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Fig. 1. A two-dimensional vector (circle) is encoded. Thin lines
mark the Voronoi regions. The fat lines indicate how the ND
algorithms search and which codewords they test, if they start at the
center.

Abstract—The “neighbor descent” method for fast vector
quantization is well suited for speech coding. In a typical example,
the time needed for encoding LPC coefficients was reduced to two
percent of a full search. The price to pay is considerable
precomputations and memory requirements.

I. INTRODUCTION

For the quantization of a number of analog values, a vector
quantizer (VQ) allows in general a lower distortion than scalar
quantization of each component [1] . The improvement increases
with the number of scalars being quantized together, that is the
dimension of the VQ. However, the encoding time also increases
with the dimension, setting a practical limit on the size that can
be handled in real-time applications such as speech coding.

This limit can be stretched by enforcing some structure upon
the VQ. One example is multi-stage vector quantization, where
the available number of bits is divided between two or more
cascaded VQs [2] . Another approach is to divide the components
between two or more separate VQs, so-called split vector
quantization [3] . A scalar quantizer for every component is an
extreme case of a split VQ. An alternative to structured vector
quantization, without compromising output quality, is to apply an
efficient search algorithm at the encoder. That is the theme of the
present paper.

The input to a VQ is a k -dimensional vector x  and the output
is another vector x j , selected from a finite set   x x1, ,L n{ }. The
index, or codeword, j  is represented as an m -bit integer. The
number of available output vectors n  is thus equal to 2m . As a
measure of the distortion induced by this quantization, the
squared Euclidean distance

d j jx x x x,( ) = −
2

(1)

is used. For a given input x , an encoder should select the
codeword j  that minimizes this distortion (the so-called nearest-
neighbor rule).

The set of input vectors that are encoded as the same code-
word j  is the Voronoi region   V j :

    
V j j id d i n= ( ) ≤ ( ) ={ }x x x x x: , , ; , ,1 K (2)

An alternative specification of a Voronoi region is

  
V Aj j i jd d i= ( ) ≤ ( ) ∈{ }x x x x x: , , ; (3)

where all the redundant inequalities in (2) have been removed.

  A j , the adjacency of codeword j , is defined as

    A V Vj i ji= ≠ ∅{ }: I (4)

that is, the set of codewords whose Voronoi regions have a facet
in common with   V j . A pair of codewords being in each other’s

adjacency will be called adjacent.
To find a codeword whose Voronoi region comprises a given

input vector x , the natural approach is a full search (FS); every
codeword is tested as a possible representation of x  and the
distortion is computed. The method is simple but slow. Many
methods have been proposed to increase the speed. Surveys are
found in [1, 4, 5].

This paper considers how to quantize linear predictive coding
(LPC) coefficients of speech efficiently, avoiding a FS. It
presents a family of encoding algorithms that use a precomputed
table of adjacencies. Three members of the family are introduced.
They are not restricted to VQs with a certain structure or a
certain type of input, but they benefit from a source that has
correlated vectors. This makes them suitable for speech coding.

II. THE CONCEPT OF NEIGHBOR DESCENT

A FS for the optimal codeword includes much unnecessary work.
When a few distortion measures have been computed, they
should normally give a good indication of where to look for
better codewords. From this notion arises the neighbor descent
(ND) encoding method, which in its basic form (called “SND”
below) was independently proposed by Okabe et al. [6]  and
Agrell [7] . The idea is to move from an initial hypothesis, over
adjacent codewords with decreasing distortion, up to optimum.
Note the similarity to descent methods for minimization of
continuous functions.

Of the three members of the ND family, steepest neighbor
descent (SND) takes the shortest route to optimum. The
distortion is computed for all codewords in the adjacency of the
current hypothesis, and the one with the smallest distortion is
appointed the new hypothesis. When finally a hypothesis has
emerged whose adjacency provides no lower distortion, the
search stops. It can be proved that such a codeword is optimal;
no suboptimal local minima exist.

Random neighbor descent (RND) does not wait until the
whole adjacency of the current hypothesis is tested. As soon as
an adjacent codeword is found with a lower distortion, the search
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Table 1. The number of distortion computations required by
four methods when 5-dimensional LSP vectors were quantized
to 12 bits.

Method Average Maximum
FS 4096 4096

SND 152.7 654
RND 82.1 238
FND 81.8 239
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Fig. 2. The performance of RND, if it is interrupted after a fixed
number of distortion computations. Parametric SNR  versus this
bound is shown, for an LSP VQ with k = 5  and m = 12.

continues from there. The performance of this algorithm depends
to some extent on the order in which the codewords are tested.
Specifically, it should be ensured that, when the adjacency of a
hypothesis is tested, the first two codewords lie on geometrically
opposite sides. If the first of them has a higher distortion than the
hypothesis, it is likely that the second one will provide an
improvement.

We now observe that the change from one hypothesis to a
better one indicates the location of the optimum. Most likely, it is
favorable to continue in the same direction—that is “forwards”.
Forward neighbor descent (FND) uses a second table, comple-
menting the adjacency table, whose entries answer the question
“If a line is extended from x j  through xk , where   k j∈A , into
which Voronoi region does it pass when it leaves   Vk ?”. This
information is precomputed for all codewords j  and all code-
words k  in the adjacency of j . When a new hypothesis has been
found, the “forward neighbor” is tested first. If its distortion is
lower, it becomes the next hypothesis, otherwise the search
continues as in RND.

Figure 1 gives an example on how the three ND algorithms
behave. Even in this small example, ND avoids many of the
distortion computations. For further efficiency, a table of the
codewords that have already been tested is maintained during the
encoding procedure. Otherwise some duplication of work would
occur.

Essential for the method is that the adjacency of every code-
word is known in advance. To compute them is a heavy task, but
it is done only once for a given VQ. It can be accomplished using
a linear programming technique [7] or by solving an equivalent
convex hull problem [8].

III. QUANTIZATION OF LPC COEFFICIENTS

VQs were designed for line spectrum pair (LSP) frequencies of
continuous speech, recorded from several speakers [9]. A split
VQ technique was used, similar to the one described in [3]. The
LSP frequencies obtained from a tenth order linear predictor
were divided into two groups. The quantizer focused on in this
section was designed for the first five frequencies. Twelve bits,
4096 codewords, were used.

ND is able to exploit the correlation between consecutive
frames of speech. Because parameters tend not to change too
rapidly, a good choice of initial hypothesis for the algorithms is
the previous output. With this initialization, ND will operate as a
method to continuously track the speech in a discrete parameter
space.

32,184 input vectors were encoded, using FS and the three ND
algorithms. They all arrived at the same results, but in different
search time. Table 1 shows the average and maximum number of
distortion computations. A remarkable improvement over FS is
seen; RND, for instance, requires on an average 2.0 % of all
distortion measures to find the optimal codeword.

This beats even a two-stage VQ [2]  applied to the same input;
if the available twelve bits are divided between two six-bit VQs,
both of which are scanned using FS, a total of 128 distortions is
computed, considerably more, on an average, than when RND is

applied to the one-stage VQ. Recall also that a multi-stage VQ is
a suboptimal structure, which gives a higher distortion than the
optimal structure that ND operates on.

Despite the shorter route, SND requires almost twice as many
distortion measures as RND. FND displays practically no
improvement at all over RND, so the extra memory demanded by
FND cannot be justified in this case.

We should, however, not be too concerned with average
values. In real-time speech coding, the time gained during one
frame cannot freely be saved to another frame. The maxima are
what matters, at least if we persist in that the true optimum must
always be found. However, if we relax that requirement just a
little, we can attain a considerable speed gain, at a moderate
degradation of output quality. This is illustrated in figure 2,
where a bound has been set on the number of distortion computa-
tions that are allowed for each input vector. For instance, if RND
encoding is interrupted after 82 computations, which according
to table 1 is the average number, the quantization error (in the
parameter space) is only 0.22 dB above that of a FS. The main
explanation is that so many computations are used just to
discover that the last hypothesis is optimal. Actually, of the
distortions computed by an uninterrupted RND for this VQ, this
“wasteful” verification requires as much as 56 %.

The main drawback with the ND concept, beside the burden-
some precomputations, is the storage of the adjacency table. For
a five-dimensional application, such as this LSP VQ, the table
requires a few times more memory than the output vectors
themselves.
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