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Abstract—We study the maximal achievable rate R∗(n, ǫ) for a
given block-length n and block error probability ǫ over Rayleigh
block-fading channels in the noncoherent setting and in the finite
block-length regime. Our results show that for a given block-
length and error probability, R∗(n, ǫ) is not monotonic in the
channel’s coherence time, but there exists a rate maximizing
coherence time that optimally trades between diversity and cost
of estimating the channel.

I. INTRODUCTION

It is well known that the capacity of the single-antenna

Rayleigh-fading channel with perfect channel state information

(CSI) at the receiver (the so-called coherent setting) is inde-

pendent of the fading dynamics [1]. In practical wireless sys-

tems, however, the channel is usually not known a priori at the

receiver and must be estimated, for example, by transmitting

training symbols. An important observation is that the training

overhead is a function of the channel dynamics, because the

faster the channel varies, the more training symbols are needed

in order to estimate the channel accurately [2]–[4]. One way

to determine the training overhead, or more generally, the

capacity penalty due to lack of channel knowledge, is to

study capacity in the noncoherent setting, where neither the

transmitter nor the receiver are assumed to have a priori

knowledge of the realizations of the fading channel (but both

are assumed to know its statistics perfectly) [5].

In this paper, we model the fading dynamics using the well-

known block-fading model [6]–[8] according to which the

channel coefficients remain constant for a period of T symbols,

and change to a new independent realization in the next period.

The parameter T can be thought of as the channel’s coherence

time. Unfortunately, even for this simple model, no closed-

form expression for capacity is available to date. A capacity

lower bound based on the isotropically distributed (i.d.) unitary

distribution is reported in [6]. In [7]–[9], it is shown that

capacity in the high signal-to-noise ratio (SNR) regime grows

logarithmically with SNR, with the pre-log (defined as the

asymptotic ratio between capacity and the logarithm of SNR

as SNR goes to infinity) being 1 − 1/T . This agrees with

the intuition that the capacity penalty due to lack of a priori

channel knowledge at the receiver is small when the channel’s

coherence time is large.

Tobias Koch has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement No. 252663.

In order to approach capacity, the block-length n of the

codewords must be long enough to average out the fading

effects (i.e., n ≫ T ). Under practical delay constraints, how-

ever, the actual performance metric is the maximal achievable

rate R∗(n, ǫ) for a given block-length n and block error

probability ǫ. By studying R∗(n, ǫ) for the case of fading

channels and in the coherent setting, Polyanskiy and Verdú

recently showed that faster fading dynamics are advantageous

in the finite block-length regime when the channel is known to

the receiver [10], because faster fading dynamics yield larger

diversity gain.

We expect that the maximal achievable rate R∗(n, ǫ) over

fading channels in the noncoherent setting and in the finite

block-length regime is governed by two effects working in

opposite directions: when the channel’s coherence time de-

creases, we can code the information over a larger number

of independent channel realizations, which provides higher

diversity gain, but we need to transmit training symbols more

frequently to learn the channel accurately, which gives rise to

a rate loss.

In this paper, we shed light on this fundamental tension

by providing upper and lower bounds on R∗(n, ǫ) in the

noncoherent setting. For a given block-length and error prob-

ability, our bounds show that there exists indeed a rate-

maximizing channel’s coherence time that optimally trades

between diversity and cost of estimating the channel.

Notation: Uppercase boldface letters denote matrices

and lowercase boldface letters designate vectors. Uppercase

sans-serif letters (e.g., Q) denote probability distributions,

while lowercase sans-serif letters (e.g., r) are reserved for

probability density functions (pdf). The superscripts T and H

stand for transposition and Hermitian transposition, respec-

tively. We denote the identity matrix of dimension T × T
by IT ; the sequence of vectors {a1, . . . , an} is written as

an. We denote expectation and variance by E[·] and Var[·],
respectively, and use the notation Ex[·] or EPx

[·] to stress that

expectation is taken with respect to x with distribution Px.

The relative entropy between two distributions P and Q is

denoted by D(P‖Q) [11, Sec. 8.5]. For two functions f(x)
and g(x), the notation f(x) = O(g(x)), x → ∞, means that

lim supx→∞
∣

∣f(x)/g(x)
∣

∣ <∞, and f(x) = o(g(x)), x→ ∞,

means that limx→∞
∣

∣f(x)/g(x)
∣

∣ = 0. Furthermore, CN (0,R)
stands for the distribution of a circularly-symmetric com-



plex Gaussian random vector with covariance matrix R, and

Gamma(α, β) denotes the gamma distribution [12, Ch. 17]

with parameters α and β. Finally, log(·) indicates the natural

logarithm, Γ(·) denotes the gamma function [13, Eq. (6.1.1)],

and ψ(·) designates the digamma function [13, Eq. (6.3.2)].

II. CHANNEL MODEL AND FUNDAMENTAL LIMITS

We consider a single-antenna Rayleigh block-fading channel

with coherence time T . Within the lth coherence interval, the

channel input-output relation can be written as

yl = slxl +wl (1)

where xl and yl are the input and output signals, respectively,

wl ∼ CN (0, IT ) is the additive noise, and sl ∼ CN (0, 1)
models the fading, whose realization we assume is not known

at the transmitter and receiver (noncoherent setting). In ad-

dition, we assume that {sl} and {wl} take on independent

realizations over successive coherence intervals.

We consider channel coding schemes employing codewords

of length n = LT . Therefore, each codeword spans L
independent fading realizations. Furthermore, the codewords

are assumed to satisfy the following power constraint

L
∑

l=1

‖xl‖2 ≤ LTρ. (2)

Since the variance of sl and of the entries of wl is normalized

to one, ρ in (2) can be interpreted as the SNR at the receiver.

Let R∗(n, ǫ) be the maximal achievable rate among all

codes with block-length n and decodable with probability of

error ǫ. For every fixed T and ǫ, we have1

lim
n→∞

R∗(n, ǫ) = C(ρ) =
1

T
sup
Px

I(x;y) (3)

where C(ρ) is the capacity of the channel in (1), I(x;y)
denotes the mutual information between x and y, and the

supremum in (3) is taken over all input distributions Px that

satisfy

E
[

‖x‖2
]

≤ Tρ. (4)

No closed-form expression of C(ρ) is available to date.

The following lower bound L(ρ) on C(ρ) is reported in [6,

Eq. (12)]

L(ρ) =
1

T

(

(T − 1) log(Tρ)− log Γ(T )− T +
T (1 + ρ)

1 + Tρ

)

− 1

T

∫ ∞

0

e−uγ̃ (T − 1, T ρu)

(

1 +
1

Tρ

)T−1

× log
(

u1−T γ̃(T − 1, T ρu)
)

du (5)

where

γ̃(n, x) ,
1

Γ(n)

∫ x

0

tn−1e−tdt

denotes the regularized incomplete gamma function. The input

distribution used in [6] to establish (5) is the i.d. unitary distri-

bution, where the input vector takes on the form x =
√
Tρux

1The subscript l is omitted whenever immaterial.

with ux uniformly distributed on the unit sphere in C
T . We

shall denote this input distribution as P
(U)
x . It can be shown

that L(ρ) is asymptotically tight at high SNR (see [7, Thm. 4]),

i.e.,

C(ρ) = L(ρ) + o(1), ρ→ ∞.

III. BOUNDS ON R∗(n, ǫ)

A. Perfect-Channel-Knowledge Upper Bound

We establish a simple upper bound on R∗(n, ǫ) by assuming

that the receiver has perfect knowledge of the realizations of

the fading process {sl}. Specifically, we have that

R∗(n, ǫ) ≤ R∗
coh(n, ǫ) (6)

where R∗
coh(n, ǫ) denotes the maximal achievable rate for a

given block-length n and probability of error ǫ in the coherent

setting.

By generalizing the method used in [10] for stationary

ergodic fading channels to the present case of block-fading

channels, we obtain the following asymptotic expression

for R∗
coh(n, ǫ):

R∗
coh(n, ǫ) = Ccoh(ρ)−

√

Vcoh(ρ)

n
Q−1(ǫ)

+ o

(

1√
n

)

, n→ ∞. (7)

Here, Ccoh(ρ) is the capacity of the block-fading channel in

the coherent setting, which is given by [1, Eq. (3.3.10)]

Ccoh(ρ) = Es

[

log
(

1 + |s|2ρ
)]

(8)

Q(x) =
∫∞
x

1√
2π
e−t2/2dt denotes the Q-function, and

Vcoh(ρ) = TVar
[

log
(

1 + ρ|s|2
)]

+ 1− E
2

[

1

1 + ρ|s|2
]

is the channel dispersion. Neglecting the o(1/
√
n) term in (7),

we obtain the following approximation for R∗
coh(n, ǫ)

R∗
coh(n, ǫ) ≈ Ccoh(ρ)−

√

Vcoh(ρ)

n
Q−1(ǫ). (9)

It was reported in [14], [15] that approximations similar to

(9) are accurate for many channels for block-lengths and error

probabilities of practical interest. Hence, we will use (9) to

evaluate R∗
coh(n, ǫ) in the remainder of the paper.

B. Upper Bound through Fano’s inequality

Our second upper bound follows from Fano’s inequality [11,

Thm. 2.10.1]

R∗(n, ǫ) ≤ C(ρ) +H(ǫ)/n

1− ǫ
(10)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary

entropy function. Since no closed-form expression is available

for C(ρ), we will further upper-bound the right-hand side

(RHS) of (10) by replacing C(ρ) with the capacity upper

bound we shall derive below.

Let Py |x denote the conditional distribution of y given

x, and Py denote the distribution induced on y by the
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Fig. 1. U(ρ) in (17), L(ρ) in (5) and Ccoh(ρ) in (8) as a function of the
channel’s coherence time T , ρ = 10 dB.

input distribution Px through (1). Furthermore, let Qy be an

arbitrary distribution on y with pdf qy(y). We can upper-

bound I(x;y) in (3) by duality as follows [16, Thm. 5.1]:

I(x;y) ≤ E
[

D(Py |x‖Qy)
]

= −EPy
[log qy(y)] − h(y |x). (11)

Since

Tρ− E
[

‖x‖2
]

≥ 0 (12)

for every Px satisfying (4), we can upper bound C(ρ) in (3)

by using (11) and (12) to obtain

C(ρ) ≤ 1

T
inf
λ≥0

sup
Px

{

−EPy
[log qy(y)]

− h(y |x) + λ(Tρ− E
[

‖x‖2
]

)
}

. (13)

The same bounding technique was previously used in [17] to

obtain upper bounds on the capacity of the phase-noise AWGN

channel (see also [18]).

We next evaluate the RHS of (13) for the following pdf

qy(y) =
Γ(T )‖y‖2(1−T )

πTT (ρ+ 1)
e−‖y‖2/[T (ρ+1)], y ∈ C

T . (14)

Thus, y is i.d. and ‖y‖2 ∼ Gamma(1, T (1 + ρ)). Substitut-

ing (14) into EPy
[log qy(y)] in (13), we obtain

−EPy
[log qy(y)]

= log
T (1 + ρ)πT

Γ(T )
+
T + E

[

‖x‖2
]

T (ρ+ 1)

+ (T − 1)E
[

log
(

(1 + ‖x‖2)z1 + z2
)]

= log
T (1 + ρ)πT

Γ(T )
+

1

ρ+ 1
+ (T − 1)ψ(T − 1)

+ E

[

(T − 1)

∞
∑

k=0

(

1 + 1/‖x‖2
)−k

k + T − 1
+

‖x‖2
T (1 + ρ)

]

. (15)

The first equality in (15) follows because the random variable

‖y‖2 is conditionally distributed as (1 + ‖x‖2)z1 + z2 given

x, where z1 ∼ Gamma(1, 1) and z2 ∼ Gamma(T − 1, 1).

Substituting (15) into (13), and using that the differential

entropy h(y |x) is given by

h(y |x) = Ex

[

log(1 + ‖x‖2)
]

+ T log(πe)

we obtain

C(ρ) ≤ c1
T

+
1

T
inf
λ≥0

sup
Px

{

E

[ ∞
∑

k=0

(T − 1)
(

1 + 1/‖x‖2
)−k

k + T − 1

− log
(

1 + ‖x‖2
)

+
‖x‖2

T (1 + ρ)
+ λ

(

Tρ− ‖x‖2
)

]}

(16)

(a)

≤ c1
T

+
1

T
inf
λ≥0

sup
‖x‖

{ ∞
∑

k=0

(T − 1)
(

1 + 1/‖x‖2
)−k

k + T − 1

− log
(

1 + ‖x‖2
)

+
‖x‖2

T (1 + ρ)
+ λ

(

Tρ− ‖x‖2
)

}

, U(ρ) (17)

where

c1 , log
T (1 + ρ)

Γ(T )
− T +

1

ρ+ 1
+ (T − 1)ψ(T − 1).

To obtain (a), we upper-bounded the second term on the RHS

of (16) by replacing the expectation over ‖x‖ by the supremum

over ‖x‖.

The bounds L(ρ) and U(ρ) are plotted in Fig. 1 as a

function of the channel’s coherence time T for SNR equal to

10 dB. For reference, we also plot the capacity in the coherent

setting [Ccoh(ρ) in (8)]. We observe that U(ρ) and L(ρ) are

surprisingly close for all values of T .

At low SNR, the gap between U(ρ) and L(ρ) increases. In

this regime, U(ρ) can be tightened by replacing qy(y) in (13)

by the output pdf induced by the i.d. unitary input distribution

P
(U)
x , which is given by

q(U)
y

(y) =
e−‖y‖2/(1+Tρ)‖y‖2(1−T )Γ(T )

πT (1 + Tρ)

× γ̃

(

T − 1,
T ρ‖y‖2
1 + Tρ

)(

1 +
1

Tρ

)T−1

. (18)

Substituting (17) into (10), we obtain the following upper

bound on R∗(n, ǫ):

R∗(n, ǫ) ≤ R̄(n, ǫ) ,
U(ρ) +H(ǫ)/n

1− ǫ
. (19)

C. Dependence Testing (DT) Lower Bound

We next present a lower bound on R∗(n, ǫ) that is based

on the DT bound recently proposed by Polyanskiy, Poor, and

Verdú [14]. The DT bound uses a threshold decoder that

sequentially tests all messages and returns the first message

whose likelihood exceeds a pre-determined threshold. With

this approach, one can show that for a given input distribution



PxL , there exists a code with M codewords and average

probability of error not exceeding [14, Thm. 17]

ǫ ≤ EP
xL

[

PyL |xL

(

i
(

xL;yL
)

≤ log
M − 1

2

)

+
M − 1

2
PyL

(

i
(

xL;yL
)

> log
M − 1

2

)]

(20)

where

i
(

xL;yL
)

, log
pyL |xL

(

yL |xL
)

pyL(yL)
(21)

is the information density. Note that, conditioned on xL, the

output vectors yl, l = 1, . . . , L, are independent and Gaussian

distributed. The pdf of yl is given by

py |x(yl |xl)

=
exp

(

−yH
l (IT + xlx

H
l )−1yl

)

πT det(IT + xlx
H
l )

(a)
=

1

πT (1 + ‖xl‖2)
exp

(

−‖yl‖2 +
|yH

l xl|2
1 + ‖xl‖2

)

(22)

where (a) follows from Woodbury’s matrix identity [19, p. 19].

To evaluate (20), we choose xl, l = 1, . . . , L, to be

independently and identically distributed according to the i.d.

unitary distribution P
(U)
x . The pdf of the corresponding output

distribution is equal to

q
(U)
yL (yL) =

L
∏

l=1

q(U)
y

(yl)

where q
(U)
y (·) is given in (18). Substituting (22) and (18) into

(21), we obtain

i
(

xL;yL
)

=
L
∑

l=1

i(xl;yl) (23)

where

i(xl;yl) = log
1 + Tρ

Γ(T )
+

|yH
l xl|2

1 + ‖xl‖2
− Tρ‖yl‖2

1 + Tρ

+ (T − 1) log
Tρ‖yl‖2
1 + Tρ

− log
(

1 + ‖xl‖2
)

− log γ̃

(

T − 1,
T ρ‖yl‖2
1 + Tρ

)

.

Due to the isotropy of both the input distribution P
(U)
xL and

the output distribution Q
(U)

yL , the distribution of the information

density i
(

xL;yL
)

depends on P
(U)

xL only through the distribu-

tion of the norm of the inputs xl. Furthermore, under P
(U)

xL , we

have that ‖xl‖ =
√
Tρ with probability 1, l = 1, . . . , L. This

allows us to simplify the computation of (20) by choosing

an arbitrary input sequence xl = x̄ , [
√
Tρ, 0, . . . , 0]T ,

l = 1, . . . , L. Substituting (23) into (20), we obtain the desired

lower bound on R∗(n, ǫ) by solving numerically the following

maximization problem

R(n, ǫ) , max

{

1

n
logM : M satisfies (20)

}

. (24)
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Fig. 2. Bounds on maximal achievable rate R∗(n, ǫ) for noncoherent
Rayleigh block-fading channels; ρ = 10 dB, T = 50, ǫ = 10−3.

The computation of the DT bound R(n, ǫ) becomes difficult

as the block-length n becomes large. We next provide an

approximation for R(n, ǫ), which is much easier to evaluate.

As in [15, App. A], applying Berry-Esseen inequality [14,

Thm. 44] to the first term on the RHS of (20), and applying

[20, Lemma 20] to the second term on the RHS of (20), we

get the following asymptotic expansion for R(n, ǫ)

R(n, ǫ) = L(ρ)−
√

V (ρ)

n
Q−1(ǫ) +O

(

1

n

)

, n→ ∞ (25)

with V (ρ) given by

V (ρ) ,
1

T
E
P
(U)
x

[Var[i(x;y) |x]] = 1

T
Var[i(x̄;y)]

where, as in the DT bound, we can choose x̄ =
[
√
Tρ, 0, . . . , 0]T . By neglecting the O(1/n) term in (25), we

arrive at the following approximation for R(n, ǫ)

R(n, ǫ) ≈ L(ρ)−
√

V (ρ)

n
Q−1(ǫ). (26)

Although the term V (ρ) in (26) needs to be computed numer-

ically, the computational complexity of (26) is much lower

than that of the DT bound R(n, ǫ).

D. Numerical Results and Discussions

In Fig. 2, we plot the upper bound R̄(n, ǫ) in (19), the lower

bound R(n, ǫ) in (24), the approximation of R(n, ǫ) in (26),

and the approximation of R∗
coh(n, ǫ) in (9) as a function of

the block-length n for T = 50, ǫ = 10−3 and ρ = 10 dB. For

reference, we also plot the coherent capacity Ccoh(ρ) in (8). As

illustrated in the figure, (26) gives an accurate approximation

of R(n, ǫ).
In Figs. 3 and 4, we plot the upper bound R̄(n, ǫ) in (19), the

lower bound R(n, ǫ) in (24), the approximation of R∗
coh(n, ǫ)

in (9), and the coherent capacity Ccoh(ρ) in (8) as a function of

the channel’s coherence time T for block-lengths n = 4×103

and n = 4 × 104, respectively. We see that, for a given
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Fig. 3. R̄(n, ǫ) in (19), R(n, ǫ) in (24), approximation of R∗

coh
(n, ǫ)

in (9), and Ccoh(ρ) in (8) at block-length n = 4 × 103 as a function of
the channel’s coherence time T for the noncoherent Rayleigh block-fading
channel; ρ = 10 dB, ǫ = 10−3.
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block-length and error probability, R∗(n, ǫ) is not monotonic

in the channel’s coherence time, but there exists a channel’s

coherence time T ∗ that maximizes R∗(n, ǫ). This confirms

the claim we made in the introduction that there exists a

tradeoff between the diversity gain and the cost of estimating

the channel when communicating in the noncoherent setting

and in the finite block-length regime. A similar phenomenon

was observed in [15] for the Gilbert-Elliott channel with no

state information at the transmitter and receiver.

From Figs. 3 and 4, we also observe that T ∗ decreases as

we shorten the block-length. For example, the rate-maximizing

channel’s coherence time T ∗ for block-length n = 4× 104 is

roughly 64, whereas for block-length n = 4×103, it is roughly

28.
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