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SUMMARY

Epidermal nerve fiber (ENF) density and morphology are used to diagnose

small fiber involvement in diabetic, HIV, chemotherapy induced, and other

neuropathies. ENF density and summed length of ENFs per epidermal sur-

face area are reduced, and ENFs may appear clustered within the epidermis

in subjects with small fiber neuropathy compared to healthy subjects. There-

fore, it is important to understand the spatial behavior of ENFs in healthy

and diseased subjects. This work investigates the spatial structure of ENF

entry points, which are locations where the nerves enter the epidermis (the

outmost living layer of the skin). The study is based on suction skin blister

specimens from two body locations of 25 healthy subjects. The ENF entry

points are regarded as a realization of a spatial point process and a second-

order characteristic, namely Ripley’s K function, is used to investigate the

effect of covariates (e.g. gender) on the degree of clustering of ENF entry

points. First, the effects of covariates are evaluated by means of pooled K
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functions for groups and, second, the statistical significance of the effects and

individual variation are characterized by a mixed model approach. Based on

our results the spatial pattern of ENFs in samples taken from calf is affected

by the covariates but not in samples taken from foot.

1 INTRODUCTION

Epidermal nerve fibers (ENFs) are unmyelinated nerve fibers that originate

from the subepidermal neural plexus which is located in the dermis and pen-

etrate the basement membrane to innervate the epidermis, which is the out-

most living layer of the skin, see more details in Kennedy & Wendelschafer-

Crabb (1993). ENFs can be visualized via light (Wang et al., 1990) or con-

focal microscopy studies (Kennedy & Wendelschafer-Crabb, 1993). Their

diagnostic value has been established through a series of studies. For exam-

ple, Kennedy et al. (1996) report diminished numbers of ENFs per surface

area in diabetic subjects, as well as reduced summed length of all ENFs per

epidermal surface area, that is, reduced epidermal innervation.

Kennedy et al. (1999) report that nerve fiber loss due to small fiber neu-

ropathy (for example diabetic neuropathy) results in a more clustered ENF
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pattern across the epidermis in subjects with small fiber neuropathies than

in non-diseased subjects. Waller et al. (2011) were able to quantify this ob-

servation based on analysis of ENF entry point data from suction-induced

skin blister images (Kennedy et al., 1999) from the thighs of one non-diseased

patient, two patients with mild diabetic neuropathy, two with moderate di-

abetic neuropathy and two with severe diabetic neuropathy. The spatial

pattern of the ENF entry points, i.e. locations where the ENFs penetrate

the epidermis, was described by second-order methods for spatial point pro-

cesses. Waller et al. (2011) conclude that the second-order summary statistic,

Ripley’s K function, could be used to show that ENF entry point patterns

from subjects with moderate or severe diabetic neuropathy were clearly more

clustered than the pattern from the non-diseased subject. However, since the

study was based on limited amount of data, more data would be needed to

confirm the pattern changes in diabetic subjects.

In order to better understand the spatial structure of ENFs within healthy

subjects, we analyze data from skin blister specimens taken from the right

foot and right calf of 25 healthy volunteers. This data was collected by the

Kennedy laboratory (see Panoutsopoulou et al., 2009) during a study where

they compared two different biopsy methods, the suction skin blister and the
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punch skin biopsy, in order to visualize and quantify the ENFs. In our paper,

the entry point patterns from the blister samples are regarded as realizations

of spatial point processes and studied by the K function as in Waller et al.

(2011). We are interested in whether the spatial pattern, especially the scale

of clustering of entry points, varies in each body location of skin sample with

age, gender and body mass index (BMI).

Since not many replicated point pattern data have been available, the

tools for analysing replicated spatial point patterns, especially with covariates

and hierarchy, are still under development. Most of the studies are based on

pooled summary statistics as presented in Diggle et al. (1991), Baddeley et

al. (1993) Diggle et al. (2000) and Schladitz et al. (2003). We divide the

indivuals into subgroups according to body location, age, gender and BMI

and estimate the K function separately for each subgroup. Our construction

of pooled K functions is a slight modification of the approach presented

by Diggle et al. (2000) and Schladitz et al. (2003). This visual analysis is

followed by a linear mixed model approach where we try to characterize

statistical significance of the effects of age, gender and BMI and, in addition,

the magnitude of variation between subjects and within subjects.

Mixed models for replicated spatial point process data have been intro-
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duced by Bell & Grunwald (2004) and Illian & Hendrichsen (2010) by in-

corporating random effects to pseudo-likelihood estimation of Gibbs point

processes. Random effects have been used in point process models also e.g.

in Hossain & Lawson (2009) and Rue et al. (2009), but in these works the

effects operate for the first-order property (intensity) of non-replicated point

patterns. Landau & Everall (2008) have proposed to model empirical K

function values at a given distance by linear mixed models. As far as we

know, the analysis we present in this paper is the first time mixed models

have been used to model the entire K function. Instead of making assump-

tions of the point process model, we try to detect effects of covariates on the

second-order spatial structure through the K function.

A linear mixed model approach has been used for ENFs already by Panout-

sopoulou et al. (2009), who modeled log ENF density by a mixed linear model

based on the foot and calf data. They concluded that the ENF density is

lower among older subjects than among younger subjects, and that the den-

sity tends to be higher among women than among men. However, based on

their study the ENF density does not depend significantly on the body loca-

tion or BMI. We aim at finding factors that affect the second-order spatial

structure of nerve entry points, and fit linear mixed models to the empirical
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second-order K function.

Ultimately, we want to be able to recognize abnormal structure of ENFs.

The linear mixed model analyses performed in this paper suggest that, par-

ticularly in calf, it is important to take the covariate effects into account when

looking for signs of small fiber neuropathies. Since the covariates seem not

to have effect on the second-order spatial structure of ENF entry points in

foot, it might be preferable to take samples from foot instead of taking them

from calf. However, since all the covariates of this study are easy to measure,

they should be recorded in future studies as well. A further possible reason

to favor foot is that the number of nerve entry points tends to be larger

in samples taken from foot than in those taken from calf (Panoutsopoulou

et al., 2009). On the other hand, some other studies have shown that the

ENF density decreases as we move distally on the body, see e.g. Lauria et

al. (1999). Additional studies including small fiber neuropathy patients are

needed to investigate which body location would best show the changes in

spatial pattern due to neuropathy.

The rest of the paper is organized as follows. We start by introducing

the data in Section 2. The spatial point processes and the second order

properties of them as well as the basic theory of linear mixed models are
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recalled in Section 3. These methods are then applied to the ENF data in

Section 4, and the results are discussed in Section 5.

2 DATA

Two skin blister specimens were obtained from the right calf and from the

right foot of 25 healthy adult volunteers using the suction skin blister method,

see Panoutsopoulou et al. (2009). ENFs were immunostained, imaged confo-

cally, and traced to determine entry point coordinates for each image. Three

to six images (usually four) per each body location of each volunteer were

obtained. These replicates were based on two blisters, from which (usually

two) images with the surface area of approximately 330× 432 microns, were

analyzed.

We study the spatial pattern of the ENF entry points. Figure 1 shows

two examples of such point patterns from the foot blister images of two

individuals. The entry point pattern on the left has 41 entry points and the

one on the right 21 entry points. The number of entry points varies quite a

lot within and between individuals. The mean number (standard deviation)

of entry points per sample (image) is 25.7 (14.6) for foot and 22.8 (11.5) for
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calf. In the later analyses we exclude patterns with less than ten points, since

the use of the spatial summary function seems not to be meaningful based

on a very small number of points. After excluding the patterns with less

than ten ENF entry points, the mean number of entry points is 27.5 (13.9)

for foot and 25.1 (10.5) for calf.

Figure 1: about here.

3 METHODS

3.1 Second-order summary statistics

Spatial point processes describe a family of stochastic process models where

events generated by the model have an associated (random) location in space.

Illian et al. (2008), Diggle (2003), Cressie (1993, Chapter 8), and Waller &

Gotway (2004, Chapter 5) provide details regarding theory and applications

from many diverse fields, like astronomy, cellular biology, forestry and public

health.

Our intention is to study the spatial pattern of the nerve entry points as a
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realization of a stationary (translation invariant implying constant expected

intensity across the study area) and isotropic (rotation invariant) point pro-

cess. The analyses can be based on several summary statistics, for example

the distribution of the distance from a randomly selected nerve entry point to

its nearest neighboring entry point or the distribution of the distance from

a randomly selected location to the nearest entry point, or a combination

of these two (see e.g. Illian et al., 2008). However, these methods examine

behavior only at the “nearest neighbor” scale.

We have chosen to consider Ripley’s K function (Ripley, 1977), which is a

second order property of an observed point process. If λ is the intensity (mean

number of entry points per area) of the point process, then λK(r) denotes

the mean number of entry points within distance r > 0 from a typical entry

point (which is not counted). When the point pattern is completely spatially

random (CSR), K(r) equals πr2. Under regularity, K(r) tends to be less

than πr2 and, under clustering, greater than πr2. Since K(r) is a function

of all interevent distances it is possible for a given realization to have, for

example, K(r) > πr2, r < r∗, and K(r) < πr2, r > r∗ for some distance r∗.

Thus, r∗ is associated with the spatial scale of clustering or regularity found

in the data. Note though that the K function is a cumulative function of
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distance as it measures the expected number of nerve entry points up to a

certain distance.

Besag (1977) suggests a variance-stabilizing transformation of the K func-

tion,

L(r) =
√
K(r)/π. (1)

The L function allows a more readily interpretable diagnostic tool, since we

can plot r vs. L(r)−r and compare the resulting curve to zero (expected value

under CSR) in order to see whether the pattern differs from a completely

spatially random pattern.

We estimate the K function using a standard estimator (see e.g. Cressie,

1993; Illian et al., 2008) with the isotropic edge correction suggested by

Ripley (1976). We further use L̂(r) =
√
K̂(r)/π as an estimator for the

L function. For estimation we utilize the R library spatstat (Baddeley &

Turner, 2005).

3.2 Pooled summary statistic

3.2.1 Pooled K function

Often we observe only one point pattern from which we estimate the K (L)

function. If repetitions are available, the K function can be estimated from
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each repetition, and the individual K functions can be pooled together into

one estimate which then represents the entire group, see Diggle et al. (1991),

Baddeley et al. (1993), Diggle et al. (2000), and Schladitz et al. (2003). The

pooled L function is estimated by transforming the pooled K function as in

(1).

In our data, 3-6 repetitions are available per subject and body location.

After the subject specific K (L) functions have been estimated from the

replicates, the K function for each subject i and for an entire group can be

estimated. The index set G contains the individuals i ∈ {1, ..., N} that belong

to a particular group that may for example consist of samples of all subjects

taken from calf or samples of all females from foot. Therefore, we begin by

estimating the K function for each replicate j, j = 1, . . . ,mi, of each subject

i, i = 1, . . . , N , where N is the number of subjects and mi is the number

of replicates for subject i. Then the subject specific mean functions can be

estimated as

K̄i(r) =
mi∑

j=1

wijK̂ij(r), i = 1, . . . , N, (2)

where the replicate specific Kij functions are weighted by the squared number

of points n2
ij in the point pattern in question, i.e. wij = n2

ij/
∑mi

j=1 n
2
ij (Diggle

et al., 2000; Schladitz et al., 2003). Following Schladitz et al. (2003), the
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overall mean function for a group G of individuals becomes

K̄G(r) =
1

nG,2

N∑

i=1

1(i ∈ G)n2
i K̄i(r), (3)

where nG,2 =
∑N

i=1 1(i ∈ G)n2
i , ni =

∑mi

j=1 nij and 1(i ∈ G) equals 1 if subject

i belongs to the group G and 0 otherwise. We have decided to use the squared

point-number-weighted group means, since particularly the ENF entry point

patterns from different subjects can not be assumed to be realizations of

point processes with the same intensity.

3.2.2 Variance estimation

In addition to the mean K function we need an estimate for its variance. One

possible approach would be to use the sampling variance of the K̂ij functions

at fixed r to obtain pointwise bands. Here, we create the pointwise bands

based on a bootstrap estimate of the overall mean function K̄G(r) following

the bootstrap procedure of Schladitz et al. (2003), see also Diggle et al. (1991,

2000). In this procedure, the residual K functions R̂ij(r) = nij[K̂ij(r)−K̄i(r)]

are resampled by drawing at random and with replacement, keeping number

of samples per subject fixed. Thus, in a bootstrap sample, a new residual K

function, R̂∗
ij, is attached to each replicate, and the bootstrapped K functions

are obtained as K̂∗
ij(r) = K̄G(r) + n−1

ij R̂
∗
ij for all i and j. The function (3)
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is calculated for each bootstrap sample, and the pointwice 2.5% and 97.5%

quantiles from the B bootstrapped means are used as the band for the overall

mean (3).

The resampling of the residual K functions assumes that the replication

is the same across groups or sufficiently large within each group (see Diggle

et al., 1991). In our data, there are four replicates per location for most

subjects, while a few have anywhere from two to six.

3.3 Linear mixed model

Typically, the K (L) function is used only in the preliminary analysis of the

data mainly to see whether a point pattern differs from a completely spatially

random pattern. If there is non-spatial covariate information available, it

can be interesting to investigate also whether the form of the K function

is affected by the covariates. Our study focuses on how to model the K

function, or in fact the centered L function, L(r)− r, using the linear mixed

models approach which is commonly used to model growth curves. Our “time

variable” is distance r.

The starting point of a linear mixed model (LMM) is a linear model

E[y] = Xβ, where the fixed effects are in β and X is a known matrix.
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An LMM includes some fixed effects and in addition, some random effects.

Therefore, the model can be written as

E[y|u] = Xβ + Zu,

where u is a vector of random effects and Z is a known model matrix. As

can be seen in the formula above the model is specified conditionally on the

unobserved but realized values of u. Fixed effects describe the behaviour of

the entire population, and random effects are associated with the individual

experimental unit (group) sampled from the population.

Typically, it is assumed that the within-group errors are independent and

identically normally distributed, with mean zero and variance σ2, and that

they are independent of the random effects. Further, the random effects are

assumed to be normally distributed, with mean zero and covariance matrix

Φ (not dependent on the group) and that they are independent for different

groups. See more about linear mixed models e.g. in McCulloch (2001).

4 ANALYSIS OF THE ENF PATTERNS

We study the nerve entry point patterns by using the second-order L function.

First, the subjects are divided into subgroups based on body location, age,
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gender and BMI, and the L function is estimated for each subgroup. Then, for

each body location, we fit a linear mixed model to the centered L functions

estimated from the data having age, gender and BMI as covariates in the

model.

4.1 K-functions for subgroups

We start by estimating the overall mean L (or K) function (3) separately

for the calf data and for the foot data. We have chosen to plot the mean K

functions with bootstrap envelopes for each subgroup without performing any

formal tests. The pooled centered L functions together with 95% bootstrap

envelopes constructed from 1000 resamples are shown in Figure 2. Both the

L function estimated from the calf data and the one estimated from the foot

data indicate clustering of the ENF entry points. However, there are some

differences between the calf and foot data: The L function based on the

foot data reaches its maximum approximately at distance 20 microns, while

the L function based on the calf data reaches its maximum at 30 microns.

One should note though that the L functions estimated from the samples

taken from the same body location of a subject may look quite different.

The within subject variation can be inspected from Figure 3, where the gray
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solid lines show the sample specific centered L functions (for 10 ≤ r ≤ 60).

For example, the L functions of the three samples from Subject 1103 are quite

similar, whereas the four samples from Subject 1113 look quite different from

each other. Large variation within Subject 1113 is likely caused by reasonably

small number of nerve entry points in the samples taken from this subject.

Note that in calculating the pooled K functions the individual K functions

are weighted by the squared number of points.

Figure 2: about here.

Figure 3: about here.

We have split the calf and the foot data further into subgroups by age

(Wang et al., 1990), by gender, and by BMI. For the two body locations, we

study the groups formed above (n = 12) and below (n = 13) the median age

(50.5 years). The overall means in these subgroups are shown in Figure 4

(top). In both foot and calf data, the L functions of the two subgroups reach

the maximum value approximately at the same distance, 30 microns for the
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calf data and 20 microns for the foot data, indicating that the cluster radius

is the same in these two age groups. However, since the L function of the

older group lies above the L function of the younger group, one can conclude

that the clusters of the nerve entry pattern of older people tend to have more

points relative to the total number of points than the clusters in the nerve

pattern of younger people.

Next we split the data according to BMI. Individuals with BMI < 25

(n = 11) belong to the low BMI class and individuals with BMI > 25 (n = 14)

belong to the high BMI class. BMI does not seem to affect the cluster radius

since the maximum in each subgroup (both in foot and calf data) is reached

approximately at the same distance. However, for the calf data the clusters

in the nerve entry point pattern among individuals with low BMI have more

points relative to the total number of points than among those with high BMI,

while in the foot data it is the other way around, see Figure 4 (middle).

Figure 4 (bottom) shows the L functions separately for women (n = 15)

and for men (n = 10). The results are similar to the ones based on the

division into low and high BMI. Indeed, in the data women tend to have

slightly lower BMI than men (the mean BMI for women is 24.6, and for men

27.5) and only two out of 11 are men in the low BMI group. The high BMI
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group, on the other hand, consists of eight men and six women.

We further continue by splitting the data both by age and by BMI, which

gives four subgroups for each body location. The number of individuals in

the groups are 6, 7, 5 and 7. We plotted the mean centered L functions of the

different groups calculated for the calf and the foot data (figure not shown).

In the calf data the group of older people with low BMI has a more clustered

(more points per cluster relative to the total number of points) entry point

pattern than the other groups. The other three groups behave very similarly.

In the foot data, on the other hand, the two groups with younger people have

less clustered nerve entry point patterns than the two older groups, whereas

the differences between the low and high BMI groups within these age groups

are slightly smaller.

We can conclude that the spatial pattern of nerve entry points appears

to be different between calf and foot. Furthermore, there is some indication

that the pattern may vary with age, and possibly also with gender and BMI.

These observations should be considered with care since the bootstrap pro-

cedure does not account for unspecified sources of between-subject variation,

see discussion in Diggle et al. (1991). One way to accommodate for these

unspecified sources of between-subject variation is to assume a parametric
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random effects model for the K functions.

Figure 4: about here.

4.2 Modelling second-order structure by linear mixed

models

We analyzed above the spatial structure of the nerve entry points by using

the second-order L function. Through visual observation we have noticed

that the spatial pattern may depend on the body location and other covari-

ates such as age, BMI and gender. We further study the second-order spatial

structure by mixed models, and investigate how the covariates affect the form

of the centered L function. The L function is modeled using linear mixed

models usually used to model growth curves. Our “time variable” is distance

r, which is initially chosen to take values r = 10, 15, ..., 60 (microns). Figure

2 shows that the centered L function levels down around at distance 60 mi-

crons, and therefore r = 60 is chosen as the maximum value of r considered

here. Our future goal is to be able to compare ENF patterns of healthy sub-

jects with patterns of subjects with neuropathy. The hypothesis is that the
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diseased ENF patterns are more clustered than the healthy patterns. There-

fore, the behaviour at short distances is not of primary interest here; we are

more interested in the scale and amplitude of clustering at longer distances.

Therefore, we ignore the possible effects of covariates on the inhibition be-

tween nerve trunks and choose the minimum value for r as 10. Inspection of

the distribution of L(r)− r estimates for different values of r reveals that for

r = 10, 15, ..., 60 the distribution is quite symmetric.

We first fit a full fixed model including r, age, gender, BMI, body location

and all interactions between them. Subject as well as the body location

within subject were added as random effects to allow random variation but

to keep the model reasonably simple. Distance r was regarded as an ordered

factor with levels 10, 15, . . . , 60. We started with the full model and excluded

the non-significant terms (p > 0.05) from the model stepwise. The resulting

model included body location, age, r and the interaction between r and body

location. (The marginal effect of body location was kept in the model since

its interaction with r was highly significant.) From the summary of the fitted

model we can investigate the orthogonal polynomial contrasts and conclude

that only the linear, quadratic, third and maybe the fourth power matter.

(Note though that this may depend on the denseness of r values.)
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We then fit a model with only the first four powers of r considering r a

continuous variable. We proceeded with the model including body location,

age, r and interaction between r and body location, where the dependent

variable was modeled as a polynomial with respect to the distance variable.

Since r was now considered continuous, we took a denser set of 26 r values:

r = 10, 12, 14, . . . , 60. We ended up with the same fixed effects as above.

Based on the experimenting, we can conclude that the shape of the L

function is different for the calf and for the foot data since the interaction

between r and body location is strong. This difference is also visible in Figure

2. In the following, our main purpose is to find out which covariates affect

the shape and the level of the L function in each body location.

4.2.1 Foot

The joint analysis for foot and calf data above showed that it is enough

to include r in the model as a fourth order polynomial. First we fit the

fourth order polynomials for each of the subjects separately, and even for

each sample within subjects separately. Figure 5 shows boxplots of the fitted

regression coefficients. The results show that the variation within a subject

is much larger than the variation between the subjects indicating that we
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should include sample specific but not necessarily subject specific random

effects in the model. We will investigate both scenarios.

Figure 5: about here.

Our model is

Lijk − rk = xikβ + zuj + εijk

for subjects i = 1, . . . , N , repetitions j = 1, . . . ,mi within subject i and

rk-values, k = 1, . . . , 26. Here εijk is assumed to be an unstructured error

term or, more precisely, εijks are independent zero-mean Gaussian variables

with variance σ2
ijk = σ2 · 1/n2

ij, where nij is as above and σ2 constant. The

dependence of Lijk − rk from the replicate j for different rk is taken care of

by having distance r both in the fixed effect term and in the random effects

uj (or uij) to be specified below. The fixed part of the model we start with

includes interaction of ri, i = 1, 2, 3, 4, with age, gender, BMI and with joint

effect of gender and BMI as well as all the marginal effects. Then, one term

at the time is dropped out at the 5% significance level. The interaction effects

of the covariates and r are treated as a group (i.e. the significance of Age · r,

Age · r2, Age · r3 and Age · r4 is assessed simultaneously) and the constant
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and marginal effects in the presence of interaction effects are kept in the

model throughout. Our resulting fixed effect model is xik = (1, rk, r2k, r
3
k, r

4
k).

So, in fact, none of the covariate effects are included. Preliminary analysis

with pooled L functions (Figure 4, right) indicates that the level of L(r)− r

may be affected by age, BMI and gender. However, these effects are not

statistically significant according to the estimated model. When we inspect

the full model without the (non-significant) interaction effects of gender and

BMI (with r), we also observe that none of the marginal covariate effects are

statistically significant.

We first used sample specific random effects for the intercept and all

powers of r, but we further studied whether some of these could be left out

from the model (Akaike information criterion, AIC, and Bayesian information

criterion, BIC, were used to compare the models, both gave the same result).

As a result the random effect for r3 was dropped out. (The fixed effect

conclusions where the same whether or not this random effect was in the

model.) More precisely, the chosen estimated model is

Lijk − rk = 3.3(1.5) + u0j + (1.7(0.2) + u1j)rk + (−0.08(0.01) + u2j)r
2
k

+0.001(1·10−4)r
3
k + (−8 · 10−6

(1·10−6) + u4j)r
4
k + εijk, (4)

where the estimates of β are plugged in and their standard errors are given in
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the parantheses under the estimates. It is assumed that uj = (uj0, uj1, uj2, uj4) ∼

N(0,Φ), where Φ is a diagonal matrix. The standard deviations (95% con-

fidence limits) of uji, i = 0, 1, 2, 4, on the diagonal of Φ, are estimated as

10.9 (9.3, 12.9), 0.8 (0.6, 0.9), 1.7 · 10−2 (1.4 · 10−2, 2.1 · 10−2), 2.1 · 10−6 (1.7 ·

10−6, 2.5 · 10−6), respectively. The estimation was done by maximizing the

restricted log-likelihood using R library nlme (Pinheiro & Bates, 2000).

We then added the subject specific random effects for the same terms as

we have the sample specific random effects. However, this led to no improve-

ment of the model according to AIC/BIC. The subject specific random effect

estimates were very small compared to the sample-level random effects. The

model with so many random effects may also be overparametrized.

Finally, we investigate some residual plots for the model (4). The stan-

dardized residuals are centered around zero and have approximately the same

variance, see Figure 6 (top left). The figure of the standardized residuals ver-

sus 1/n2
ij also indicates that the chosen heteroscedastic structure is reason-

able. (We also tested for the error variance to be constant or σ2
ijk = σ2 ·1/nij,

but the model with σ2
ijk = σ2 · 1/n2

ij was superior (AIC/BIC).) Further, the

fitted values are in close agreement with the observed values of the centered L

function even though there are a few outliers (at 0.05 significance level). The
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normal plot of the standardized residuals (see Figure 6 bottom left) shows

that the distribution of the within sample errors is quite close to normal.

It has slightly heavier tails and pointier peak than expected under normal

distribution, but the tails are distributed quite symmetrically apart from a

few outliers. Therefore, changing the error distribution to some other than

normal distribution should not affect the estimates of the fixed effects too

much (Pinheiro & Bates, 2000). The normality of the random effects holds

well, but we observe that some of the random terms, intercept, r, r2, and r4,

are correlated. The model might be further improved by allowing correlation

between r and r2, which we did. This indeed improves the model (according

to AIC/BIC), but the conclusions remain unchanged.

Figure 6: about here.

In conclusion, the shape of the second-order summary statistic can be

described by a fourth order polynomial of the distance r for 10 ≤ r ≤ 60.

The level of clustering (i.e. height of the curve or the number of points per

cluster) and the scale of clustering (i.e. the shape of the curve or the cluster

radius) vary between the samples taken from an individual, which has been
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adjusted by adding the within subject effect as a random effect in the model.

Figure 3 shows comparison between the observed centered L functions and

the predicted ones obtained by the model. We consider the (random effects)

estimates quite good, but still some correlation remains in the residuals.

4.2.2 Calf

As for the foot data, we start with individual fits of the model for each subject

and sample and find out that the variation within subject is clearly larger

than the variation between subjects. Therefore, we start with the same fixed

effect model as for the foot data and end up with the model

Lijk − rk = −16.2(12.8) + 69.1(19.5) Genderi + 0.3(0.2) Age − 0.02(0.4) BMIi

−2.2(0.7) Genderi · BMIi + u0j

+(1.7(0.2) − 0.9(0.7) Genderi + u1j)rk

+(−0.04(0.01) + 0.03(0.02) Genderi + u2j)r
2
k

+(2 · 10−4
2·10−4 − 5 · 10−4

(4·10−4) Genderi)r3k

+(9 · 10−7
2·10−6 + 3 · 10−6

3·10−6 Genderi + u4j)r
4
k

+εijk. (5)
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Terms related to gender are for male subjects, females are used as a control

group. That is, at the significance level 0.05, we could not exclude the

marginal effect of age and the joint effect of gender and BMI on the level of

L(r) − r and also not the joint effect of gender with r. The random effects

are the same as for the foot data, namely sample specific intercept, r, r2

and r4 and their standard deviations (95% confidence limits) are estimated

as 10.8 (9.1, 12.9), 0.6 (0.5, 0.8), 1.2 · 10−2 (0.9 · 10−2, 1.6 · 10−2), 1.5 · 10−6(1.1 ·

10−6, 1.9 · 10−6), respectively.

We proceed with similar examination of the fitted model as for the foot

data. We added the subject specific random effects, but again this led to no

improvement of the model according to AIC and BIC. Then we studied the

residuals and random effects. The standardized residuals are centered around

zero and their variance is approximately constant (Figure 1 top right), but

the left tail of the distribution is slightly heavier than in the case of the

foot data (Figure 6 bottom right). We further added the block diagonal

covariance matrix for the random effects releasing the correlation between r

and r2 to be estimated. This slightly improved the model (smaller AIC/BIC).

Furthermore, strictly speaking, gender does not seem to have joint effect with

r anymore (p = 0.08 in the joint Wald test for Gender·r, Gender·r2, Gender·r3
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and Gender ·r4). All the marginal effects of the model (5) remain significant.

To conclude, age, gender and BMI seem to affect the level of the centered

L function on samples taken from calf: Based on our data, among men the

clustering is more pronounced with low BMI than with high BMI. However,

there are two male subjects with BMI < 25 and their patterns seem most

clustered among men. These two individuals affect the result for men and,

consequently, also the found joint effect of gender and BMI. Thus, more data

would be needed to confirm the observation. Higher age seems to indicate

more pronounced clustering. Variances of random effects of the foot and calf

data are of the same magnitude.

5 DISCUSSION

We have studied the ENF entry pattern in samples taken from healthy sub-

jects using second-order K (L) function for spatial point processes and some

covariate information. We have first divided the samples into subgroups by

the body location, calf and foot, and then within each body location by age,

gender, BMI and finally age and BMI. The L function was estimated sepa-

rately for each subgroup. The results show that the spatial pattern of ENF
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entry points is always clustered (with some small scale inhibition). The clus-

ter radius in the foot data is shorter than in the calf data indicating that the

ENF entry point clusters in the foot are tighter and the clusters in the calf

are more spread out. This may be an interesting observation, since in early

stages of small fiber neuropathy the ENF density and distribution may be

normal on the calf but abnormal on the foot (which is more distally located

on the body). Furthermore, age, gender and BMI also slightly affect the

scale and level of clustering, but exactly how seems to depend on the body

location.

After the visual inspection of the estimated (pooled) L functions, we

modeled the centered L functions by linear mixed growth models separately

for each body location. Age, gender and BMI were taken into the model

as covariates, and the within subject variation as random effect. According

to the estimated model, in the samples taken from foot, the covariates do

not seem to have much effect on the function. In the samples taken from

calf, on the other hand, there is some indication that age, gender and BMI

all have some effect on the spatial structure of the nerve entry points. The

results based on the mixed models differ from the visual inspections of the

K functions. One should note that age and BMI are considered continuous
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variables in the mixed model analysis while they each have only two values

(young-old and low-high, respectively) in the visual inspection. Furthermore,

unspecified sources of between-subject variation are not taken into account

in the visual inspection using bootstrap.

When modeling K function with mixed models in Section 4.2 we have

made some choices and simplifications. In our final models, we have left out

the subject specific random effects since they were found out to be small

compared to sample specific random effects. Further, we have assumed that

all the sample specific random effects origin from the same normal distribu-

tion, even though it might be more reasonable to allow the within-subject

variation to vary from subject to subject. Particularly, Subject 1116 seems

to have most extraordinary variation in K function compared to the others,

see Figure 5. We left out this subject and re-fitted the model both for calf

and for foot. For foot, the results remained the same (no significant covariate

effects at the 0.05 significance level). For calf, strictly speaking, the marginal

effect of age (earlier significant in the model, p = 0.03) was now only bor-

derline significant (p = 0.10). The estimated random effect variances were

approximately the same with and without Subject 1116. The main reason

for the changes in the effects is probably that Subject 1116 is the oldest of
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all the subjects (age 62).

The analysis of the entry point patterns of healthy subjects shows that

the within subject variation even within a body location is very large (par-

ticularly for some subjects), whereas the between subject variation among

the healthy volunteers is rather small (after accounting for covariates). Due

to the large within-subject variation, it is important also in future studies to

take several samples in order to obtain reliable results of the ENF pattern

of a subject. Even a better solution would be to take a much larger sample

than the ones taken here that would include more ENF entry points. Since

two images comprise only a small fraction of the total area of each blister,

larger images could be obtained at least in theory, but this would require

much more effort.

We have chosen to model the cumulative K function. However, for de-

tailed inspection of the scale of clustering/regularity at a particular distance,

one should use the corresponding non-cumulative function (i.e. pair correla-

tion function, see e.g. Illian et al., 2008) instead. We have chosen the cumu-

lative K function because estimation of non-cumulative functions is not as

standardized as estimation of cumulative ones: to use non-cumulative func-

tions in statistical testing is usually not recommended, following the common
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practice in classical statistics (Illian et al., 2008). Furthermore, the cumula-

tive K function can be related to growth curves, which are often modeled by

mixed models.

We have assumed that the entry point patterns are realizations of sta-

tionary point processes, and used the (homogeneous) K function to describe

the second-order properties of the patterns. As pointed out by Waller et al.

(2011), the underlying physiology may affect the locations of the ENF en-

try points causing heterogeneities due to the locations of the dermal papilla

and the inhomogeneous K function (Baddeley et al., 2000) could be used, if

some heterogeneities were present. The images in this study are relatively

small as in Waller et al. (2011) and do not reveal any obvious heterogeneities.

Therefore, the stationary assumption seems reasonable.

The suggested approach is meant for modeling the dependence of second-

order structure of repeated point pattern data on covariates. The preliminary

investigations with pooled L functions together with deeper mixed model

analysis for L curves may serve as a starting point for analysing these kind

of data. In the ENF data, in addition to ENF entry points, locations of

end points of nerve fibers would provide us with information on the spatial

pattern of ENFs. A similar approach as presented here, could be used to
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analyze the pattern of the end points of fibers. The end point patterns

consist of many more points than the corresponding entry point patterns,

and therefore, the spatial point pattern approach could be even more suitable

for the analysis of end points than for the analysis of entry points. Further,

similar analyses could be done for subjects with small fiber neuropathy. The

health status could be added as a covariate in the linear mixed model in

order to see whether the spatial structure is different between healthy and

diseased subjects. Such spatial analysis of ENFs may help us to detect and

diagnose small fiber neuropathies in early stages even when the ENF density

is within the normal range. Note, however, that the mixed model may need

to be revised for specific problem at hand, and therefore we are currently

investigating also some more flexible alternative models. Our final goal is the

modelling of the whole ENF structure of both healthy patients and patients

with some small fiber neuropathy.
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Figure captions.

Fig. 1. Two point patterns of nerve entry points taken from the right foot of

Subject 1103 (left) and Subject 1113 (right).

Fig. 2. Overall mean L-functions (thick solid lines) with r-wise 95% boot-

strap envelopes (dashed lines) for calf (black) and for foot (gray).

Fig. 3. Comparison of the observed (gray solid lines) and predicted centered

L functions (black dashed lines) for the foot data. The dotted line shows the

fixed effect prediction of the linear mixed model. The ranges for r (on the

x-axis) and L(r)− r (on the y-axis) are (10, 60) and (−20, 50), respectively.

Fig. 4. Overall mean centered L functions (thick solid lines) in subgroups

given by age (on the top), BMI (in the middle) and gender (on the bottom)

with r-wise 95% bootstrap envelopes (dashed lines) for calf (left) and foot

(right).

Fig. 5. Boxplots of the regression coefficients from separate fits of the fourth

order polynomials to each subject and each sample within subject for the

foot data.

Fig. 6. Residual plots of the mixed models of the foot data (left) and for the

calf data (right). On the top: Plot of the standardized residuals versus 1/n2
ij.

On the bottom: Normal probability plot of the within-group standardized
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residuals.
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