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Renormalization in the three-body problem with resonant p-wave interactions
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Resonant p-wave interactions can be described by a minimal zero-range model defined by a truncated effective
range expansion so that the only two-body interaction parameters are the inverse scattering volume 1/ap and the
p-wave effective range rp . This minimal model can be formulated as a local quantum field theory with a p-wave
interaction between atom fields and a molecular field. In the two-atom sector, the model is renormalizable, but it
has unphysical behavior at high energies because there are negative-probability states with momentum scale rp .
In the sector with three atoms, two of which are identical, renormalization in some parity and angular momentum
channels involves an ultraviolet limit cycle, indicating asymptotic discrete scale invariance. The Efimov effect
occurs in the unitary limit a−1/3

p ,rp → 0, but this limit is unphysical because there are low-energy states with
negative probability. The minimal model can be of physical relevance only at energies small compared to the
energy scale set by rp where the effects of negative-probability states are suppressed.
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I. INTRODUCTION

Systems with an s-wave resonance near a threshold arise in
many fields of physics, including atomic, condensed-matter,
nuclear, and high-energy physics. They are important because
they exhibit universal behavior that depends on the energy of
the resonance but is otherwise insensitive to the nature of the
constituents and the form of the interactions between them
as long as they have a short range. The universal aspects
of the few-body problem have been studied in detail [1].
The universal properties depend on the s-wave scattering
length a. If the Efimov effect occurs in the three-body
problem, the universal properties also depend on a three-body
scale parameter upon which observables can only depend
log-periodically. In the many-body problem with identical
fermions with two spin states, the universal properties have
also been studied thoroughly, theoretically and also experi-
mentally using ultracold atoms [2–5]. If the Efimov effect
occurs in the three-body problem, the many-body problem is
more complicated and may not even be well defined.

Systems with a p-wave resonance near a threshold also arise
in many fields of physics. A prominent example in nuclear
physics is the low-energy p-wave resonance in n − 4He
scattering, which corresponds to the unstable 5He nucleus [6].
The universal aspects of such systems are not as clear-cut
as in the s-wave case. They involve at least two parameters:
the p-wave scattering volume ap and the p-wave effective
range rp. The many-body physics of fermions with two spin
states that interact through a p-wave resonance has been
studied using mean-field approximations [7–11]. If the p-wave
interactions are strongly resonant, the many-body physics may
reveal qualitatively new features that are not captured by
mean-field approximations [12].

Ultracold atoms provide a promising laboratory for the
experimental study of both few-body and many-body systems
of particles with a p-wave resonance near threshold. The
inverse scattering length ap can be controlled experimentally
and can be made arbitrarily large by tuning the magnetic field
to a p-wave Feshbach resonance. The first such studies were

for a p-wave Feshbach resonance between identical fermions
using 40K atoms [13]. Fermionic 6Li atoms have been studied
near a Feshbach resonance between the lowest two hyperfine
spin states [14,15]. The binding energies of p-wave dimers
and the atom-dimer and dimer-dimer inelastic collision rates
have been measured [16,17]. p-wave Feshbach resonances
have also been observed in a mixture of 40K fermions and
87Rb bosons [18]. One obstacle to studying the dependence on
ap is that p-wave Feshbach resonances in ultracold atoms are
usually very narrow.

In this paper, we study the renormalization in the three-body
sector for a minimal field-theoretic model of a system with a p-
wave threshold resonance. In Sec. II, we explain why the model
can only be physically relevant at energies small compared to
the energy scale set by rp. In Sec. III, we write down the
integral equation that can be used to calculate the bound-state
spectrum of triatomic molecules in the model. In Sec. IV,
we identify the angular momentum and parity channels of the
three-atom sector in which a three-body parameter is required
by renormalization. Finally, in Sec. V, we discuss whether
the renormalization properties of the minimal model can be
relevant to any real physical systems.

II. TWO-BODY PROBLEM WITH A p-WAVE RESONANCE

We begin by discussing p-wave scattering at low energy
E = k2/(2μ), where μ is the reduced mass. If the particles
interact through a short-range potential, the p-wave phase shift
has an effective range expansion in powers of k2 that has the
form

k3 cot δp(k) = −1/ap + 1
2 rpk2 + · · · , (1)

where ap is the scattering volume and rp is the p-wave effective
range, which have dimensions (length)3 and 1/(length), re-
spectively. If the only important interactions are in the p-wave
channel and if the effective range expansion is truncated after
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the second term, the scattering amplitude reduces to

fk(θ ) = k2 cos θ

−1/ap + 1
2 rpk2 − ik3

. (2)

An equivalent expression is obtained if the interactions are
dominated by a coupling to a p-wave Feshbach resonance,

fk(θ ) = k2 cos θ

(ν − k2/2μ)/g2 − ik3
. (3)

The parameter rp = −1/μg2, which is negative definite,
controls the strength of the coupling to the Feshbach res-
onance. The detuning of the resonance from the threshold
is controlled by the combination 1/aprp = μν. We consider
p-wave interactions for which the scattering amplitude has the
minimal form in Eq. (2) or (3) with the two parameters ap

and rp.
A point in the parameter space that is of particular interest

is a
−1/3
p = rp = 0, which is called the unitary limit because the

unitarity bound for scattering is saturated at this point. Since
they provide no length scale, the interactions are scale invariant
in the unitary limit. It is easy to see that the unitary limit cannot
be realized with interactions through a short-range potential.
If the interaction potential vanishes outside the range R, there
is an upper bound on rp called the Wigner bound [19]. For
|ap|1/3 � R, the Wigner bound reduces to rp � −2/R. If we
try to take the zero-range limit R → 0 to justify the truncation
of the effective range expansion in Eq. (1), rp is driven to −∞.
The constraint rp < −2/R can also be derived by demanding
that the probability for a bound state to be in the region r > R

is less than 1 [20,21].
The behavior in the zero-range limit is improved if the

potential with range R is supplemented by a van der Waals
tail that falls off as −C6/r6. In this case, the expansion in
Eq. (1) also includes a linear term bpk [22]. In the zero-range
limit R → 0, the coefficients bp and rp are determined by
the scattering volume ap and the van der Waals length β6 =
(2μC6/h̄

2)1/4. If we also take the limit |ap|1/3 � β6, bp → 0,
and rp → −3.4/β6. Thus, the low-energy expansion of fk(θ )
reduces to Eq. (2), but the scale of rp is set by 1/β6. The
truncation of the expansion is justified only at low energies
|E| � 1/μβ2

6 .
Real atoms interact through a short-range potential with a

van der Waals tail, but they can also have couplings to diatomic
molecules. The scattering volume ap can be controlled and
can be made arbitrarily large by tuning the magnetic field to
a p-wave Feshbach resonance where one of the molecules
crosses the two-atom threshold. The conditions for fk(θ ) to
be well approximated by the effective range approximation in
Eq. (2) have been studied by Zhang et al. [23].

Nishida has pointed out that the assumption that the
scattering amplitude has the simple form in Eq. (2) or (3)
up to arbitrarily large momentum k necessarily implies the
existence of states with negative probability [24]. In the case
of a short-range potential, the problem is related to the Wigner
bound. If the bound rp < −2/R is violated, the probability for
a bound state to be in the region r > R exceeds 1, and that
excess probability must be canceled by negative probability
from the region r < R [24].

The problem of negative-probability states can also be
seen directly from the expression for the scattering amplitude
in Eq. (2). It can be expressed as a function of the energy
E = k2/2μ,

fk(θ ) = 2μE cos θ

−1/ap + μrpE − (−2μE − iε)3/2
. (4)

The poles in E of this function are the energies of bound
states. We set 1/ap = 0 for simplicity. If rp < 0, as required
by the Wigner bound, the denominator then has zeros at E = 0
and E = −r2

p/8μ, which correspond to one bound state at
the threshold and another with binding energy r2

p/8μ. The
scattering amplitude can be expressed as a sum of contributions
from the two poles and a function of E that is regular at the
poles,

fk(θ ) = 2E cos θ

(
1

rpE
− 2

rp

(
E + r2

p/8μ
) + (regular)

)
.

(5)

Note that the residues of the two poles have different signs.
The two bound states will contribute to unitarity sums with
the opposite sign of the residues in Eq. (5). The probabilities
of the bound states with binding energies 0 and r2

p/8μ are
positive and negative, respectively. If rp > 0, there is only
a negative probability pole with energy 0 on the physical
sheet. A negative-probability state with energy 0 is fatal for
any physical interpretation of the threshold region. If rp < 0,
the negative-probability state with binding energy r2

p/8μ is
not necessarily fatal because its effects are suppressed at
sufficiently low energy. Thus, a sensible physical interpretation
requires rp < 0 and |E| � r2

p/8μ. If 1/ap is nonzero, the
analysis is more complicated. We refer to a pole as shallow
if it has energy |E| < r2

p/8μ and as deep if it has energy
|E| � r2

p/8μ The different cases can be classified as:
(1) 1/ap < 0: There is only one deep pole on the physical

sheet. It has negative probability.
(2) 0 < 1/ap � |rp|3/54: There are two poles on the

physical sheet, one shallow pole with positive probability and
one deep pole with negative probability.

(3) 1/ap > |rp|3/54: There are two poles with complex
energies and complex residues on the physical sheet. This
case violates standard analyticity assumptions for the S matrix
and should be discarded [25].

The problem of atoms whose pair interactions give the
scattering amplitude in Eq. (2) can be formulated as a quantum
field theory (for a review of field-theoretical models of atom-
atom interactions see, e.g., Ref. [26]) with two scalar fields ψ1

and ψ2 (which annihilate atoms of types 1 and 2, respectively)
and a vector field d (which annihilates a diatomic molecule).
We take the masses of the atoms to be m1 and m2. The
only interaction is a p-wave contact interaction that allows
transitions between the diatomic molecule and a pair of atoms
of types 1 and 2. The form of the Lagrangian is constrained
by Galilean invariance. It consists of kinetic terms, an energy
offset for the diatomic molecule, and a p-wave interaction
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term,

L =
2∑

σ=1

ψ†
σ

(
i

∂

∂t
+ 1

2mσ

∇2

)
ψσ

+ ηd† ·
(

i
∂

∂t
+ 1

2(m1 + m2)
∇2

)
d + �0d† · d

− g0μ{d† · [ψ2i∇ψ1/m1 − (i∇ψ2)ψ1/m2] + (H.c.)}.
(6)

The parameters �0 and g0 are bare parameters that depend
on the ultraviolet cutoff. The parameter η can be chosen
by normalization of the field d to be either +1 or −1. If
η = +1, d is an ordinary field, which, in the absence of
interactions, would annihilate an ordinary positive-probability
molecule. If η = −1, d is a ghost field, which, in the ab-
sence of interactions, would annihilate a negative-probability
molecule.

The two-body problem for atoms 1 and 2 can be solved
analytically. The minimal model defined by the Lagrangian
in Eq. (6) is renormalizable in the two-atom sector [6]. The
bare parameters g0 and �0 can be tuned as functions of
the ultraviolet momentum cutoff � in such a way that the
scattering amplitude reduces to Eq. (2) in the limit � → ∞.
The renormalization conditions can be written

1

ap

= 6π

g2
0μ

�0 + 2

3π
�3, (7a)

rp

2
= −η

3π

g2
0μ

2
− 2

π
�. (7b)

In order to have finite limits as � → ∞, the two terms on
the right sides of both Eqs. (7a) and (7b) must have opposite
signs. A finite limit for ap requires that �0 be negative and that
�0/g

2
0 scale like �3. A finite limit for rp requires that g2

0 scale
like �−1 and that η = −1. Thus, d must be a ghost field. If there
were no interactions, it would annihilate a negative-probability
molecule. To see whether there are any negative-probability
particles in the presence of interactions, one needs to examine
the scattering amplitude in Eq. (2). As we have seen, rp < 0
is necessary to avoid negative-probability particles near the
two-atom threshold. The energy restriction |E| � r2

p/8μ is
then necessary to ensure that unphysical effects associated with
negative-probability particles are suppressed. The simplest
observable that can go wrong is the two-body bound-state
spectrum. It contains unphysical low-energy states if the
energy restriction is not observed.

Nishida also presented an algebraic argument for the
existence of states with negative probability in this model [24].
In the unitary limit a

−1/3
p = rp = 0, the model has scaling

symmetry as well as Galilean symmetry. It, therefore, also
has nonrelativistic conformal symmetry [27]. The asymptotic
behavior of the scattering amplitude in Eq. (2) at large k implies
that the dimer field d has scaling dimension 1. However,
Nishida and Son [27] have used the nonrelativistic conformal
algebra together with the assumption that all states have a
positive norm to prove that primary operators can only have
scaling dimensions greater than or equal to 3/2. The violation
of the bound in this model implies that there must be states
with a negative norm.

III. p-WAVE SKORNYAKOV–TER-MARTIROSIAN
EQUATION

We now consider the three-body problem with resonant
p-wave interactions between pairs of atoms. For three identical
bosons, there can be no p-wave interactions. The case of
three identical fermions has been studied thoroughly by
Jona-Lasinio et al.. [21]. They considered a two-channel model
with atoms and a diatomic molecule that have interactions with
a finite range b. They found that rp has to be negative and that
there is a lower bound on |rp| that is proportional to 1/b.
In the three-fermion sector, they calculated the spectrum of
triatomic molecules (trimers), atom-dimer scattering lengths,
and three-body recombination rates. For |ap| � b3, the trimer
spectrum at energies small compared to h̄2/mb2 can consist of
either zero or one trimer with positive parity and either zero
or one trimer with negative parity. Three-body recombination
was also studied previously by Suno et al. using the adiabatic
hyperspherical representation of the Schrödinger equation for
three identical fermions interacting through a short-range
potential that is tuned to give a large p-wave scattering
volume [28].

In the next simplest case of a three-body problem with
resonant p-wave interactions, there are two identical atoms of
type 2 and a third atom of type 1. Atoms of types 1 and 2
interact through a p-wave resonance, and we assume that the
interaction between the identical atoms can be neglected. We
describe this system using the model defined by the Lagrangian
in Eq. (6). Transition amplitudes for three atoms can be
calculated exactly numerically by solving a single-variable
integral equation that is analogous to the Skornyakov-Ter-
Martirosian (STM) equation for s-wave contact interactions
[29]. The equations for different orbital angular momentum
and parity quantum numbers JP can be decoupled. The
bound-state problem reduces to solving an eigenvalue equation
for the energy E < 0 that is a homogeneous integral equation
of the form

B(p) = ν
3(−1)J+1

π (2J + 1)

∫ �

0
dq RJP

(p,q,E)D(q,E)B(q), (8)

where the prefactor ν is +1 or −1 if the identical atoms are
bosons or fermions, respectively. The upper limit � of the
integral is an ultraviolet momentum cutoff that should be taken
to ∞. The dimer propagator D(q,E) is given by

D(q,E) = q2

[
1

ap

+ rp

2
b(q,E) + b(q,E)3/2

]−1

, (9a)

b(q,E) = r(2 + r)

(1 + r)2

[
q2 − 2(1 + r)

2 + r
m2E

]
, (9b)

where r = m1/m2 is the mass ratio. The kernel RJP

(p,q,E)
depends on the quantum numbers JP . For positive parity
J+ with J > 0, the bound-state amplitude B(p) is a two-
component column vector, and RJ+

(p,q,E) is a 2 × 2 matrix
with entries,

RJ+
11 =

[
J

1 + r
+ 1 + r

2J − 1

]
QJ − J

[
p

q
+ q

p

]
QJ−1

+ (J − 1)(2J + 1)(1 + r)

2J − 1
QJ−2, (10a)
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RJ+
12 =

√
J (J + 1){−[1/(1 + r) + 1 + r]QJ

+ (q/p)QJ−1 + (p/q)QJ+1}, (10b)

RJ+
22 =

[
J + 1

1 + r
+ 1 + r

2J + 3

]
QJ − (J + 1)

[
p

q
+ q

p

]
QJ+1

+ (J + 2)(2J + 1)(1 + r)

2J + 3
QJ+2, (10c)

and RJ+
21 (p,q,E) = RJ+

12 (q,p,E). For J � 0, QJ (x) is a
Legendre function of the second kind, and its argument is
x = (1 + r)[p/q + q/p]/2 − m2rE/(pq). For J < 0, QJ =
0. For the special case JP = 0+ and for negative parity J−

with J > 0, B(p) has one component, and RJP

is a 1 × 1
matrix. For 0+, its entry R0+

22 (p,q,E) is given by Eq. (10c).
For J−, its entry is

RJ−
(p,q,E) = (1 + r)[QJ+1(x) − QJ−1(x)]. (11)

These equations are valid for 1/ap � |rp|3/54.

IV. RENORMALIZATION-GROUP LIMIT CYCLES

In most JP channels, the solution to the bound-state
equation for B(p) decreases rapidly enough at large p that the
integral in Eq. (8) converges as � → ∞. In these channels,
the model is renormalizable: The only parameters that are
required are ap and rp. However, there are also channels in
which B(p) approaches a log-periodic function of p at large
p, just like in the STM equation. In this case, the integral does
not converge but instead, approaches a log-periodic function
of � as � → ∞. If the identical particles are bosons, the only
channel in which this behavior occurs is 1+. If the identical
particles are fermions, this behavior occurs in the channels
0+, 1+, 1−, and 2+.

In the field-theory framework, the cutoff dependence
implies that the model, defined by the Lagrangian in Eq. (6),
is not renormalizable in the three-atom sector. In the case
of an s-wave contact interaction, renormalizability can be
restored by adding a three-body contact interaction term [30].
In our case with a p-wave interaction, renormalizability can
also be restored by adding an appropriate three-body contact
interaction for each JP channel in which there is log-periodic
dependence on �. The renormalization-group (RG) flow for
its coupling constant is governed by an RG limit cycle [1].
An RG limit cycle is characterized by a discrete scaling factor
λ0 such that, every time � increases by a factor of λ0, the
coupling constant returns to its original value.

Renormalization can be implemented by eliminating the
coupling constant for the three-atom interaction in favor of
a renormalization scale �∗ [30]. The dependence of any
renormalized amplitude on �∗ can only be log-periodic with
discrete scaling factor λ0. The model, therefore, exhibits
asymptotic discrete scale invariance at high energies. A
discrete scale transformation consists of rescaling all momenta
and energies by factors of λn

0 and λ2n
0 , respectively, and

rescaling the parameters as ap → λ−3n
0 ap and rp → λn

0rp,
where n is an integer. Under a discrete scale transformation,
any amplitude changes simply by an overall power of λn

0.
The most dramatic consequence of the discrete scale

invariance is the Efimov effect. In 1970, Efimov showed that,

if the two-body s-wave scattering length is tuned to infinity,
there can be an infinite sequence of three-body bound states
called Efimov states that have an accumulation point at the
three-body threshold [31]. The binding energies of successive
states differ by the square of a discrete scaling factor λ0 that
depends on the mass ratios and symmetries. The cases in
which the Efimov effect occurs include three identical bosons,
two identical bosons and a third particle, and two identical
fermions and a third particle whose mass is smaller than the
fermion mass divided by 13.6 (see, e.g., Ref. [1]). In the
case of resonant p-wave interactions between one atom and
two identical atoms, we have identified all the channels in
which the Efimov effect occurs. If the identical particles are
bosons, the Efimov effect occurs only in the 1+ channel. If the
identical particles are fermions, the Efimov effect occurs only
in the channels 0+, 1+, 1−, and 2+. The Efimov effect in the
1− sector was discovered by Macek and Sternberg [32] and
Macek [33]. Our results for the 1− sector are consistent with
their results. Unfortunately, the Efimov effect in this model is
unphysical. In the unitary limit, there are negative-probability
states at the three-atom threshold, which is the accumulation
point for the infinitely many Efimov states.

The discrete scaling factor for each JP channel can
be expressed as λ0 = exp(π/s0), where s = is0 is a pure
imaginary solution to the equation,

det

[
1 − ν

3

π

(−1)J+1

2J + 1

(
(1 + r)2

r(2 + r)

)3/2

MJP

(s)

]
= 0, (12)

and MJP

is essentially the Mellin transform of RJP

in Eq. (8).
For positive parity J+ with J > 0, MJ+

(s) is a 2 × 2 matrix
with entries,

MJ+
11 =

[
J

1 + r
+ 1 + r

2J − 1

]
fJ − J [t̂− + t̂+]fJ−1

+ (J − 1)(2J + 1)(1 + r)

2J − 1
fJ−2, (13a)

MJ+
12 =

√
J (J + 1){−[1/(1 + r) + 1 + r]fJ

+ t̂+fJ−1 + t̂−fJ+1}, (13b)

MJ+
22 =

[
J + 1

1 + r
+ 1 + r

2J + 3

]
fJ − (J + 1)[t̂− + t̂+]fJ+1

+ (J + 2)(2J + 1)(1 + r)

2J + 3
fJ+2, (13c)

and MJ+
21 (s) = MJ+

12 (−s). The functions fJ (s) are

fJ (s) = PJ

(
1 + r

2
[t̂− + t̂+]

)
f0(s), (14)

where PJ is a Legendre polynomial if J � 0 and 0 if J < 0, t̂±
is an operator that shifts the argument of fJ (s) by ±1, and
f0(s) is

f0(s) = π sin{s arcsin[1/(1 + r)]}
s cos(sπ/2)

. (15)

In the special case JP = 0+ and for negative parity J− with
J > 0, MJP

(s) is a 1 × 1 matrix. For 0+, its entry M0+
22 (s) is
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B
F
F
F
F

FIG. 1. (Color online) Discrete scaling factor λ0 = exp(π/s0) as
a function of the mass ratio r = m1/m2. If the identical particles
are bosons, the Efimov effect occurs only in the J P = 1+ sector. If
the identical particles are fermions, the Efimov effect occurs in the
0+, 1+, 1−, and 2+ sectors.

given by Eq. (13c). For J−, its entry is

MJ−
(s) = (1 + r)[fJ+1(s) − fJ−1(s)]. (16)

If the identical atoms are bosons, Eq. (12) has a pure
imaginary solution s = is0 only for JP = 1+. For equal
masses (r = 1), the discrete scaling factor λ0 = exp(π/s0)
is 116.7. If the identical atoms are fermions, Eq. (12) has a
pure imaginary solution for 0+, 1+, 1−, and 2+. For equal
masses, the discrete scaling factors are 34.2, 239.3, 111.2, and
501.9, respectively. The dependence of λ0 on the mass ratio
r = m1/m2 for each of the five cases is shown in Fig. 1. The
discrete scaling factors all approach 1 as r → 0.

We proceed to discuss the spectrum of the three-body bound
states at rp = 0 predicted by Eq. (8). In the unitary limit
defined by a

−1/3
p = rp = 0, discrete scale invariance implies

the existence of infinitely many Efimov trimers. They have
an accumulation point at the three-atom threshold, and the
binding energies of successive trimers differ by a factor of λ2

0.
As |ap|−1/3 increases, each of the Efimov trimers disappears
through the three-atom threshold at a negative ap and through
the atom-dimer threshold at a positive ap. Discrete scale
invariance requires that, if an Efimov trimer disappears through
a threshold at (ap,rp) = (a∗

p,r∗
p), the next deeper Efimov trimer

must disappear through the same threshold at (λ−3
0 a∗

p,λ0r
∗
p).

The bound-state spectrum at rp = 0, predicted by Eq. (8),
is illustrated in Fig. 2 for the case with identical fermions,

K

1/ap
1/3

(1/ap
+
)
1/3

(1/ap
-
)
1/3

κ
*

FIG. 2. (Color online) Efimov plot showing the energy variable
K as a function of (1/ap)1/3 with rp = 0 for the case of identical
fermions, equal masses, and J P = 0+. The scaling factor λ0 ≈ 34.2
was divided by 17 to fit more states in the plot.

TABLE I. The imaginary solutions is0 of Eq. (12) and the discrete
scaling factors λ0 for the case of equal masses m1 = m2. The threshold
parameters a−

p and a+
p for rp = 0 are also given.

Identical particles J P s0 λ0 a−
p κ3

∗ a+
p κ3

∗

Bosons 1+ 0.660 116.7 − 0.134(2) 0.452(2)
Fermions 0+ 0.889 34.2 − 0.522(2) 0.244(2)
Fermions 1+ 0.574 239.3 − 0.25(2) 0.34(2)
Fermions 1− 0.667 111.2 − 0.576(2) 0.212(2)
Fermions 2+ 0.505 501.9 − 0.590(1) 0.19(3)

equal masses, and quantum numbers 0+. The energy variable
K = sgn(E)(μ|E|/h̄2)1/2 for several Efimov trimers is shown
as a function of a

−1/3
p for rp = 0. An Efimov trimer whose

binding energy at unitarity is h̄2κ2
∗/m disappears through

the three-atom threshold at a−
p = −0.52/κ3

∗ and through the
atom-dimer threshold at a+

p = +0.24/κ3
∗ . The behavior in the

other channels is similar. The discrete scaling factors for equal
masses and the corresponding threshold parameters for all
channels JP are given in Table I.

V. CONCLUSION

Whether there is a universal binding mechanism for shallow
p-wave states remains an intriguing and important question.
Apart from ultracold atoms, such systems occur frequently in
halo nuclei [34]. The application of effective field theory to
such a system is called halo EFT [6].

In this paper, we have discussed the renormalization of the
minimal zero-range model for p-wave interactions defined
by Eq. (6). This model is renormalizable in the two-body
sector, but it has unphysical negative-norm molecules with
momentum scale rp. It can be used as an effective theory for
typical momenta well below the scale rp where the effects of
negative-probability states are suppressed. In the three-body
sector, renormalization in some parity and angular momentum
channels involves an ultraviolet limit cycle, indicating asymp-
totic discrete scale invariance for large momenta. In the unitary

0.1 1 10 100
2Λ / |rp |

0

1

2

3

(8
μ|

E
|)

1/
2 /|

r p
|

Fermions, J
p
 = 0

+

m
1
/m

2
 = 1/8

1/ap = 0, rp < 0

FIG. 3. (Color online) The dimensionless binding momentum√
8μ|E|/|rp| as a function of the dimensionless cutoff 2�/|rp| for

fermions with J P = 0+, 1/ap = 0, rp < 0, and m1/m2 = 1/8.
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limit a
−1/3
p ,rp → 0, there is an accumulation of three-body

states at the threshold analogous to the Efimov effect. However,
this limit is unphysical since the negative-norm states are
driven to the threshold and lead to the breakdown of the model.

A promising strategy for dealing with p-wave resonant
interactions is to treat the unitarity term ik3 from Eq. (2) as
a perturbation [35]. Such an expansion can be justified rigor-
ously for small momenta k � |rp| and leads to a simplified
pole structure of the dimer propagator. As an example, in
Fig. 3, we show the dimensionless binding momentum√

8μ|E|/|rp| as a function of the dimensionless cutoff 2�/|rp|
for fermions in the 0+ channel, with 1/ap = 0, rp < 0, and
m1/m2 = 1/8. There can be zero, one, or possibly even two
three-body bound states for dimensionless cutoffs below 1
where the expansion of the dimer propagator can be justified.
Increasing the mass ratio m1/m2 also increases the critical
value of the dimensionless cutoff at which the first three-body
bound state appears. For equal masses, this critical value is
larger than 1, so there are no such states without introducing a
three-body force.

The strategy of treating the unitarity term as a perturbation
was recently applied to 6He by Ji et al. [36]. This halo nucleus
consists of an α particle and two weakly bound neutrons
and can be described as an effective three-body system. The
α-neutron interaction has a strong p-wave resonance, whereas,
the two neutrons interact resonantly in an s-wave channel.
Proper renormalization of the halo EFT was achieved by
introducing an appropriate three-body force that was tuned to

give the measured binding energy of 6He [36]. Rotureau [37]
and Rotureau and van Kolck [38] described 6He in the Gamow
shell model using a different strategy. They applied a halo
effective theory with separable neutron-α and neutron-neutron
interactions and a neutron-neutron-α three-body force. The
range of the separable interactions then acts as an ultraviolet
cutoff. The unitarity term can be treated nonperturbatively
without introducing any negative-probability states. Similar
strategies have been used for the pionless EFT in the three-
nucleon system.

The successful description of the 6He nucleus within halo
EFT [36] suggests that the field theory presented in this
paper can describe three-body phenomena in experiments
with ultracold atoms, provided that the unitarity term in the
p-wave scattering amplitude is treated as a perturbation. Future
applications might include the calculation of the scattering-
volume dependence of the three-body recombination rate and
other few-body reaction rates.
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