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Spin-precession-assisted supercurrent in a superconducting quantum point contact coupled
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The supercurrent through a quantum point contact coupled to a nanomagnet strongly depends on the dynamics
of the nanomagnet’s spin. We employ a fully microscopic model to calculate the transport properties of a junction
coupled to a spin whose dynamics is modeled as Larmor precession brought about by an external magnetic field
and find that the dynamics affects the charge and spin currents by inducing transitions between the continuum
states outside the superconducting gap region and the Andreev levels. This redistribution of the quasiparticles
leads to a nonequilibrium population of the Andreev levels and an enhancement of the supercurrent which is
visible as a modified current-phase relation as well as a nonmonotonous critical current as function of temperature.
The nonmonotonous behavior is accompanied by a corresponding change in spin-transfer torques acting on the
precessing spin and leads to the possibility of using temperature as a means to tune the back-action on the spin.
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I. INTRODUCTION

Spintronics devices, which utilize the spin degree of
freedom, have already revolutionized the read-out technol-
ogy used in hard drives.1,2 In conventional spintronics, the
transport properties of a device typically depend on the
relative orientation of the spins of electrons with respect to
a reference, which may be a magnetic field or a magne-
tization direction of a ferromagnetic layer.3 The challenge
of downsizing electronic devices has lead to the study of
transport properties of nonmagnetic single-molecule devices
such as diodes4 and transistors5–7 as well as devices containing
single-molecule magnets (SMMs).8 The interest in SMMs
stems from their long relaxation times at low temperatures9

and their display of a wide range of quantum physics
phenomena.9,10 Studies on SMM devices include for instance
three-terminal devices,11–17 supramolecular spin valves,18 and
inelastic tunneling spectroscopy.19

Interesting spin phenomena may occur when ferromagnets
are combined with superconductors (see Ref. 20 and references
therein). Cooper pairs in a conventional superconductor have
spin-singlet pairing, which, if the superconductor is interfaced
with a ferromagnet, extend into the ferromagnet. However, the
exchange field inside the ferromagnet tries to align the two
spins of the Cooper pairs and hence breaks the Cooper pairs
apart resulting in a rapid decay of the superconducting correla-
tions inside the ferromagnet. For the same reasons, the critical
current of a Josephson junction with a ferromagnetic layer
sandwiched between the two superconductors decays rapidly
with increasing thickness of the ferromagnetic layer.21–24

On the other hand, if weakly ferromagnetic interfaces with
magnetization directions differing from the magnetization di-
rection of the ferromagnetic layer are inserted, the spin-singlet
correlations may be transformed into spin-triplet correlations
that can survive over a long range within the ferromagnet
layer.25–29 As a result of this noncollinear magnetization of the
ferromagnetic layer, the critical current decays similarly to a
supercurrent in a nonmagnetic metal with increasing junction

length.30,31 Also, the interaction between spin and charge
supercurrents has attracted attention.32–35 Recently, interest
in coupling between the dynamics of magnetic moments and
Josephson currents has increased.36–41

In Refs. 42 and 43, it was found that spin-singlet to spin-
triplet conversion can be generated by a nanomagnet such as an
SMM or a ferromagnetic nanoparticle coupled to a Josephson
junction44 provided that the magnetization direction of the
nanomagnet precesses.45 The spin-triplet correlations enable
spin currents to exist close to the junction interface despite
the s-wave nature of the leads. The spin currents generate a
spin-transfer torque acting on the nanomagnet and its effect
may be measurable in a ferromagnetic resonance (FMR)
experiment46 as was suggested in Ref. 42. References 42
and 43 focused on charge and spin currents as well as
spin-triplet correlations at zero temperature and in equilibrium
junctions. Here, we instead investigate the effects of the spin
precession on the critical current and find that the critical
current is enhanced at high temperatures. This enhancement is
due to a redistribution of the population of states caused by the
precessing spin and is also visible in the current-phase relation
(CPR). In this paper, we also show the direct relation between
the induced equal-spin anomalous Green’s functions and the
spin current at zero temperature. The spin currents and induced
spin-triplet correlations are affected by the redistribution of
quasiparticles and change abruptly as a function of temperature
when the critical current is enhanced.

The paper is organized as follows: in Sec. II, the model of
the superconducting point contact containing the molecular
magnet is described as well as the approach to solving
the spin-active boundary condition created by the molecular
magnet. The results are discussed in Sec. III starting with the
Andreev levels and their population. Then, the charge and spin
currents are considered along with the induced spin-triplet
correlations associated with the spin currents. Finally, the
results are summarized in Sec. IV. The Appendix details some
of the calculations in Sec. III.
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II. MODEL AND APPROACH

We consider a junction consisting of two superconducting
leads coupled over a nanomagnet, schematically depicted
in Fig. 1(a).42,43 The nanomagnet may be an SMM or a
ferromagnetic nanoparticle and is subjected to an external
effective magnetic field, H , which couples to the spin, S, of
the nanomagnet. Here, we treat the spin classically and if the
magnetic field is applied at an angle ϑ with respect to the spin,
it starts precessing with the Larmor frequency ωL = γ |H|,
where γ is the gyromagnetic ratio [see Fig. 1(b)]. The dynam-
ics due to the external field as well as any additional torque,
τ , can be summarized in an equation of motion for the spin as

Ṡ = −γ H × S + τ . (1)

The additional torque, τ , may include damping as well as spin
transfer torques due to transport processes.47

The two superconducting leads, denoted by left (L)
and right (R), are described by BCS Hamiltonians
with order parameters �(T )e±iϕ/2, where “+” (“−”)
refers the right (left) lead, ϕ is the superconducting
phase difference, and �(T ) is the gap at temperature
T . To investigate the effect of the precessing spin on
the Josephson effect, we consider the phenomenological
tunnel Hamiltonian HT = ∑

kσ ;k′σ ′ c
†
L,kσVkσ ;k′σ ′cR,k′σ ′ + H.c.

where the hopping amplitude depends on the instantaneous
direction of the spin, S, and can be summarized as
Vkσ ;k′σ ′ = [V0δσσ ′ + VS(S(t) · σ )σσ ′]δ(k − k′).48,49 The mat-
rix σ = (σx,σy,σz) consists of the Pauli spin matrices.

The tunnel Hamiltonian poses a spin-active, time-
dependent boundary condition that can be solved us-
ing nonequilibrium Green’s functions in the quasiclassical
approximation.50–52 The junction interface can be treated as
a single strong impurity that is included in the quasiclassical
theory by means of a t-matrix equation,53–55 which is then used
to calculate the transport properties of the junction.56,57 The
result is a fully microscopic theory that is able to account
for effects involving not only the Andreev levels but also
the continuum part of the energy spectrum,58,59 see Ref. 42
for details. The transport properties can be expressed in
terms of incoming (outgoing) propagators, ǧi(o)

α , describing
quasiparticles in lead α ∈ (L,R) traveling along trajectories
toward (away from) the interface. The “̌ ” symbol denotes a
matrix in Keldysh space. Using these propagators, one can
define a spectral matrix current, ǰα = ǧi

α − ǧo
α , from which

the charge and spin currents can be obtained as

j ch
α (t) = e

2h̄

∫
dε

8πi
Tr[τ̂3ĵ

<
α (ε,t)], (2)

j s
α(t) = 1

4

∫
dε

8πi
Tr[τ̂3σ̂ ĵ<

α (ε,t)], (3)

where τ̂3 = diag(1, − 1), σ̂ = diag(σ ,−σyσσy) and “ˆ” de-
notes a 4 × 4 matrix in Nambu space. The lesser (“<”)
propagators are given by the retarded (“R”), Keldysh (“K”)
and advanced ones (“A”) as ĝ< = 1

2 (ĝK − ĝR + ĝA). The
itinerant electrons generate a spin transfer torque which gives

FIG. 1. (Color online) (a) Two superconducting leads are coupled over the spin of a nanomagnet. The hopping amplitude for
spin-independent tunneling is given by V0, while VS is the coupling between the tunneling electrons and the spin of the nanomagnet.
(b) The spin of the nanomagnet, S, precesses with the Larmor frequency, ωL, due to an external effective magnetic field, H , that is applied at an
angle ϑ with respect to the orientation of the spin. The density of states in a rotating frame (see definition in the text) is plotted for a transparent
junction (vT = 1) with transmission probabilities (c) (D0 = 0.999,DS = 0.025), given by the hopping amplitudes [v0 = vT cos(0.1π/2),vS =
vT sin(0.1π/2)], and (d) (D0 = 0,DS = 1) given by the hopping amplitudes [v0 = vT cos(π/2) = 0,vS = vT sin(π/2) = 1] at temperature
T/Tc → 0. The Andreev levels, which can be seen as sharp states inside the gap, have here for visibility reasons been given an artificial
broadening, 0+, and the continuum density of states is normalized to 1 away from the gap edge. The upper (lower) Andreev levels, ε+ (ε−), are
given an effective Zeeman splitting (ε+(−) → ε

+(−)
↑,↓ ) by the spin precession. The spin precession couples the Andreev levels and the continuum

states as well as the states ε
+(−)
↑ and ε

+(−)
↓ . (e) The current-phase relation (CPR) is plotted for (D0 = 0.999,DS = 0.025) at temperatures (solid

lines from top to bottom) T/Tc = 7.5 × 10−4, 0.25, 0.50, 0.75, and 0.85. The dashed line shows the CPR for (D0 = 1,DS = 0) at temperature
T/Tc → 0. (f) The CPR for a junction with (D0 = 0,DS = 1) at temperatures (from bottom to top) T/Tc = 7.5 × 10−4, 0.25, 0.50, 0.75, and
0.85. In (e) and (f), the current is given in units of j ch

0 = e�/h̄, where � is the superconducting gap at T = 0. Figures (c)–(f) are calculated for
precession angle ϑ = π/4 and precession frequency ωL/� = 0.2.
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a contribution to the torque τ in Eq. (1) and is given by
τ = j s

L − j s
R .

As in Refs. 42 and 43, the boundary condition can be
simplified by the application of the unitary transformation
Û(t) = diag(e−i

ωL
2 tσz ,ei

ωL
2 tσz ), which results in a transforma-

tion to a rotating frame of reference where the Fermi surfaces
of the spin-up and -down bands are shifted by ∓ωL/2. Note
that this transformation also shifts the gap edges; the upper gap
edge, �+(T ) = �(T ), is shifted as �+(T ) → �+

↑,↓(T ), where
�+

σ (T ) = �(T ) − σωL/2 and σ = 1(−1) for spin ↑ (↓).
The lower gap edge, �−(T ) = −�(T ), is correspondingly
modified as �−(T ) → �−

↑,↓(T ), where �−
σ (T ) = −�(T ) −

σωL/2. Note also that the hopping elements in quasiclassical
theory are replaced by their Fermi surface limits, i.e., the
hopping amplitudes V0 and VS are replaced by v0 = πNF V0

and vS = πNF SVS , where NF is the normal density of states
at the Fermi energy.

III. RESULTS

Scattering processes between two superconductors may
lead to constructive interference and the appearance of An-
dreev levels.60 In the presence of a precessing spin, a tunneling
quasiparticle may gain (lose) energy ωL while simultaneously
flipping its spin from down (up) to up (down). These additional
tunneling processes lead to a modified Andreev level spectrum
whose details depend on a number of parameters; the ratio
v0/vS determines whether the junction is in a 0 or a π state,
depending on if v0/vS > 1 or v0/vS < 1, respectively.42,43 The
Larmor frequency, ωL, determines the amount of energy a
quasiparticle may gain or lose during tunneling across the
junction. The precession angle, ϑ , determines the amount
of scattering between the spin-up and spin-down bands.
The population of the Andreev states is modified by the
temperature, T , but also by the scattering processes generated
by the precessing spin. This modification of the Andreev level
population at finite temperature is the focus of this paper.

A. Andreev levels

In general, the Andreev levels in the rotating frame can be
described by

ε±
σ = ±�(T )

√
1 + �(v0,vS,ωL,ϑ,ϕ) + �σ (v0,vS,ωL,ϑ,ϕ),

(4)

where an analytical expression for � can be found as

�(v0,vS,ωL,ϑ,ϕ) = −D0(ϑ) sin2

(
ϕ

2

)

−DS(ϑ) cos2

(
ϕ

2

)
+

[
ωL

2�(T )

]2

, (5)

where the transmission probabilities, D0 and DS , depend
on the precession angle ϑ . Defining χ = 1 + 2(v2

0 + v2
S) +

(v2
0 − v2

S)2, the transmission probabilities can be written as

D0(ϑ) = 2v2
0

[
1

χ
+ cos (2ϑ)

χ − 4v2
S sin2 ϑ

]
(6)

and

DS(ϑ) = 2v2
S

[
1

χ
+ cos (2ϑ)

χ − 4v2
S sin2 ϑ

+ 2v2
S sin2(2ϑ)(

χ − 4v2
S sin2 ϑ

)2

]
.

(7)

From the above expressions, it is clear that the junction is in
the 0 state if v0 > vS , and in the π state if v0 < vS .21 The
function �σ (v0,vS,ωL,ϑ,ϕ) provides a Zeeman splitting and
an analytical expression for �σ can in principle be obtained,
but is too involved to allow for simple analytical analysis. The
effects of this term are numerically analyzed below. However,
in the limit of vS → 0, but with an arbitrary precession
frequency, Eq. (4) simplifies to

ε±
σ = ±�(T )

[√
1 − D0(0) sin2

(
ϕ

2

)
− σ

ωL

2�(T )

]
. (8)

From now on we use D0 = D0(0) and DS = DS(0).
The Andreev levels are visible in the density of states as

sharp subgap states. The density of states is time independent
and given by

ρα(ε,ϕ) = − 1

8π
�(

Tr
{
τ̂3

[
ĝi,R

α (ε,ϕ) + ĝo,R
α (ε,ϕ)

]})
. (9)

In Fig. 1(c), the density of states is plotted in the limit vS 	 v0.
The Andreev levels seen in the figure are well described by
Eq. (8) and their splitting is ωL. The density of states for
a junction with (v0 = 0,vS = 1) is shown in Fig. 1(d). The
Zeeman splitting in this case, vS 
 v0, can be approximated
with ∼ ωL cos ϑ .

B. Enhancement of the critical current

Each Andreev level carries a certain amount of cur-
rent that is weighted by the Andreev level occupation. In
equilibrium for a static spin, the amount of current each
Andreev level, ε±, carries is (2e/h̄)∂ε±/∂ϕ while the pop-
ulation of the quasiparticle states is given by the Fermi
distribution function, φ0.61,62 In this equilibrium situation,
the lesser propagators entering Eq. (2) can be written as
g

i/o,<
α,σσ (ε,ϕ) = −2πρ

i/o
α,σσ (ε,ϕ)φ<

0 (ε) using the partial density
of states ρ

i/o

α,σσ ′ (ε,ϕ) = (− 1
8π

)�[(ĝi/o,R
α )σσ ′(ε,ϕ)]. Hence, in

equilibrium, the charge current for one channel is given by

j ch(ϕ) = e�(T )

2h̄

(D0 − DS) sin(ϕ) tanh[ε+(ϕ)/2T ]√
1 − D0 sin2(ϕ/2) − DS cos2(ϕ/2)

. (10)

In a nonequilibrium situation where a superconducting
point contact contains a spin precessing with a finite frequency,
the current-phase relation is modified. As was shown in
Refs. 42 and 43, the Josephson charge current is time
independent and in the case of dominating spin-dependent
tunneling and zero temperature, the CPR exhibits abrupt jumps
as a function the superconducting phase difference, ϕ. As the
temperature is increased, the abrupt jumps are smoothed out
and a new step at a phase difference ϕp develops as can be seen
in panels (e) and (f) of Fig. 1. This step, which consequently
gives a peak in the CPR at ϕp, is the result of an enhanced
Josephson current at high temperatures for phase differences
in the interval 0 � ϕ � ϕp for 0 junctions and for ϕp � ϕ � π
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FIG. 2. (Color online) (a) Population of the lower Andreev level
ε−

↑ (black lines) and the upper Andreev level ε+
↓ (red lines) as function

of phase difference, ϕ, for a 0 junction with transmission probabilities
D0 = 0.999 and DS = 0.025, precession frequency ωL/� = 0.2
and tilt angle ϑ = π/4. At temperature T/Tc = 7.5 × 10−4, the
population of the Andreev levels is unaffected by the phase difference.
At higher temperatures, T/Tc = 0.25, 0.50, 0.75, and 0.85, the
population changes abruptly at a phase difference ϕp leading to a
jump in the CPRs shown in Fig. 1. (b) Density of states for the junction
in (a) at temperature T/Tc = 0.85. The dashed lines mark �±(T ) =
±�(T ). The dotted lines denote �±

σ (T ) = �±(T ) − σωL/2.

for π junctions. To understand this current enhancement, we
now turn to the population of the Andreev levels.

The population of the spin band σ in a nonequilibrium
situation can analogously to the equilibrium case be defined as

φi/o,<
σ (ε,ϕ) = g

i/o,<

0,σσ (ε,ϕ)
/[−2πρi/o

σσ (ε,ϕ)
]
. (11)

In Fig. 2(a), the occupation of the Andreev levels ε−
↑ and ε+

↓ are
shown as a function of phase difference. At zero temperature,
the lower Andreev level, ε−

↑ , is fully occupied while the upper
Andreev level, ε+

↓ , is unoccupied. At higher temperatures, the
lower Andreev level’s occupation is decreased while the upper
correspondingly has a finite occupation. In addition, there is
an abrupt change in the population corresponding to the jump
in the CPR at phase difference ϕp. The abrupt change in the
population is an effect of the spin-flip scattering processes in
which a quasiparticle interacting with the precessing spin may
gain or lose energy ωL. These scattering processes couple the
Andreev levels with the continuum states provided that

ωL � |�+(−)
σ (T )| − |ε+(−)

σ |, (12)

see Fig. 2(b). The coupling causes quasiparticles to be
promoted to the lower Andreev level from the continuum
below �−

σ (T ). Quasiparticles in the upper Andreev level are
similarly scattered into the upper continuum. If the lower

FIG. 3. (Color online) Enhanced critical current as a function
of temperature, T/Tc, for (D0 = 0.999,DS = 0.025) (dashed lines)
and (D0 = 0,DS = 1) (solid lines). The enhancement of the spin-
precession-assisted critical current j ch

c (ωL) is calculated with respect
to the critical current through a junction with a static spin and the
respective hopping amplitudes specified above, viz. j ch

c (ωL/� = 0),
which is the critical current obtained from Eq. (10). The precession
angle is ϑ = π/8.

(upper) Andreev level is not completely filled (unoccupied),
which is the case at finite temperature, the coupling leads
to a repopulation (emptying) of the Andreev level similarly
to the repopulation of Andreev levels due to microwave
radiation.58,59 This process enhances the supercurrent as
is shown in Figs. 1(e) and 1(f). The peak in the CPR at
phase difference ϕp can hence be found from the equality in
Eq. (12). In the case of vS 	 v0, Eq. (8) can be used to obtain

ϕp = 2 arcsin

{√
ωL

D0�(T )

[
2 − ωL

�(T )

]}
, (13)

where ωL � D0�(T )/2. As a consequence, ϕp increases as
the temperature increases and the superconducting gap, �(T ),
closes.

The enhancement of the charge current for certain phase
differences may lead to an enhanced critical current if the
enhancement is large enough. Figure 3 shows the temperature-
dependent enhancement of the critical charge current. The

FIG. 4. (Color online) Critical current as function of precession
frequency, ωL, for (a) (D0 = 0.999,DS = 0.025) and (b) (D0 = 0,

DS = 1), where the precession angle is taken to be ϑ = π/8 and the
temperature is T/Tc = 7.5 × 10−4 (black), 0.25 (red), 0.50 (green),
0.75 (blue), and 0.85 (violet).
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FIG. 5. (Color online) (a) and (b) The super-
conducting phase difference, ϕc, corresponding
to the critical charge current, i.e., j ch

c = j ch(ϕc),
is plotted as a function of temperature, T/Tc, for
(a) (D0 = 0.999,DS = 0.025) and (b) (D0 = 0,

DS = 1) for precession frequencies ωL/� =
0.1, 0.2, and 0.3. The abrupt jump in the
phase difference occurs when the critical cur-
rent is given by the spin-precession-enhanced
current. The abrupt change in ϕc leads to
an abrupt change in the spin-current com-
ponent j s

H (ϕc), which is plotted for hop-
ping strengths (c) (D0 = 0.999,DS = 0.025) and
(d) (D0 = 0,DS = 1). The precession angle is
ϑ = π/8 in all panels.

enhancement of the critical current may be understood as an
effective lowering of the temperature due to the repopulation
of the lower Andreev levels and the emptying of the upper
Andreev levels; the Andreev level population generated
by the precessing spin at a certain temperature, φ

i/o,<
σ

(ωL > 0,T1), corresponds to an Andreev level population
at a lower temperature but with zero precession frequency,
φ

i/o,<
σ (ωL = 0,T2 < T1).

The critical charge current as a function of precession
frequency is shown in Fig. 4. The critical current is enhanced
at high enough precession frequencies due to the redistribution
of the quasiparticle occupation. At even higher precession
frequencies, quasiparticles can be scattered between the lower
(upper) Andreev levels, ε−

σ (ε+
σ ), and the upper (lower)

continuum states, similarly to what was found in Refs. 58
and 59. These processes lead to a decrease of the critical current
at precession frequencies ∼2�(T ).

C. Spin currents and spin-triplet correlations

In Refs. 42 and 43, it was found that the spin-dependent
Andreev scattering across the junction produces a spin
structure of the lead propagators, even at zero temperature.
These spin-triplet correlations were in Ref. 42 quantified
using d vectors as these are commonly used to characterize
the order parameters of spin-triplet superconductors. In this
paper, the direct relation between spin currents and spin-triplet
correlations is investigated. This can easily be done in the case
of a small tilt angle. If the incoming (outgoing) propagator
in the case of zero tilt angle is ǧ0,i(o)

α , it can be shown that a
small tilt angle gives a contribution, δǧi(o)

α , to first order such
that ǧi(o)

α = ǧi(o)
α + δǧi(o)

α (see the Appendix for details). The
first-order contribution to the propagators has the spin structure
δǧi(o)

α = δǧi(o),↑
α + δǧi(o),↓

α where ↑ and ↓ denote equal-spin
correlation terms. The charge current is identical to its value
in the ϑ = 0 case and is hence unaffected to first order. Using
the symmetry relations for propagators in Keldysh-Nambu
space,63 the spin current, in terms of only the normal Green’s

functions, now reads

j s,↑(↓)
α (t) = 1

4

∫
dε

4πi
{[δg↑(↓),i,<

α (ε,t) − δg↑(↓),o,<
α (ε,t)]}.

(14)

However, the normalization condition, ǧ2 = −π21̌, can be
used to relate the anomalous and the normal Green’s functions.
The relations between the anomalous Green’s functions, f ↑(↓)

α ,
and the normal Green’s functions, g↑(↓)

α , entering into the
spin current of Eq. (14), are given in Eqs. (A4) and (A5)
in the Appendix. From these relations, it is explicitly shown
that the equal-spin anomalous Green’s functions f̌

↑/↓
α induced

by the precessing spin determine the spin current. Conversely,
the spin current vanishes for f̌

↑/↓
α ≡ 0 at zero temperature. In

other words, the spin current is a direct measure of the induced
equal spin-triplet correlations.

The induced spin-triplet correlations exist close to the junc-
tion interface and decay on the scale of the superconducting
coherence length.42,43 Hence, the spin current lacks a dc com-
ponent but instead has a precessing polarization. In particular,
it has a term due to the spin-dependent Andreev scattering
that can be expressed as j s

α,H (γ H) × S, which is finite only
for temperatures T < Tc. This term generates a feedback
effect on the precessing spin in the form of a spin-transfer
torque64,65 given by τA = (j s

L,H − j s
R,H )(γ H) × S.47,66 This

spin-transfer torque acts as an effective magnetic field and
shifts the precession frequency as ωL → ωL[1 + 2j s

H ], where
j s
H = j s

L,H = −j s
R,H . Plotting the magnitude of this spin-

current component in relation to the critical current shows that
the spin current, and therefore also the induced spin-triplet
correlations, changes dramatically as the critical current is
enhanced by the spin precession (see Fig. 5).

IV. CONCLUSIONS

In summary, we have studied the nonequilibrium transport
properties of a superconducting point contact coupled to the
precessing spin of a nanomagnet using a fully microscopic
model. First, we analyzed the Andreev levels and their
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population as a function of temperature. It was found that the
precession of the nanomagnet modifies the Andreev scattering
in such a way that it leads to scattering of quasiparticles
from the continuum part of the energy spectrum into the
lower Andreev levels. These transitions are similar to those
occurring in microwave-irrated superconducting quantum
point contacts58,59 and lead to a nonequilibrium population of
the Andreev levels and an effective cooling of the point contact.

We have also shown that the effective cooling leads to an en-
hanced supercurrent. If the precession frequency of the nano-
magnet’s spin is large enough, this spin-precession-assisted su-
percurrent has an enhanced critical current. The enhancement
of the critical current increases with increasing temperature.

The scattering across the junction leads to additional
nonequilibrium processes: Besides the enhanced supercurrent,
we have also shown that spin-triplet correlations are created
as a response to the scattering processes generated by the spin
precessing at a finite angle. Moreover, we have shown that
the induced spin-triplet correlations produce a spin current
and that the spin current at zero temperature essentially is
a measurement of the induced spin-triplet correlations. As
was shown previously,42,43 one of the spin current components
shifts the nanomagnet’s precession frequency. Here, this spin-
current component was studied for the same superconducting
phase difference that is associated with the critical current and
the magnitude of this component was found to be drastically
modified as a function of temperature. The critical current
enhancement is an effect of the nonequilibrium processes
taking place inside the junction and a measurement of this en-
hancement would suggest the existence of induced spin-triplet
correlations since both phenomena are of the same origin.

A natural question concerns the experimental control over
the junction parameters. Aluminum microbridges can be
used to fabricate few-channel superconducting atomic point
contacts67 whose transmission eigenvalues are possible to de-
termine via transport measurements.68,69 The superconducting
gap in aluminum is ∼200 μeV but can be made smaller in an
atomic point contact. Typical values for precession frequencies
are in the range of tenths of GHz for ferromagnetic-resonance
experiments performed on thin ferromagnetic films in contact
with superconductors.46 With an applied external magnetic
field of ∼60 mT, the corresponding gyromagnetic ratio is close
to that of free electrons, γ = 2μB/h̄. Assuming similar values
for the nanomagnet, the precession frequency is in the range
ωL/� ∼ 0.07–0.3 for a junction with a superconducting gap
in the range � ∼ 20–100 μeV.

A direct measurement of the current-phase relation can
in principle be done for atomic point contacts.70 However,
this type of measurement requires the addition of a super-
conducting quantum interference device (SQUID) loop to
control the phase difference of the superconducting junction
and the magnetic flux through the loop might interfere with
the magnetic control of the dynamics of the nanomagnet.
Therefore measurements of the critical current as a function of
temperature should be a more practical route to finding exper-
imental signatures of the coupling between a superconducting
junction and the dynamics of a nanomagnet and could lead to
more insight into the interplay between superconductivity and
ferromagnetism.
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APPENDIX: RELATION BETWEEN NORMAL
AND ANOMALOUS GREEN’S FUNCTIONS

In the limit of a small precession angle, the contributions
to the t matrices and propagators can be calculated as follows:
starting with a junction with zero tilt angle, ϑ = 0, the hopping
element takes the diagonal form

v̂ =
(

v0 + vSσz 0

0 v0 + vSσz

)
≡ v̂d (A1)

and the corresponding t-matrix equation is given by ť0
α = �̌0

α +
�̌0

αǧ0
αť0

α, where ǧ0
α is the unperturbed Green’s function in lead

α and �̌0
L/R = v̌d ǧ0

R/Lv̌d . The solution ť0
α has a diagonal form

and may include nonequal spin-triplet components due to a
nonzero vS value. The resulting propagators [see Eq. (3)] yield
a spin current j s

α = 0.
If a small tilt angle, ϑ 
= 0, is introduced, the hopping

element is modified into v̂ = v̂d + v̂↑ + v̂↓, where v̂d is given
by Eq. (A1) and v̂↑(↓) is proportional to ϑ [disregarding terms
of O(ϑ2)]:

v̂↑(↓) ≡
(

vSϑσ+(−) 0

0 vSϑσ−(+)

)
. (A2)

The hopping elements enter into the t matrix equation via
�̌0

L/R = v̌d ǧ0
R/Lv̌d and δ�̌

↑(↓)
L/R = v̂↑(↓)ǧ0

R/Lv̂d + v̂d ǧ0
R/Lv̂↑(↓).

The resulting linearized t matrix can be written as ťα =
ť0
α + δťα , where ť0

α is the zero-angle solution and the
components of δťα = δť↑α + δť↓α are given by δť↑(↓)

α =
[1̌ − �̌0

αǧ0
α]−1δ�̌↑(↓)[1̌ + ǧ0

αť0
α].

The direction dependence of the propagators can be cap-
tured by separating them into incoming or outgoing propaga-
tors depending on whether they describe quasiparticles moving
towards or away from the junction interface. The incoming
and outgoing propagators can be obtained as ǧ

i/o
α = ǧ

0,i/o
α +

δǧ
i/o
α , where δǧ

i/o
α = δǧ

↑,i/o
α + δǧ

↓,i/o
α and δǧ

↑(↓),i/o
α = (ǧ0

α ±
iπ 1̌)δť↑(↓)

α (ǧ0
α ∓ iπ 1̌). Using the parametrization for the spin-

singlet (“s”) and spin-triplet (“t”) components of the normal
and anomalous Green’s functions:

gi/o,X
s + gi/o,X

t · σ =
(

g
0,i/o,X
+ δg

i/o,X

↑
δg

i/o,X

↓ g
0,i/o,X
−

)
,

(A3)(
f i/o,X

s + f i/o,X
t · σ

)
iσy =

(
−δf

i/o,X

↑ f
0,i/o,X
+

−f
0,i/o,X
− δf

i/o,X

↓

)
,

where X ∈ (R,K,A), and the normalization condition for
Keldysh-Nambu Green’s functions, the retarded and advanced
normal Green’s functions can be expressed in terms of the
anomalous ones. In the limit of a small tilt angle, the linearized
relations between the normal and anomalous Green’s functions
read

δg
R/A

↑ = F̃
R/A
− δf

R/A

↑ + F
R/A
+ δf̃

R/A

↑ ,
(A4)

δg
R/A

↓ = F̃
R/A
+ δf

R/A

↓ + F
R/A
− δf̃

R/A

↓ ,
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where F
R/A
± = f

0,R/A
± /ξ 0,R/A and F̃

R/A
± = f̃

0,R/A
± /ξ 0,R/A.

Here, gX
± and f X

± are the diagonal matrix components given

by gX
± = gX

s ± gX
z and f X

± = f X
s ± f X

z and ξR/A = g
0,R/A
+ +

g
0,R/A
− . The off-diagonal Keldysh components are

δgK
↑ = δf R

↑ F̃ ′K
− + δf̃ A

↑ F ′K
+ − δf̃ R

↑ FR
+ GK

− − δf A
↑ F̃ A

− GK
+

+ δf K
↑ F̃ ′A

− + δf̃ K
↑ F ′R

+ ,

δgK
↓ = δf R

↓ P̃ ′K
+ + δf̃ A

↓ P ′K
− − δf̃ R

↓ FR
− QK

+ − δf A
↓ F̃ A

+ QK
−

× δf K
↓ P̃ ′A

+ + δf̃ K
↓ P ′R

− , (A5)

where the retarded-type and advanced-type matrices are

F
′R/A
± = f

0,R/A
± /ζ1, P

′R/A
± = f

0,R/A
± /ζ2,

(A6)
F̃

′R/A
± = f̃

0,R/A
± /ζ1, P̃

′R/A
± = f̃

0,R/A
± /ζ2

with ζ1 = g
0,R
+ + g

0,A
− and ζ2 is obtained from ζ1 by exchang-

ing − ↔ +. The Keldysh-like matrices are

GK
± = ζ±φ0

±/ζ1, QK
± = ζ±φ0

±/ζ2,

F ′K
± = [F ′R

± − FA
± ]φ0

±, P ′K
± = [P ′R

± − FA
± ]φ0

±, (A7)

F̃ ′K
± = [F̃ R

± − F̃ ′A
± ]φ0

±, P̃ ′K
± = [F̃ R

± − P̃ ′A
± ]φ0

±,

where φ0
± is the occupation associated with g0

± and ζ± =
g

0,R
± − g

0,A
± .

We have thus shown that a small tilt angle produces spin-flip
scattering that combined with Andreev scattering processes
leads to spinful anomalous Green’s functions, δf

R,K,A
↑/↓ , that in

turn generate off-diagonal, spinful normal Green’s functions,
δg

R,K,A
↑/↓ . Consequently, the spin current given by Eq. (14) is

nonzero as a result of the induced equal spin triplet anomalous
Green’s functions.
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Sci. Technol. 24, 024020 (2011).

40S. Mai, E. Kandelaki, A. F. Volkov, and K. B. Efetov, Phys. Rev. B
84, 144519 (2011).

41J. Linder and T. Yokoyama, Phys. Rev. B 83, 012501 (2011).
42C. Holmqvist, S. Teber, and M. Fogelström, Phys. Rev. B 83, 104521

(2011).
43S. Teber, C. Holmqvist, and M. Fogelström, Phys. Rev. B 81, 174503

(2010).
44A. Yu. Kasumov, K. Tsukagoshi, M. Kawamura, T. Kobayashi,

Y. Aoyagi, K. Senba, T. Kodama, H. Nishikawa, I. Ikemoto,
K. Kikuchi, V. T. Volkov, Yu. A. Kasumov, R. Deblock, S. Guéron,
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