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On the Voronoi Neighbor Ratio for Binary Linear Block Codes

Erik Agrell

Abstract—Soft-decision decoding of block codes is regarded e set of all sequences that would be decoded as the same
the geometrical problem of identifying the Voronoi region withinodeword. Soft-decision decoding is hence to determine which
which a given input vector lies. A measure, called the neighBésronoi region a received sequence belongs to.
ratio, is proposed to characterize how many facets a Voronoi regionWe will confine the present study to the clasbiofry linear
has. Theory and algorithms are presented to determine the neighlmmk codes, which possesses some appealing properties for soft
ratio for binary linear block codes and results are given for sevatatision decoding, theoretically as well as practically. Firstly, a
types of codes. An asymptotic analysis for long codes reveals thiatry code is, when regarded as a set of points in Euclidean space,
the neighbor ratio depends on whether the code rate is less tham &fgherical code, whose Voronoi regions were characterized already
or not. For rates below this threshold, all pairs of codewords tendbyoShannon in 1959 [7TThey are pyramidal polytopes, with flat
share a Voronoi facet; for higher rates, a relatively small fractionsdfies and infinite size, and all of them share the same apex.
them do. Secondly, a linear code has (still assuming that it is binary) the

property that all its VVoronoi regions are congruent, so it is sufficient

Index Terms—Binary linear block codes, Gaussian channdip analyze one of them, see below. A class of codes with this
Voronoi regions, neighbor ratio, asymptotic properties, soft-decisioroperty was studied by Slepian in 1965 §8Jd more generally in
decoding. 1968[9], and, even more generally, by Forney in 1991.[T0j

. INTRODUCTION topic of codes for the Gaussian channel and their Voronoi regions is

o . . also addressed in, e.g., [112], and references therein.
A channel decoder is, in its common form, a device that receives |y Section I, the terminology to be used is introduced, and the

sequence of values from the demodulator and outputs anofigpnnor ratio is defined. Some known methods to determine
sequence, selected from a predefined set of codewords. This fQfg}onoj regions are summarized in Section 111, and a new method is
the hard decision decoder, assumes that the demodulator has madg &ented that complements the old ones nicely. The neighbor ratio
decision on each transmitted symbol. However, 2-3 dB can related properties of some common codes are determined in

gained if more information from the demodulator can be utili2ed gection v, These results are generalized to longer codes in Section

pp. 518-522][2, p. 141] We could let the demodulator output oy, 5nq some asymptotic properties are discerned. The two next
only the detected symbols, but also a measure on how reliable

ions, VI and VII, consider in detail the asymptotic neighbor

detection is. An alternative way to achieve the same effect would b, 45 a function of the rate. Section VIl contains a discussion and
to let the demodulator deliver an unquantiestiimate of the symbol gt summary.

in each time intervdl3, pp. 464—473]All decisions are postponed
to the channel decoder. This approach leads tedftedecision
decoder. N _ Il.  PRELIMINARIES
In soft-decision decoding, the channel decoder makes no
decision until it has received a sequence of symbol estimalfe€ is a binary linear block code, we denote My€) the number
corresponding to a whole codeword from the demodulator. Herefncodewords and by(€) the number of bits in a codeword (the
lies the strength of soft-decision decoding. The price for the codowgle length}. The rate is defined a&€) = k(€)/n(€), where
gain is increased decoder complexity and real-valued computatidd&?) = log, M(€). The (Hamming) weightw(c) of a binary
A large number of soft-decision decoding algorithms have bemdewordc is defined as the number of ones in it; if the bit values 0
conceived since the sixties. Good summaries and literature sunarg 1 are interpreted as coordinates in Euclidean space, the relation
are given in2, ch. 4], [4] and [5] between weight and Euclidean normvigc) = |c|?. The minimum
Most work on soft-decision decoding has been done for theight of the code is
Gagssian channel.l With this channel model, the sequence of d(@ = min w(c) 1)
estimates that the demodulator outputs can be regarded as a cte\{0}
codeword with an added random noise vector, whose componevitere 0 is the all-zero vectot. The triplet [n(C@),k(€),d(C)]
are Gaussian and independent. Hence, the optimum channel deadamarizes the most fundamental properties of a c6de
has a closest point problem to solve: For each input sequence, $ometimes we will also use the abbreviated f¢n(®),k(€)]. The
the codeword with the minimum Euclidean distance to the sequeffigactions G(€) and H(€) represent any generator matrix and
This assumes that codewords are interpreted as points in Eucligesaity-check matrix, respectively, for the considered code.
space, not just as strings of bits. With this nomenclature, the Voronoi region 0fis the n-
The minimum distance decoding rule partitions Euclidean spatimensional body
into a number of regions, one around each codeword. The regions, % :{x OR™: |2 < [x - o for allc D@}. @)

nowadays normally calledoronoi regions [6], can be defined as
It can be shown that the Voronoi region of any codewortt? can

This work was completed while the author was with the Department of
Information Theory, Chalmers University of Technology, Goteborg, Sweden. He
is now with the Department of Electrical and Computer Engineering, UniversiyWhen there is no doubt of which code is concerned, we simply write these

of California, San Diego, La Jolla, CA 92093-0407 USA. functions asM, n, etc., omitting the argument.
1 Traditionally, the term “Gaussian channel” also includes the requirements? afater, the symboD will represent all-zero matrices, too. All-one vectors will be
additive and white noise. denoted withl.



To appear in |EEE Transactions on Information Theory, 1998

be expressed s A@) ={cO€:wc)=i}| fori=0-,nC) ®)
{c+x(1 -2diag0): x U4} (3)  where|[J means the cardinal number of a set. Hence, the weight

where diag(c) is the diagonal matrix having the elements of thdistribution gives the number of codewords with a certain weight.

vector ¢ along the diagonal. Since this region is just a translatidigight distributions of many codes were tabulatefils) ch. 16]

rotation and reflection o}, all Voronoi regions in a binary linearAnother important characteristic of a code is toheal weight

block code have the same shape, afjdcan be used as adistribution with components

represgntative of all of them. All significant prpperties of a code can L (@) ={cOe#(@):w(e) =i}| fori=0,-n(@) )

be derived from¢ [10]. This correspondence is about the structure . . ; ) ) .

of @ for various codes. WhIC.h gives the numbe.r of 0-neighbors Wlth. a certain weight.
The complete specification of a multidimensional IOOIytOpgtralghtforward combination of (4), (7) and (9) yields another bound

including lists of the vertices, edges, etc., and their interrelationsc,’ri]sthe error probability,

surprisingly complex [13, chs. 1 and Ghd memory considerations P < QD /w(c)ﬁt

alone are sufficient reason to abandon that data structureifothe e~ CD;(@) E\‘ N, E

order of 10 or greater [14Dn the other hand, a Voronoi region is . ° ‘

fully defined through a list of its sides, facets, only, and such a — z L (@)QD “iﬁg (10)
list suffices for most purposes, including error analysis and soft = El\/ Ny

decision decoding. Edges and vertices do not play as imporighich is tighter than the usual union bound [1@pwever, this
roles, as will be discussed in the following. bound requires that the local weight distributitf{€) can be

Consider the inequalities in (2) again; each one of thggund, which is much harder than to fing(€). Methods to
contributes one or zero facets #. The codewords whosecomputel;(€) are summarized in the next section, where also a
inequalities define a facet are calleaeighbors in the code®. third bound is given, being tighter than (7) but just as easy to
Moreover, two codewords whose Voronoi regions share a comm@mpute.
facet are calledeighbors. If ¢, and c, are neighbors, theg, U ¢, Besides being a valuable theoretical instrument, the Voronoi
is a O-neighbor, wherél denotes addition oveGF(2). Denoting regions in a code can be employed in the decoding process itself.
the set of 0-neighbors witt#5(€), the Voronoi region can be This was suggested by Landfl6], who also pointed out the
equivalently written as significance of the number of facets of the Voronoi regions. An

& ={x OR™: X2 <|x -2 for allc D(yVO(@)} () ?terative algorithm was c_ieveloped by Hwaig] a_nd inves_tigated

o in more detail by Butovitscfil8, pts. D-E] The idea, which has
which in a sense has removed all redundancy from (2). also been considered for other point sets and in other applications

_ The main re§ults of this corresponden_ce concern the numbe[rlgj, [20], is basically as follows{i) Select a codeword and
neighbors in various codes. We proposertiighbor ratio compute its distancé to the inputx. (ii) Compute the distana®

re) = le#o(C)| ®) from a new codeword' =c0 a to x, wherea De#(€). If 8" <4,

M(C) set c:=c' and go to (ii).(iii) If e#3(€) contains unexamined
to characterize the code in this sense. The neighbor ratio 8

gewords, go to (ii). Otherwise, outpat The complexity of this
between 0 and 1, these values excluded. Of special interest is WI#RMthm. which performs maximum-likelihood decoding, is
happens with the neighbor ratio when the code length increa®@portional tor(€).
Suppose that a consta@it R<1 is given, and consider an infinite
sequence of codes?, i=212---, whose parameters satisfy
n(€) - o and k(@)/n(€) - R as i - «. Then theasymptotic I1l. IDENTIFICATION OF NEIGHBORS

neighbor ratio I",(R) for this sequence of codes is defined as |, his section, rules to determine the neighbors in a binary linear

(R =1limr(Q). (6) block code are summarized. First, we adopt a geometric viewpoint
) o e on the problem and interpret some basic theory in geometric terms.
provided that the limit exists. Then, rules will be given to determine whether a given codeword is

It is normally not possible to obtain an exact expression for tg%-neighbor, and in some cases, to identify 0-neighbors and 0-
error probability P, of soft-decision decoding, because it inVOlveﬁonneighbors based on their weights alone.

computing ann-dimensional integral over the polytop&. A

TS ) A, The n-dimensional binary spad®,1}" describes the vertices of
standard approximation is thion bound, which is

an n-dimensional hypercube, and émk] binary code€ forms a

0l 2E, L subset of these vertices. This special structure makes it possible to
Re< Z QE\/W(C),\TE analyze the geometry of a binary code in much more detail than is
c0EY{0} 0 . . o -
possible for a general point set, which in turn leads to explicit results
- iA(@)QD /iﬁm (7) about the neighbors. The following properties characterize any
i=1 E\ Ng H binary linear code, regarded as a point set. (Actually, the two first

assuming equiprobable codewords and biorthogonal modulatRsaperties apply to binary nonlinear codes as well.) The proofs,
(say, BPSK or QPSK) with bit enerds, [2, pp. 29-30]{11]. The whlgh we omit, follow immediately from the theory[it2].
variance of the discrete-time Gaussian noisBjg2, Q(x) denotes (i) No three codewords can form an obtuse angle.
the integral 00(277)_1/2 eX[(—Zz/Z)dZ, and A(@) denotes a (||) If the dots in Figure 1 are two codewords in the COde, all

component of tfﬁweight distribution codewords lie within the shaded region.
(iii) If and only if two given codewords are the only codewords

on the sphere of Figure 1, they are neighbors.
4 All vectors are row vectors.
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has a rank o8 =k(¢€) -1. Equivalently, we can employ the H rule.
Selecting the proper columns of the parity-check matrix

M 11010 0

HEe=0D 1 11 0 1 OL
. B o111 0 1F
Fig. 1. Two parallel hyperplanes touching a hypersphere, .
where the points of contact are defined by any two codewords yields
(dots). All codewords in a binary code lie between the planes, 1 1 o
outside the sphere. Hl(@,C)ZE(D 110
(iv) If three codewords form a right angle, there is a fourth B o0 oF
codeword completing the rectangle. whose rank i2 = w(c) -1, which confirms that is a 0-neighbor.
(v) Two codewords forming the diagonal of a rectangle are O
nonneighbors. Two codewords that do not form any Even though the time required to decide whether one given
diagonal are neighbors. codeword is a 0-neighbor or not is moderate, the accumulated

Again regarding codewords as strings of bits, the last of thegsssification of all codewords in a code can be prohibitive. Thus,
statements can be translated into the following important rule, whigé would need a method to classify large sets of codewords
was first given in [17]though not in Voronoi terminology. To showsimultaneously. Such a method can be based on the weight of a
that o#;(@) is equal to the “projecting set” of [L7tompare codeword, which sometimes provides enough information to make

Corollary 1 in [12]with Definition 2 in[17]. the decision. Specifically, the C rule assures that codewords with
C rule: A codeword is a 0-neighbor if and only if it coer® low enough weights are always 0-neighbors, and by upper-bounding
other nonzero codeword. the rank ofGy(€,c) or H,(€,c), it can be shown that codewords

To establish whether a given codewartl € is a 0-neighbor or with sufficiently high weights are never 0-neighbors. The two
not, it is not necessary to generate all codewords one by one lgswhds thus obtained, which were given by Hwétig], can be
check if they are covered by. Instead, the test implied by the Gsummarized in the following theorem.
rule can be performed by a sequence of row operations on theTheorem 1: For any binary linear block codg,
generator matrixG(€). An explicit algorithm for this purpose was )
presented if12]. A condensed version of the algorithm can be {cD@. 1SW(C)SZd(@)_1} DOVO(@)
formulated as the following rule. 0{coe: 1sw(c)<n(@)-k(e)+1 (11)

G rule: Let Gy(€,c) denote the matrix formed by the columns
of G(€) corresponding to positions where a given codewstl? 5,61 0-nonneighbar satisfiesw(c) = 2d(€). A generalization
has zeros. Thenc is a O-neighbor if and only if ot his property is possible. Suppose that a weighs present in
rankG,(€,c) = k(€) - 1. _ _ the weight distribution of a code (i.eA,(€) =1) and that we want

We now introduce a useful dual of this rule. It can, just as thg {3, ha1y7e the codewords with this weight. We can then attempt to
rule, be proved through the C rule. _ write w as the sum of two nonzero integers, both of which are

H rule: Let H,(€,c) denote the matrix formed by the columngesent in the same weight distribution. This can be done for all 0
of H(€) corresponding to positions where a given codewnil® 5 heighhors, which is proved through the following theorem. It
has ones. Thenc is a 0-neighbor if and only if .oy pe gone for some 0-neighbors as well, so the theorem is not

rankH,(€,c) =w(c) - 1. ) useful for identifying 0-nonneighbors.
The G and H rules complement each other nicely. Both of them thaorem 2: 1f the weightw of a nonzero codeword 0@

yield the same results, but the complexity involved varies with the. o+ be written asv =i +j, wherei=1, j21, A(@)=1, and
((:;)de parf'imeters and VYIth the ngght of the codeword to test. Wl’A‘?{E’) >1, thenc is a O-neighbor.
o(€@,c) is a large matrixH,(€,c) is small. Generally, the speed of

The left-hand side of the theorem states that the weight of any

Proof of Theorem 2: From property \() we see that any-0

a G rule test increases for lower rates and higher weights, and Hi&ﬁneighborc 0@\{0} can be written asc=c, +c,, where
versa. _ c, 0 \{0}, c,0€e\{0, and ¢, [t,=0. Thus, w(c)=|c?=
Bxample: Is e +leal? +2¢; (&, = wiey) +w(cy)- 0
c=[1 1 00 01 Q] To find the 0-neighbore#((€) in a code@, the first thing to
a O0-neighbor in the [7,4,3] Hamming code with do would be to find the weight distribution [15, ch. 16] and combine

401100 0 it with Theorgms 1 and 2. For some godes, especially §h0rt. ones,
10110 0O Theorem 1 yields a complete descriptionadf,(€); otherwise, it

Ge)= o101 10 leaves a subset of the codewords for individual examination. (Both

0010 1 1E cases will be illustrated in the next section.) Then either the G or the

H rule is applied to the remaining subset, which possibly can be

o . . .
as a generator matrix? The G rule answers in the aff'rma“yL?r’ther reduced using the automorphism group of the code, see [12]

because As an example of the information provided by the weight
1 0 O distribution, consider the [64,22,16] Reed-Muller code. It contains
Goeo=p + 1O codewords with weights 0, 16, 24, 28, 32, 36, 40, 48, and 64.
4 o110 According to Theorem 1, all codewords with weights 16, 24, and 28
B) 10 1E are 0-neighbors, and no codewords with weights 48 and 64 are.

Furthermore, Theorem 2 classifies the weight-36 codewords as 0

5 A binary codewordc, is said tocover another oneg,, if ¢, has a one in all neighbors. Weights 32 and 40 remain to be examined with the G
positions wherec, has a one [21, p. 63]
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rule, which is less complex than the H rule in this case. (It turns theése values. Hencé&|/M is the proportion of codewords not
that all codewords with weight 40 are 0-nonneighbors, whereas bming identified through Theorem 1. The table also gives the number
0-neighbors and 0-nonneighbors have weight 32.) of 0-neighbors, , the number of 0-neighbors at minimum
Finally, an interesting consequence of the right-hand sidedidtance,Ly = A, and the neighbor ratid,. Other investigations of
(11) is that the summation interval in (7) can be reduced. Tthe neighbors in some codes are included in, [18], and [12]
obtained bound on the error probability, Trivial codes: The 0-neighbors of thn,n,1] universe code, the
nek+1 2E, [ [n,n-1,2] even-weight code, and ttip,1,n] repetition code are all
z A(@)QH\I (12) determined by Theorem 1. The number of 0-neighbors is,
respectively,n, n(n-1)/2, and 1.
combines the advantages of (7) and (10)- The sum does not requiredamming codes: The Hamming codes and their relatives are
more information about the code than does the usual union boufithost completely determined by Theorem 1. The
but the resulting bound is tighter. [2m -12"M- m—ll3] Hamming code has. =5 andw, = m+1, so
the gap between the bounds is relatively narrow. The neighbor ratio
rapidly tends to zero with increasing code length. Conditions are
IV. SOME CODES ANDTHEIR O-NEIGHBORS similar for the[2m 2™ - m-14] extended Hamming code. Theorem

The tools discussed in the previous section were applied 1o sev 1 |g|ent|f|es all 0-neighbors for th@2,26,4] and shorter extended
€ 100 u P u pp amming codes and leaves only one weight for further analysis in
well-known codes. In anticipation of the asymptotic theory in th

tfie codes with lengths 64 and 128. In {I?é“ 1Lm2™m" 1] dual
next sections, we summarize some general properties of Cﬁﬁf

mming code, or simplex code, all nonzero codewords have the

families below and list results for some specific codes in Table |
Osame weight. Hence, all of them are 0-neighbors, according to the C

the table,w_ =2d is the lowest weight possible for a nonzero

nonneighborw, =n-k+1 is the highest possible weight for a Orule
=
neighbor, and# = {c0€: w. <w(c) < w,} is the set bounded by BCH codes: The Bose-Chaudhuri-Hocquenghem (BCH) codes,

provide valuable information for the present study, because there is

TABLE |
PARAMETERS OFSOME COMMON CODES
Type [n.kd] R wooow, wyMm lets| Lq r
Universe [n,n,1] 1 2 1 0 n n n2™"
Even-weight [nn-1,2] 1-Yn 4 2 0 n(n-1)/2 nn-1/2 n(n-127"

Repetition [n,1n] n 2n n 0 1 1 12
Hamming [7,4,3] 0.571 6 4 0 14 7 0.875
Hamming [15,11,3] 0.733 6 5 0 308 35 0.150
Hamming [31,26,3] 0.839 6 6 34010 20,336 155 0.000
Ext. Hamming [8,4,4] 0.500 8 5 0 14 14 0.875
Ext. Hamming [16,11,4] 0.688 8 6 0 588 140 0.287
Ext. Hamming [32,26,4] 0.813 8 7 0 29,016 1,240 0.000
Dual Hamming [7,3,4] 0.429 8 5 0 7 7 0.875
Dual Hamming [15,4,8] 0.267 | 16 12 0 15 15 0.938
Dual Hamming | [31,5,16] 0.161 | 32 27 0 31 31 0.969
Golay [23,12,7] 0522 | 14 12 0 3,335 253 0.814
Ext. Golay [24,12,8] 0500 | 16 13 0 3,335 759 0.814
BCH [15,5,7] 0333 | 14 11 0 30 15 0.938
BCH [15,7,5] 0.467 | 10 9 0 108 18 0.844
BCH [31,6,15] 0.194 | 30 26 0 62 31 0.969
BCH [31,11,11] 0.355 | 22 21 0 2,046 186 0.999
BCH [31,16,7]7 0516 | 14 16 0.56 42,284 155 0.645
BCH [31,21,5] 0.677 | 10 11 6.101072 107,198 186 0.051
BCH [63,7,31] 0.111 | 62 57 0 126 63 0.984
BCH [63,10,27] 0.159 | 54 54 0 1,022 196 0.998
BCH [63,16,23] 0.254 | 46 48 0 65,534 1,890 1.000
BCH [63,18,21] 0.286 | 42 46 55007 262,139 1,452 1.000
BCH [63,24,15] 0.381 | 30 40 0.68 15,840,940 651 0.944
BCH [63,30,13] 0.476 | 26 34 0.75 695,053,516 1,764 0.647
BCH [63,36,11] 0.571 | 22 28 0.22 10,198,908,660 5,670 0.148
RM [16,5,8] 0313 | 16 12 0 30 30 0.938
RM [32,6,16] 0.188 | 32 27 0 62 62 0.969
RM [32,16,8] 0500 | 16 17 0.56 42,284 620 0.645
RM [64,7,32] 0.109 | 64 58 0 126 126 0.984
RM [64,22,16] 0.344 | 32 43 0.72 3,821,804 2,604 0.911
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a relatively large number of codes with the same length within the
family. Several examples are listed in the table. We save the
comments and generalizations until the next section.

RM codes: The Reed-Muller (RM) codes constitute anotherg
large family, which contains several other types of codes as specil
cases. A general RM code is denogqu, m), whereu is theorder,
and its parameters are

0.5

Neighbor

r
%m, >3 (rln) ,2mu E (13)
i=0
R2(0,m) is the [2”‘,],2”‘] repetition code,#(m-2,m) is the
2™ 2™ —m-1,4| extended Hamming code, as@(m-1,m) is the 0
2™ 2™ —1,2| even-weight code. The first-order RM cogg(l, m)

0 0.5 1

is the dual of the extended Hamming code. All codewords i Rate

IS the dual o € extende amming Co_e' m-1 codewords in Fig. 2. The estimated neighbor ratib(€) vs. the rate

L(Lm), exceptO and 1, have the same weigh®™ ", and these R(@) for various primitive binary BCH codes. The lines
M -2 are thus the 0-neighbors. connect codes withn(€)=15, 31, 63, 127, and 255,

respectively.

V. THENEIGHBORRATIO OFLONG CODES 1

Exact values of the neighbor ratio were computed for many codes in
the previous section. In this section, we study the neighbor ratio for

long codes, that is, codes for whiaf€) is large. We will observe g

that low-rate R(©) <1/2) and high-rate R(©) >1/2) code§ behave £

quite differently, which will be explained in subsequent sections. § 05
For codes with many codewords (s&{®) > 35), it is too time- -2

consuming to find exact neighbor ratios through the method®

described is Section lll. However, an accurate estimate of the

neighbor ratio can be obtained by studying random codewords,

equiprobably selected fron€. The probability that such a N

codeword is a 0-neighbor is equalt¢©). % 0.5 1
Figure 2 extends some of the results of Table | to longer codes, Rate

suggesting an asymptotic behavior of the neighbor ratio. In the  Fig. 3. The neighbor ratio™ (€) vs. the rateR(€) for RM
diagram, the neighbor ratio of primitive binary BCH codes has been ~ codes. Lines connect codes with the same lengtt2™; solid
: . - lines for even values afn and dashed lines for odd.
estimated using 1 million randomly chosen codewords from each
code. It can be observed that for increasing code lefi§), tends holds quite generallyl (R)=0 if R>1/2, for any binary linear
to either O or 1, depending on the rate. The threshold appears tbibek code. This will be proved in the following; we will return to

at a rate equal tiy2: the low-rate case, which is more complicated, in the next section.
1 if R<12 As an aid in the analysis, it is convenient to define two types of
(R = {0 if R>1/2" (14)  codes, compressible and incompressible. Withrapressible code,

we mean a code that satisfies one (or both) of the following
Qditions:

(i) There is a position in which all codewords are zero.

(ii) There is a pair of positions in which all codewords have

Note also that the neighbor ratiorist a monotonically decreasing
function of the rate. This is because the low-rate BCH codes h&9
only two O0-nonneighbors,0 and 1. For such codes,
M(@) = (M(C) - 2)/M(€) =1-2YROME) " \which, for a constant _
n(C@), is a slowly increasing function d¥(©). ) two qual bits. ) . )

Figure 3 presents the corresponding results for the RM cofids incompressible code is a code for which neither of these

A(u,m). The appearance of the curves divides the set of RM coa@emems Is true. . i .
into two types, depending on whetheris even or odd. Only the Obviously, a compressible cod® can be made incompressible

latter type contains codes witR(€) =12, which explains the by removing every all-zero column and every dupli(_:ate column
perceived difference between the two types. However, both of thf A" the G matrl_x. The parameters of the incompressible cGde
ys created satisfp(@’) < n(€@), k(€') =k(€), andd(€") <d(C).

approach the same step function, namely, the function that was a0 h iahb ) h for th q
observed for BCH codes above. urthermore, the neighbor ratios are the same for the two codes,

This raises the question how general the pattern (14) is. Doeg(ﬁ”)h: rr(]@)’ W_hiclh Is (:alsily shofwrr: using the Gf rule. ibl d
hold for more codes than just BCH and RM codes? The theoretical usefulness of the concept of compressible codes

comes from the following theorem, which implies that in long,
incompressible codes, almost all codewords have a weight close to
n/2. Introducing theelative weight p(c) =w(c)/n, a proof can be
formulated based 021].

A partial answer to the question above is that the first part of (14) Theorem 3: For any incompressible binary linear block cagde

the proportion of the codewordsC€ whose relative weightg(c)
satisfy |p(c) —1/2/= ¢ is less than or equal t@ﬂszn(é’))_l for any

VI. ASYMPTOTICANALYSIS: HIGH-RATE CASE

6 This precise definition of “low-rate” and “high-rate” follows Forney [22]



To appear in |EEE Transactions on Information Theory, 1998

£>0. ratio,
Proof of Theorem 3: The minimum number of linearly I'(é’)=|'(6")
dependent columns i gives the minimum distance of the dual S
code; for an incompressible code, this value is greater than 2. Thus < Ek(é) 1 1 0 (4 (@,))-1
[21, p. 131] the relative weights have a “mean” - EF(@) 2 n(@)E n
_ 1 1
P= @ 2PO=5 (15) _n(e@)02k(e)-n(e)-2 gm
che -
n(@ k(€')-n(€')-2
and a “variance” ©) ( ) i )
2_ 1 2 1 2
0, = (p(c)-p)° = : (16) an(e)(k(@),n(@)-v2-1n(@
P M(@) Cg@ 4n(6’) ( )( ( ) ( )721/ ]7 ( ))
Applying Chebyshev’s inequality (or, more precisely, a determinis < [k(@) 211 0 (4n(€))_1 (24)
tic variant thereof) completes the proof. 0 %(@) 2 n(@)H
Returning to the neighbor ratio, we can now concretize {$ere the last inequality follows from (22). 0

behavior for long codes. First, Theorem 4 gives an upper bound onnow we study (21) for increasing code lengthwhere the ratio
the neighbor ratio of high-rate incompressible codes. The UPRZA approaches a constant raR Then I' tends toT,(R),
bound converges to zero with increasing codg lengtd) . (k/n-32-1n)2 tends to the positive constafR-12)2, and
Theorem 5 is a generalization to allow for compressible codes, to4n)~ tends to zero. This proves the following important corollary.

Theorem 4: For an incompressible binary linear block code corgllary 6: The asymptotic neighbor ratio satisfies
whose parameters satisfy

N,(R=0 ifR>12 (25)
E>£+1 (17) for any sequence of binary linear block codes such FhéR)
] o n2zmn exists.
the neighbor ratio is upper-bounded by Thereby the high-rate study is complete, and the right-hand

r< k1 —15_2(4n)‘1. sides of the diagrams in Figures 2 and 3 have been explained.

h 2 nO
Proof of Theorem 4: According to the right-hand side of

Theorem 1, the se#; of all 0-neighbors oD satisfies VIl. ASYMPTOTICANALYSIS: LOW-RATE CASE

oy 0{cO€: wc)sn-k+1 Now we turn to the left-hand side of the diagrams, that is, we
1 k 11 consider low-rate codes. It is tempting to suggest thaR) =1
:{C ne: pe) 55‘ h _E_ﬁa wheneverR<1/2. This would be a nice counterpart to Corollary 6,

1 k 1 1 and Figures 2 and 3 indeed support the suggestion for two common
2—-=- *}- (19) families of codes.

2°n 2 n .
Theorem 3 is now applicable to the set given by the last line. The Unfortunately, the hypothesis is false, though not very often. in

. . . . . . tEaractice, we have observed a threshold Rt 1/2 for many
proportion of @ that is contained in this set is upper-bounded s%quences of codes—indeed, for all codes except those that were
(452n)_, where € =k/n-1/2-1/n. The proportion of€ that is }

A . . . . explicitly conceived to violate the hypothesis. We will try to explain
contained in the set on the left-hand sidég, is by definition (PlCItly conc . > yp y P
. this behavior in the following. First, we study the set of all binary
I"(n,k), which completes the proof. . S
. ; . . ._ linear block codes and show that almost all codes in this set have the
The constraint to incompressible codes can be immediately . .
S . . =1/2 threshold. Then, to emphasiabmost, a class of codes is
relaxed, which is done in the following theorem.

. . '%iven for which I (R)=0 for all 0<R<1. The section is
Theorem 5: Forany binary linear block code whose paramete : . -
concluded by some observations on the relation between minimum

a {c ge: ‘p(c) -

satisfy weight and asymptotic neighbor ratio.
k >}+} (20) To investigate the asymptotic neighbor ratio for low rates, an
n 2 n averaging argument is employed over a large number of codes of the
the neighbor ratio is upper-bounded by same size. Such arguments have been successfully employed in the
* 1 14 past, ever since Shannon employed a random coding argument to
< 0,73 p0 (4n)7L (21) prove the channel coding theorem [22}4, pp. 198-203]. That the

. . method can produce quite strong results is to some extent explained
~ Proof of Theorem 5: As mentioned above, there is for any, pjerce's results [25hccording to which the Gilbert-Varshamov
binary linear block code&f’ an incompressible cod€' with the bound is tight foralmost all binary linear block codes, H(€©) is
same number of 0-neighbors, where the parameters sat@%e_ Hence, a random code is a good code. (Se¢2akand[27]
n(€’) < n(€) andk(€) = k(€). Hence, (20) implies regarding the error probability of random codes.) We will now

0<2k(@)-n(@)-2<2k(@)-n(€")-2 (22) verify the observation in Section V, th&{€) is close to 1 for
or R(€@) <12 and largen(€), for random codes. We first give a
, theorem about a random codeword in a random cod®(im R),
Ke) SEN. . (23) which denotes the set of all binary linear block codetor which
ne) 2 n@)

This inequality shows that Theorem 4 is applicable to the

. . , o , . The Gilbert-Varshamov bound [26, ch. 4] is still the best known lower bound on
incompressible cod€’. Since € and €' have the same nelghborthe highest possibld(€)/n(€), as a function of the code rate.
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n(@)=n and R(€) = R. The proof, which is lengthy and not tocAs n grows to infinity, Theorem 7 states th@t tends to 1 for any
enlightening per se, is only sketched. R<1/2. Hence, the right-hand side of the inequality tends to O for
Theorem 7: If a code is selected equiprobably fra#i(n,R), any given positive constamt, and so does the left-hand side, which

where R<1/2, and a codeword is selected equiprobably from thiseasures the proportion off(n,R) that doesnot satisfy

code, the probability that this codeword is a 0-neighbor tends to IM'é€) >1-«¢. g

n- o, If we constrain our interest tystematic codes only, properties
Outline of proof of Theorem 7: Suppose that two constamts similar to Theorems 7 and 8 can be derived for such a set of codes,

and k are given and consider a pgH,c), whereH 0{0,} ™K  too. A useful method to modify the theory was given in [25]

andc O{0,1}". Let H, denote thew(c) x (n - k) matrix that consists Theorem 8 complements Corollary 6, and together they

of the columns oH in the positions where has ones. Foc to be characterize the curves of Figures 2 and 3. However, as mentioned

a 0-neighbor in a code with parity check matkx the following above, there exist indeed exceptions to the rule of low-rate codes

three conditions must be satisfied: having a high neighbor ratio. This will be demonstrated through an
(A) rankH =n-k. (H is the parity check matrix of gm,k] example.
code). Consider a code that is the direct sum of two identical codes
(B) 1 HI =0 (cis a codeword). C©', that is, the generator matr of € is formed ag$28], [21, p.
(C) rankH; =w(c) -1 (c is a 0-neighbor). 76]
If H andc are random variables, equiprobably selected from their G Or
respective set, the probabilitl, that a random codeword in a G= 90 GF (33)
r:ndBom c(;)((f is a 0-neighbor can be expressed in terms of the e\\/,\/err11ésre G' refers to the code®’. The parameters of satisfy
» B, andt- n@) =2n(@), k(@) =2k(e@), d(@)=d(@), and RC)=RE).
R, =P{CIACB}. (26) The 0-neighbors ir@ are given by the C rule, provided that the 0-
Using standard probability rule®, can be lower-bounded by neighbors in@" are known. They are
p =1~ PHAOCE! -PHCB} ,, 1-P{CB} ), o#@= Ule go{o d) (34)
P{ AB} P{ AB} cleAs(@)

The two conditional probabilities in the bound can be evaluated'¥yich tells us that there are only twice as many O-neighbafsas
counting the total number of paifsi,c) that satisfyB, A andB, N €'. Hence,

and B and C. The results that come forth after a tedious excursion M(C) (@) =2M(e)r(e") (35)
into combinatorics are tha®{AB} - 1asn - o andk - o, and g,

PH{CB} - 1asn - o if k<n/2. Insertion of these limits into (27)

completes the proof. ] re) = ok(e)+1 re)
This theorem can be translated into the neighbor ratio of codes, 24
which is done in Theorem 8. The essence is that almost all codes < JINORE)2 (36)
have a ratio close to one. The neighbor ratio can now be studied for a sequence of @é@des
Theorem 8: For anyR<X/2 and anye >0, the proportion of such thatn(@) approaches infinity an@(€) approaches a constant
codes@ 0%4(n R) that satisfyl (¢) >1-¢ tendsto 1 as - . R. The resulting asymptotic neighbor ratio
Proof of Theorem 8: The probability B, that a random r(R=0 ifR>0 37)

codeword of a random code i#(n,R) is a 0-neighbor is, assuming ) ) )
contradicts the hypothesis above RE 1/2 being the threshold for

equiprobable selection, ) X
all types of binary linear block codes.

1

> = r). (28) The small neighbor ratio of codes of the type (33) can be
LN, R) entnp) explained in the light of propertyw) in Section Ill. In a code that
This probability tends to 1 for large, according to Theorem 7. Thecontains no right angles, all codewords are neighbors of each other,
set.Z(n,R) is splitinto. 4 and %4 such that whereas there are few neighbors in a code with many right angles.
— . _ There are very many right angles in the code generated by (33),
%={etLnR: T(€)>1-4, (29) since half of the rows 0B are orthogonal to the other half.
g?:{@ 0LMNR: MEe)<1-¢. (30) There are cyclic codes as well that contradict the hypothesis.

Suppose, for example, that(x) is a generator polynomial for a
code @', and consider the cod€” with length n(€") =2n(€")
_ 1 C generated by"(x) = (g'(x))* = g/(x?). This code is identical to the
R = |Z(n, R H}Dzzr(@) +eér(@)g direct sum code? given by (33), except for a reordering of the bits.
¢ ‘ Other aspects of binary cyclic codes with even lengths are discussed

These subsets are now employed to bolgpd

L1 O 1+ Z(l‘g)m in [29] and [30] _ _ _ o
L (n,R)| Byuz =z H The purpose of this example is to point out the possibility to
' ’ design codes withR(€) <1/2 for which the Voronoi region (4) is
=1-¢ “5@ (31) less complex. However, the considered code is not a very good one.
|£(n,R)| Its minimum weight is equal to the minimum weight of a half as
or long code. Hence, sincé(C')/n(€") <1/2 (see, e.g., [31, p. 167]),
‘u@ 1 d(@)/n(@)<V/4. In fact, a minimum weight as low as this is a
2R < E(1— P.). (32) necessary requirement for incompressible codes with few neighbors.

Any class of incompressible codes with higher minimum distance
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