding possible
effects of electrostatic interactions between the molecule and
the walls. These effects are likely to be of importance in the
experiments we have discussed, and must be investigated.
Sixth, what does the nonuniform monomer distribution of a
confined polymer imply for the extension? Last but not least
it is now experimentally possible to study DNA below the
diffraction limit of light [38]. In the future, these techniques
may allow us to directly observe the microscopic confirmations
of confined DNA.
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