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Location awareness is a key enabling feature and fundamental challenge in present and future wireless networks. Most existing
localization methods rely on existing infrastructure and thus lack the flexibility and robustness necessary for large ad hoc networks.
In this paper, we build upon SPAWN (sum-product algorithm over a wireless network), which determines node locations through
iterative message passing, but does so at a high computational cost. We compare different message representations for SPAWN
in terms of performance and complexity and investigate several types of cooperation based on censoring. Our results, based on
experimental data with ultra-wideband (UWB) nodes, indicate that parametric message representation combined with simple
censoring can give excellent performance at relatively low complexity.

1. Introduction

Location awareness has the potential to revolutionize a
diverse array of present and future technologies. Accurate
knowledge of a user’s location is essential for a wide variety
of commercial, military, and social applications, including
next-generation cellular services [1, 2], sensor networks
[3, 4], search-and-rescue [5, 6], military target tracking [7,
8], health care monitoring [9, 10], robotics [11, 12], data
routing [13, 14], and logistics [15, 16]. Typically, only a small
fraction of the nodes in the network, known as anchors, have
prior knowledge about their location. The remaining nodes,
known as agents, must determine their locations through a
process of localization or positioning. The ad hoc and often
dynamic nature of wireless networks requires distributed
and autonomous localization methods. Moreover, location-
aware wireless networks are frequently deployed in unknown
environments and hence can rely only on minimal (if any)
infrastructure, human maintenance, and a priori location
information.

Cooperation is an emerging paradigm for localization
in which agents take advantage of network connections
and interagent measurements to improve their location
estimates. Non-Bayesian cooperative localization in wireless
sensor networks is discussed in [17]. Different variations
of Bayesian cooperation have been considered, including
Monte-Carlo sequential estimation [18] and nonparametric
belief propagation in static networks [19]. For a compre-
hensive overview of Bayesian and non-Bayesian cooperative
localization in wireless networks, we refer the reader to [20],
which also introduces a distributed cooperative algorithm
for large-scale mobile networks called SPAWN (sum-product
algorithm over a wireless network). This message-passing
algorithm achieves improved localization accuracy and cov-
erage compared to other methods and will serve as the basic
algorithm in this paper.

The complexity and cost associated with the SPAWN
algorithm depend largely on how messages are represented
for computation and transmission. As wireless networks typ-
ically operate under tight power and resource constraints, the
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choice of message representation heavily impacts the feasibil-
ity and ease of implementation of the algorithm. The method
of message representation and ensuing tradeoff between
communication cost and localization performance are thus
of great practical importance in the deployment of realistic
localization systems. Particle methods do not necessarily
lend themselves well in practice to be exchanged wirelessly
between devices, due to their high computational complexity
and communication overhead [21]. Other message-passing
methods have been developed that rely on parametric
message representation, thus alleviating these drawbacks
but limiting representational flexibility. In particular, in
[22], the expectation propagation algorithm is considered
with Gaussian messages, while in [23], variational message
passing with parametric messages is shown to exhibit low
complexity. A variation of SPAWN combining GPS and
UWB was evaluated in [24], using a collection of parametric
distributions with ellipsoidal, conic, and cylindrical shapes.

This paper addresses the need for accurate, resource-
efficient localization with an in-depth comparison of various
message representations for SPAWN. We describe and eval-
uate different parametric and nonparametric message repre-
sentations in terms of complexity and accuracy. Additionally,
we analyze the performance of various cooperative schemes
and message representations in a simulated large-scale ultra-
wide bandwidth (UWB) network using experimental UWB
ranging data. UWB is an attractive choice for ranging and
communication due to its ability to resolve multipath [25,
26], penetrate obstacles [27], and provide high resolution
distance measurements [28, 29]. Recent research advances
in UWB signal acquisition [30, 31], multiuser interference
[32, 33], multipath channels [34, 35], non-line-of-sight
(NLOS) propagation [28, 29], and time-of-arrival estimation
[36] increase the potential for highly accurate UWB-based
localization systems in harsh environments. Consequently,
significant attention has been paid to both algorithm design
[37–42] and fundamental limits of accuracy [43–46] for
UWB localization. It is expected that UWB will be exploited
in future location-aware systems that utilize coexisting
networks of sensors, controllers, and peripheral devices [47,
48].

2. Problem Formulation

We consider a wireless network of N nodes in an environ-
ment E . Time is slotted with nodes moving independently
from time slot to time slot. The position of node i at time
t is described by the random variable x(t)

i ; the vector of all
positions is denoted by x(t). At each time t, node i may collect

internal position-related measurements z(t)
i,self, for example,

from an inertial measurement unit. The set of all internal
measurements is denoted by z(t)

self. Within the network, nodes
communicate with each other via wireless transmissions.
We denote the set of nodes from which node i can receive
transmissions at time t by S(t)

→ i. Note that the communication

link may not be bidirectional; that is, j ∈ S(t)
→ i does not

imply i ∈ S(t)
→ j . Using packets received from j ∈ S(t)

→ i, node i
may collect a set of relative measurements, represented by the

vector z(t)
j→ i, which we will limit to distance measurements.

We denote the set of all relative measurements made in the
network at time t by z(t)

rel . The full set of relative and internal
measurements is denoted z(t).

The objective of the localization problem is for each node

i to determine the a posteriori distribution p(x(t)
i | z(1 : t)) of

its position x(t)
i at each time t, given information up to and

including t.

3. A Brief Introduction to SPAWN

In [20], we proposed a cooperative localization algorithm
by factorizing the joint distribution p(x(0 :T) | z(1 :T)), for-
mulating the problem as a factor graph with temporal and
spatial constraints, and applying the sum-product algorithm.
This leads to a distributed algorithm, known as SPAWN,
presented in Algorithm 1. The aim of SPAWN is to compute

a belief b(t)
i (x(t)

i ) available to node i at the end of any time
slot t, which serves as an approximation of the marginal a

posteriori distribution p(x(t)
i | z(1 : t)). Note that each op-

eration of SPAWN requires only information local to an
individual node. Information is shared between nodes via
physical transmissions. Each node can therefore perform the
computations in Algorithm 1 using its local information and
transmissions received from neighboring nodes.

Observe that Algorithm 1 contains a number of key steps.

(i) Mobility update (line 4), requiring knowledge of

mobility models p(x(t)
i |x(t−1)

i ) and self-measurement

likelihood functions p(z(t)
i,self | x(t−1)

i , x(t)
i ).

(ii) Message conversion (line 10) of position information
from neighboring devices to account for relative
measurements, requiring knowledge of the neighbors
and of relative measurement likelihood functions
p(z(t)

j→ i | xi, x j).

(iii) Belief update (line 11), to fuse information from the
mobility update with information from the current
neighbors.

The first two operations can be interpreted as message
filtering, while the latter operation is a message multiplication.
How these operations can be implemented in practice will be
the topic of Section 4.

4. Message Representation

4.1. Key Operations. In SPAWN, probabilistic information
is exchanged and computed through messages. The manner
in which these messages are represented for transmission
between nodes and internal computation is closely related
to the complexity and performance of the localization
algorithm. In traditional communications problems, such as
decoding, messages can be represented efficiently and exactly
through, for instance, log-likelihood ratios [49]. In SPAWN,
exact representation is impossible, so we must resort to
different types of approximate message representations. Any
representation must be able to capture the salient properties
of the true message and must enable efficient computation
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(1) Initialize belief b(0)(x(0)
i ) = p(x(0)

i ),∀i
(1) for t = 1 to T do {time index}
(2) for all i do {mobility update}
(5) Mobility update:

˜b(t)
i (x(t)

i ) ∝
∫

p(x(t)
i |x(t−1)

i )p(z(t)
i,self|x(t−1)

i , x(t)
i )

×b(t−1)
i (x(t−1)

i ) dx(t−1)
i (A-1)

(6) end for
(7) Initialize b(t)

i (x(t)
i ) = ˜b(t)

i (x(t)
i ),∀i

(8) for l = 1 to Nit do {iteration index; begin cooperative
update}

(9) for all i do
(10) for all j ∈ S(t)

→ i do
(11) Receive and convert b(t)

j (x(t)
j ) to a distribution

c(l)
j→ i(x(t)

i ):

c(l)
j→ i(x(t)

i ) ∝
∫

p(z(t)
j→ i|x(t)

i , x(t)
j )b(t)

j (x(t)
j )dx(t)

j (A-2)

(12) Update and broadcast b(t)
i (x(t)

i ):

b(t)
i (x(t)

i ) ∝ ˜b(t)
i (x(t)

i )
∏

k∈S(t)
→ i

c(l)
k→ i(x(t)

i ) (A-3)

(13) end for
(14) end for
(15) end for {end cooperative update}
(16) end for {end current time step}

Algorithm 1: SPAWN.

of the key steps in SPAWN, namely, message filtering (A-1)-
(A-2) and message multiplication (A-3). We consider three
types of message representation: discretized, sample-based,
and parametric.

For convenience, we will introduce a set of new notations.
For the filtering operation, the incoming message is denoted
by pX(x), the filtering operation by h(x, y), and the outgoing
message by pY(y), with

pY
(

y
)∝

∫

h
(

x, y
)

pX(x)dx. (1)

For the multiplication operation, we assume M incoming

messages p(i)
X (x) (i = 1, . . . ,M) over a single variable X, and

an outgoing message

φX(x) ∝
M
∏

i=1

p(i)
X (x). (2)

Note that (1) maps to (A-1) through the following associa-
tion:

x −→ x(t−1)
i ,

y −→ x(t)
i ,

h
(

x, y
) −→ p

(

x(t)
i | x(t−1)

i

)

p
(

z(t)
i,self | x(t−1)

i , x(t)
i

)

,

pX(x) −→ b(t−1)
i

(

x(t−1)
i

)

.

(3)

Similarly, (1) maps to (A-2) through the following associa-
tion:

x −→ x(t)
j ,

y −→ x(t)
i ,

h
(

x, y
) −→ p

(

z(t)
j→ i | x(t)

i , x(t)
j

)

,

pX(x) −→ b(t)
i

(

x(t)
i

)

.

(4)

4.2. Discretized Message Representation. A naive but simple
approach to represent a continuous distribution pX(x) is
to uniformly discretize the domain of X, yielding a set of
quantization points Q = {x1, . . . , xR}. The distribution is
then approximated as a finite list of values, {pX(xk)}Rk=1. The
filtering operation then becomes

pY
(

yk
)∝

R
∑

l=1

h
(

xl, yk
)

pX(xl), (5)

requiring O(R2) operations. The multiplication becomes

φX(xk) ∝
M
∏

i=1

p(i)
X (xk), (6)

requiring O(RM) operations. Because R scales exponentially
with the dimensionality of X and a large number of points are
required in every dimension to capture fine features of the
messages, discretization is impractical for SPAWN in UWB
localization.
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4.3. Sample-Based Message Representation. A sample-based
message representation, as used in [19, 50], overcomes
the drawback of discretization by representing messages as
samples, concentrated where the messages have significant
mass. Before describing the detailed implementation of
the filtering and multiplication operations, we give a brief
overview of generic sampling techniques (see also [51, 52])
and kernel density estimation (KDE).

4.3.1. Background: Sampling and Kernel Density Estimation.
We say that a list of samples with associated weights
{xk,wk}Rk=1 is a representation for a distribution pX(x) if,
for any integrable function g(x), we have the following
approximation:

I =
∫

g(x)pX(x)dx ≈
R
∑

k=1

wkg(xk). (7)

Popular methods for obtaining the list of weighted samples
include (i) direct sampling, where we draw R i.i.d. samples
from pX(x), each with weight 1/R; and (ii) importance
sampling, where we draw R i.i.d. samples from a distribution
qX(x), with a support that includes the support of pX(x),
and set the weight corresponding to sample xk as wk =
pX(xk)/qX(xk). In both cases, it can easily be verified that
the approximation is unbiased with mean I and variance that
reduces with R (and that depends on qX(x), for importance
sampling). Most importantly, the variance does not depend
on the dimensionality of x.

A variation of importance sampling that is not unbiased
but that often has smaller variance is obtained by setting the
weights as follows: wk ∝ pX(xk)/qX(xk),

∑

k wk = 1. This
approach has the additional benefit that it does not require
knowledge of the normalization constants of pX(x) or qX(x).
A list of R equally weighted samples can be obtained from
{xk,wk}Rk=1 through resampling, that is, by drawing (with
repetition) R samples from the probability mass function
defined by {xk,wk}Rk=1.

For numerical stability reasons, weights are often com-
puted and stored in the logarithmic domain, that is, λk =
log pX(xk) − log qX(xk). When the distributions involved
contain exponentials or products, the log-domain represen-
tation is also computationally efficient. Operations such as
additions can be evaluated efficiently in the log-domain as
well, using the Jacobian logarithm [49, pages 90–94]. Once
all R log-domain weights are computed, they are translated,
exponentiated, and normalized: wk ∝ exp(λk −maxlλl).

Given a sample representation {xk,wk}Rk=1 of a distribu-
tion pX(x), we obtain a kernel density estimate of pX(x) as

p̂X(x) =
R
∑

k=1

wkKσ(x − xk), (8)

where Kσ(x) is the so-called kernel with bandwidth σ . The
kernel is a symmetric distribution with a width parameter

that is tuned through σ . For instance, a two-dimensional
Gaussian kernel is given by

Kσ(x) = 1
2πσ2

exp

(

−‖x‖2

2σ2

)

. (9)

While the choice of kernel affects the performance of the
estimate to some limited extent (e.g., in an MMSE sense,

where the error is
∫ |pX(x)− p̂X(x)|2pX(x)dx), the crucial

parameter is the bandwidth σ , which needs to be estimated
from the samples {xk,wk}Rk=1. A large choice of σ makes
p̂X(x) smooth, but it may no longer capture the interesting
features of pX(x). When σ is too small, p̂X(x) may exhibit
artificial structure not present in pX(x) [53].

With this background in sampling techniques and KDE,
we return to the problem at hand: filtering and multiplica-
tion of messages.

4.3.2. Message Filtering. We assume a message representation
of pX(x) as {xk,wk}Rk=1 and wish to obtain a message
representation of pY(y) ∝ ∫

h(x, y)pX(x)dx. Let us interpret
h(x, y) as a conditional distribution pY|X(y | x), up to
some arbitrary constant. Suppose we can draw samples
{[xk, yk],wk}Rk=1 ∼ pY|X(y | x)pX(x); then {yk,wk}Rk=1 will
form a sample representation of pY(y). Now the problem
reverts to drawing samples from pY|X(y | x)pX(x). This can
be accomplished as follows: first, for every sample xk, draw
yk ∼ qY|X(y | xk) from some distribution qY|X(y | xk).
Second, set the weight of sample [xk, yk] as

vk = wk
pY|X

(

yk | xk
)

qY|X
(

yk | xk
) . (10)

Finally, renormalize the weights vk to vk/
∑

l vl. The com-
plexity of the filtering operation scales as O(R), a significant
improvement from O(R2) for discretization. In addition, R
can generally be much smaller in a particle-based represen-
tation.

Let us consider some examples of the filtering operation
in SPAWN.

(i) Mobility update (A-1): let pX(x) be the belief before
movement (represented by {xk,wk}Rk=1) and pY(y)
the belief after movement. Assume that we are able
to measure perfectly the distance traveled (given
by zself), but have no information regarding the
direction, and furthermore that the direction is
chosen uniformly in (0, 2π]. In that case,

h
(

x, y
)∝ δ

(

zself −
∥

∥x − y
∥

∥

)

, (11)

where δ is a Dirac delta function, so that
qY|X(y | xk) = pY|X(y | xk) ∝ δ(zself − ‖xk − y‖) is
a reasonable choice. For every xk, we can now draw
values for y = xk + r × [cos θ sin θ]T by drawing
θ ∼ U(0, 2π) and setting r = zself, leading to
yk = xk + zself × [cos θk sin θk]T , with vk ∝ wk.

(ii) Ranging update (A-2): let pX(x) be a message (rep-
resented by {xk,wk}Rk=1) from a node with which we
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have performed ranging, resulting in a range estimate
z. Let h(x, y) = pZ|D(z | d), where d = ‖x − y‖.
Note that pZ|D(z | d) is a likelihood function, since
the measurement z is known. Assume that we have
a model for the ranging performance in the form
of distributions pZ|D(z | d) for any value of d. We
then sample pY(y) as follows: for every xk, draw y =
xk + r × [cos θ sin θ]T by drawing θ ∼ U(0, 2π) and
r ∼ qR|Z(r | z), for some well-chosen qR|Z(r | z)
(e.g., a Gaussian distribution with mean equal to
the distance estimate, z, and a standard deviation
that is sufficiently large with respect to the standard
deviation of p(z|d) for any d) . The weights are set as

vk = wk
pZ|D(z | rk)
qR|Z(rkz)

. (12)

4.3.3. Message Multiplication. Here we assume message

representations {x(i)
k ,w(i)

k }
R

k=1 for p(i)
X (xk), i = 1, . . . ,M. In

contrast to the discretization approach, we cannot directly

compute
∏M

i=1p
(i)
X (x) for arbitrary values of x. Rather,

for every message p(i)
X (xk), we create a KDE p̂(i)

X (x) =
∑R

k=1 wkKσ (i) (x−x(i)
k ) with a Gaussian kernel and a bandwidth

estimated using the methods from [53]. Suppose we now
draw R samples from a distribution qX(x); then the weights
are

vk ∝
∏M

i=1 p̂
(i)
X (xk)

qX(xk)
, (13)

which can be computed efficiently in the log-domain. A
reasonable choice for qX(x) could be one of the incoming

messages p(i)
X (x) (e.g., the one with the smallest entropy)

or a mixture of the incoming messages. The computational
complexity of the message multiplication operation scales
as O(MR2). This appears worse than the discretized case
(complexity O(MR)), but note that R is much smaller for
sample-based representations than for discretization (e.g.,
R = 103 or R = 104 for the sample-based representation
compared to R = 108 in the discretization).

4.4. Parametric Message Representation

4.4.1. Choosing a Suitable Parameterization. From the previ-
ous section, it is clear that the bottleneck of the sample-based
message representation lies in the message multiplication,
which scales quadratically with the number of samples. An
alternative approach is to represent each message as a set
of parameters (e.g., a Gaussian distribution characterized
by a mean and covariance matrix). In contrast to the
sample-based message representation, which can represent
messages of any shape, parametric representations must be
specially tailored to the problem at hand. For example,
single two-dimensional Gaussian parametric messages are
utilized in [22] for localization with both range and angle
measurements. Our choice of parametric message is based
on the following observations.

(i) For the filtering operation with a two-dimensional
Gaussian input pX(x), the output pY(y) can be
approximated by a circular distribution with the
same mean for both the mobility update (A-1) and
the ranging update (A-2).

(ii) Multiplying Gaussian distributions yield a Gaussian
distribution.

(iii) The multiplication of multiple circular distributions
can be approximated by a Gaussian distribution or a
mixture of Gaussian distributions.

We will use as a basic building block the following
distribution in two dimensions:

D
(

x;m1,m2, σ2, ρ
)

= 1
C
(

σ2, ρ
) exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−

[
√

(x1 −m1)2 + (x2 −m2)2 − ρ
]2

2σ2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(14)

where [m1,m2] is the midpoint of the distribution, ρ is the
radius, σ2 is the variance, and C(σ2, ρ) is a normalization
constant equal to

C
(

σ2, ρ
)

= 2πσ2

⎡

⎣exp

(

− ρ2

2σ2

)

+
1
2

√

2πρ2

σ2

⎛

⎝1 + erf

√

ρ2

2σ2

⎞

⎠

⎤

⎦.

(15)

As a special case, we note that, when ρ = 0, (14) reverts to
a two-dimensional Gaussian. Moreover, we will represent all
messages as a mixture of two distributions of the type (14),
so that

pX(x)

= 1
2
D
(

x;m(a)
1 ,m(a)

2 , σ2, ρ
)

+
1
2
D
(

x;m(b)
1 ,m(b)

2 , σ2, ρ
)

,

(16)

which can be represented by the six-dimensional vector

[m(a)
1 ,m(a)

2 ,m(b)
1 ,m(b)

2 , ρ, σ2]. We will denote the family of
distributions of the form (16) by D2. Note that it is
trivial to extend this distribution, which is designed for
two-dimensional localization systems, for use in three-
dimensional systems. Before we describe the message filter-
ing and message multiplication operations, let us first show
how the parameters of (14) can be estimated from a list of
samples.

4.4.2. ML Estimation of the Parameters m1,m2, σ2, ρ. Given
a list of samples {xk}Rk=1, we can estimate the parameters
[m1,m2, σ2, ρ] as follows. The midpoint m = [m1,m2] is
estimated by

m̂ = 1
R

R
∑

k=1

xk. (17)
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To find the radius ρ and variance σ2 of D-distribution, we
use maximum likelihood (ML) estimation, assuming the R

samples are independent. Introducing α = [ρσ2]T , we find
that

α̂ML = arg max
α

R
∑

k=1

log pX(xk; m̂,α)

︸ ︷︷ ︸

Λ(α)

.
(18)

Treating the log-likelihood function (LLF) Λ(α) as an objec-
tive function, we find its maximum through the gradient
ascent algorithm

α̂
(n+1) = α̂

(n) − ε∇αΛ(α)
∣

∣

∣

α=α̂(n) , (19)

where ε is a suitably small step size, and the gradient vector
can be approximated using finite differences. To initialize
(19), we consider two initial estimates for σ2 and ρ: one
assuming ρ 
 σ and a second assuming ρ � σ . The LLF is
evaluated for both preliminary solutions, and the one with
the largest log-likelihood is used as the initial estimate in
(19).

4.4.3. Message Filtering. To perform message filtering, we
use the fact that sample-based message filtering is a low-
complexity operation. We decompose pX(x), represented in
parametric form, into its two mixture components. From
each component, we draw R/2 samples and perform sample-
based message filtering, as outlined in Section 4.3.2. We
can then estimate the new D-parameters for each mixture
component using the ML method described above. We thus
have pY(y) in parametric form. The complexity of this
operation scales as O(R).

4.4.4. Message Multiplication. The motivation for using the
parametric message representation is to avoid the complexity
associated with sample-based message multiplication. Given

M distributions p(i)
x (x) ∈D2, our goal is to compute

φX(x) =
M
∏

i=1

p(i)
X (x). (20)

Typically, φX(x) /∈ D2, so we will approximate φX(x) by
q∗X(x) ∈D2 by projecting φX(x) onto the family D2:

q∗X(·) = arg min
qX∈D2

DKL
(

qx
∥

∥φx
)

, (21)

where DKL(·||·) denotes the Kullback Leibler (KL) diver-
gence, defined as

DKL
(

qX
∥

∥φX
) =

∫

qX(x) log
qX(x)
φX(x)

dx. (22)

Observe that all elements of D2 are characterized by the

parameters p � [m(a)
1 ,m(a)

2 ,m(b)
1 ,m(b)

2 , ρ, σ2]T and that the
optimization (21) is therefore a six-dimensional problem
over all possible p. The divergence DKL(q‖φ) for an arbitrary

Table 1: Comparison of complexity of message representations,
where R is the number samples taken from each distribution and
M is the number of distributions or messages.

Approach Operation Complexity Value of R

Discretized Filtering O(R2) Large

Discretized Multiplication O(RM) Large

Sample-based Filtering O(R) Small

Sample-based Multiplication O(R2M) Small

Parametric Filtering O(R) Small

Parametric Multiplication O(RM) Small

p ∈ R4 × R2
+ can be determined using Monte-Carlo

integration as follows. We rewrite (22) as

DKL
(

qx
∥

∥φx
) =

∫

qX(x) f (x)dx, (23)

where f (x) = log qX(x) − ∑M
i=1 log p(i)

X (x). By drawing
R weighted samples {wk, xk}Rk=1 from qX(x) (e.g., through
importance sampling), we can approximate (23) by

DKL
(

qx
∥

∥φx
) ≈

R
∑

k=1

wk f (xk). (24)

Using this approximation, the six-dimensional optimization
problem (21) is solved through gradient descent, similar to
(19). The complexity of this operation scales as O(RM). The
initial estimate of p is obtained through a set of heuristics:
we first decide whether φX(x) can reasonably be represented
by a distribution in D2. If not, the outgoing message is not
computed. Otherwise, we use a geometric argument to find
at most two midpoints. The initial estimates for ρ and σ2 are
set to a small constant value.

4.5. Comparison of Message Representations. The complexi-
ties of the discretized, sample-based, and parametric message
representations are compared in Table 1.

5. Performance Analysis

In this section, we compare the performance of the SPAWN
algorithm with sample-based versus parametric message
representation in a simulated wireless network. We also
analyze the use of different subsets of information in the
algorithm and its effect on localization performance.

5.1. Simulation Setup and Performance Measures. We sim-
ulate a large-scale ultra-wide bandwidth (UWB) network
in a 100 m × 100 m homogeneous environment, with 100
uniformly distributed agents and 13 fixed anchors in a
grid configuration. Each node is able to measure its range
to other nodes within 20 meters. The simulated ranging
measurements are independently drawn from the UWB
ranging model developed in [54]. The model, based on data
collected in a variety of indoor scenarios, consists of three
component Gaussian densities, where the mean and variance
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of each component are experimentally determined functions
of the true distance between the ranging nodes. To decouple
the effect of mobility with the message representation, we
consider a single time slot, where every agent has a uniform a
priori distribution over the environment E . SPAWN was run
for Nit = 20 iterations, though convergence was generally
achieved well before 10 iterations. For the sample-based
representation, the number of samples is set to R = 2048
unless otherwise stated.

We quantify localization performance using the comple-
mentary cumulative distribution function (CCDF) of the
localization error e = ‖xi − x̂i‖, where x̂i is the estimated
location of node i, taken as the mean of the belief, similar to
[18]. To estimate the CCDF, we consider 50 random network
topologies and collect position estimates at every iteration for
every agent. Note that a CCDF of 0.01 at an error of, say,
e = 1 m means that 99% of the nodes have an error less than
1 meter.

5.2. Cooperation with Censoring. In Section 3, we considered
processing messages between all neighboring pairs of nodes.
However, information from neighbors may not always be
useful: (i) when the receiving node’s belief is already very
informative (e.g., concentrated around the mean); or (ii)
when the transmitting node’s belief is very uninformative.
To better understand how much cooperative information
is beneficial to localization, we will consider varying the
subset of nodes that broadcast and update their location
beliefs at each iteration. We distinguish between these subsets
by the level of cooperative information they induce in the
algorithm. The level of cooperative information indicates
how each node utilizes information from its neighbors at
each iteration.

We introduce the following terminology: a distribution
is said to be “sufficiently informative” when 95% of the
probability mass is located within 2 m of the mean; a
node becomes a virtual anchor when its belief is sufficiently
informative; a virtual bianchor is a node with a bimodal
belief, with each mode being sufficiently informative; a node
that is neither a virtual anchor nor a virtual bianchor will be
called a blind agent. We are now ready to introduce four levels
of cooperative information at each iteration.

(i) Level 1 (L1): virtual anchors broadcast their beliefs,
while all other nodes censor their belief broadcast.
Virtual anchors do not update their beliefs.

(ii) Level 2 (L2): virtual anchors and virtual bianchors
broadcast their beliefs, while blind nodes censor their
belief broadcast. Virtual anchors do not update their
beliefs.

(iii) Level 3 (L3): all nodes broadcast their beliefs. Virtual
anchors do not update their beliefs.

(iv) Level 4 (L4): all nodes broadcast their beliefs. All
nodes update their beliefs.

In terms of cooperation, note that L4 utilizes more coop-
erative information than L3, L3 utilizes more cooperative
information than L2, and L2 utilizes more cooperative
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Figure 1: The effect of R and the level of cooperative information
on the CCDF at e = 1 meter. All results are after Nit = 10 iterations.

information than L1. In this sense, the levels of cooperative
information are strict subsets.

From previous sections, we know that the algorithm
complexity scales linearly in M, the number of incoming
messages in the multiplication operation. Hence, the level of
cooperative information directly affects the algorithm’s com-
putational cost, with lower levels requiring less computation.

5.3. Numerical Results. We now examine how localization
performance varies with the algorithm parameters. In
particular, numerical results show the effect of message
representation (sample-based or parametric) and level of
cooperative information (L1, L2, L3, or L4) on the CCDF of
the localization error.

We first consider the localization performance as a
function of the number of samples R and level of cooperative
information. Figure 1 displays the CCDF at e = 1 m
after 10 iterations. As expected, for any level of cooperative
information, the CCDF decreases as the number of samples
is increased. However, the decrease in CCDF comes with
a cost in computation time; as R is increased, the per-
node complexity increases quadratically. Figure 1 also shows
that levels L1, L2, and L4 are not as sensitive to R as
L3 and that each generally outperforms L3. This effect is
particularly pronounced when R is small. L3 broadcasts more
complex distributions than L2 and L1, and these elaborate
distributions are not accurately represented with a small
number of samples.

Secondly, we investigate level of cooperative information
and its effect on localization performance, with numerical
results represented in Figures 2 and 3, after Nit = 20
iterations. Note that each curve exhibits a “floor” because
there is always some subset of nodes that have insufficient
information to localize without ambiguity. This may be
due to lack of connectivity or large flip ambiguities. Let us
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Figure 3: Effect of the level of cooperative information on the
convergence speed for e = 1 m, for the distributed sample-based
and parametric algorithms. Results are averaged over 50 networks.

focus on the sample-based representation in Figure 2 and
consider the effect of the level of cooperative information
on localization performance. In general, L4 has the best
performance in terms of accuracy and floor. Intuitively, one
might expect L3 to have the next best performance, followed
by L2, and then L1. However, Figure 2 demonstrates that in
some cases L3 has poorer accuracy than L2 and a similar

floor. This effect can be explained as follows. Agents that
do not become virtual anchors within Nit = 20 tend to
have large localization errors, creating a floor. Such agents
comprise 1.7% of the total nodes for L1 and 0.3% for
both L2 and L3. Since L2 and L3 have a similar fraction
of agents that do not become virtual anchors, they have
similar floors. In addition, the accuracy of beliefs belonging
to agents that have become virtual anchors turns out to be
highest for L1, followed by L2, and then L3. This is because
L3 uses less reliable information than L2, which in turn is
less reliable than L1. The final CCDF depends both on the
fraction of virtual anchors (lowest for L1) and the accuracy
of those virtual anchors (highest for L1). Note that we cannot
compare L4 in this context, since there is no concept of a
virtual anchor in L4.

We now move on to the parametric representation, still
in Figure 2. We observe that L4 has the lowest overall CCDF
for any e, for both types of message representation. For the
parametric messages, the differences among different levels
of cooperative information are smaller, and we generally
obtain better performance (for e<1 m) compared to sample-
based messages.

Finally, in Figure 3, we evaluate the convergence speed of
the different message representations and levels of coopera-
tion, for a fixed error of 1 meter. We see that the parametric
messages generally lead to faster convergence and lower
CCDF than their sample-based counterparts. Levels L2, L3,
and L4 all converge in around 5 iterations with a final CCDF
at e = 1 m of around 0.01 for the parametric representation.
Our results show that more cooperative information leads
to faster improvement in terms of accuracy. The lowest
level of cooperative information, L1, is consistently slower
to converge and less accurate. However, higher levels of
cooperative information also require the computation and
representation of more complicated distributions. As a
possible consequence, convergence issues may occur for
levels L3 and L4. We also see that the parametric message
representation performs approximately equal to or better
than the sample-based messages in terms of both conver-
gence and accuracy, while requiring much less execution
time. Overall, parametric message representations yield a
better performance/complexity tradeoff. This is due to the
fact that the parametric distributions are well tailored to
the localization problem and the homogeneous simulation
environment.

6. Conclusions and Extensions

In this paper, we considered different message represen-
tations for Bayesian cooperative localization in wireless
networks: a generic sample-based representation and a
tailored parametric representation. We used experimentally
derived UWB ranging models to evaluate the performance of
SPAWN as a function of message representation and level of
cooperative information. Our results show that the tradeoffs
between message representation, cooperative information,
localization accuracy, and algorithm convergence are not
straightforward and should be tailored to the scenario.
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Through large-scale network simulations, we demon-
strated that more cooperative information may improve
localization accuracy but also increase the complexity of
messages. Higher levels of cooperative information do
not always correspond to an improvement in localization
accuracy or convergence rate. As complicated distributions
associated with location-uncertain nodes are computed
and transmitted, the resulting increases in computational
complexity and signal interference can actually reduce
localization performance. It may therefore be advantageous
to broadcast only confident information in cooperative
localization networks, especially considering the resources
saved by a node censorship policy.

We also demonstrated that though parametric messages
have less representational flexibility, they can outperform
nonparametric message representation at a much lower
computational cost. In our simulations, the parametric
representation achieved a lower probability of outage for
errors under 1 meter while converging in equal or fewer
iterations than the sample-based representation. Clearly, a
parametric representation well tailored to the localization
scenario is desirable in terms of both resource efficiency and
localization accuracy.

The use of parametric distributions for localization can
be extended to (i) different ranging models; (ii) different
types of measurements; (iii) more general scenarios. In terms
of ranging models, the proposed distributions can be applied
as long as typical distributions in SPAWN roughly resemble a
distribution in the D2-family. Note that a Gaussian ranging
error satisfies this criteria, as would many other, more
realistic, models. Other models, such as those derived from
received signal strength, will require different types of para-
metric distributions. The same comment applies to the use of
different types of measurements. For instance, with angle-of-
arrival measurements, the parametric distributions should
include a collection of linear distributions. Finally, more
general scenarios may require tailor-made distributions.
With NLOS measurements that can be modeled as biased
Gaussians [20], for example, mixtures of D2 distributions
would easily accommodate LOS/NLOS propagation, without
relying on explicit NLOS identification.
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