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On the Voronoi Neighbor Ratio for Binary Linear Block Codes

Erik Agrell

Abstract—Soft-decision decoding of block codes is regarded as
the geometrical problem of identifying the Voronoi region within
which a given input vector lies. A measure, called the neighbor
ratio, is proposed to characterize how many facets a Voronoi region
has. Theory and algorithms are presented to determine the neighbor
ratio for binary linear block codes and results are given for several
types of codes. An asymptotic analysis for long codes reveals that
the neighbor ratio depends on whether the code rate is less than 1/2
or not. For rates below this threshold, all pairs of codewords tend to
share a Voronoi facet; for higher rates, a relatively small fraction of
them do.

Index Terms—Binary linear block codes, Gaussian channel,
Voronoi regions, neighbor ratio, asymptotic properties, soft-decision
decoding.

I. INTRODUCTION

A channel decoder is, in its common form, a device that receives a
sequence of values from the demodulator and outputs another
sequence, selected from a predefined set of codewords. This form,
the hard decision decoder, assumes that the demodulator has made a
decision on each transmitted symbol. However, 2–3 dB can be
gained if more information from the demodulator can be utilized [1,
pp. 518–522], [2, p. 141]. We could let the demodulator output not
only the detected symbols, but also a measure on how reliable each
detection is. An alternative way to achieve the same effect would be
to let the demodulator deliver an unquantized estimate of the symbol
in each time interval [3, pp. 464–473]. All decisions are postponed
to the channel decoder. This approach leads to the soft-decision
decoder.

In soft-decision decoding, the channel decoder makes no
decision until it has received a sequence of symbol estimates
corresponding to a whole codeword from the demodulator. Herein
lies the strength of soft-decision decoding. The price for the coding
gain is increased decoder complexity and real-valued computations.
A large number of soft-decision decoding algorithms have been
conceived since the sixties. Good summaries and literature surveys
are given in [2, ch. 4], [4], and [5].

Most work on soft-decision decoding has been done for the
Gaussian channel.1 With this channel model, the sequence of
estimates that the demodulator outputs can be regarded as a
codeword with an added random noise vector, whose components
are Gaussian and independent. Hence, the optimum channel decoder
has a closest point problem to solve: For each input sequence, find
the codeword with the minimum Euclidean distance to the sequence.
This assumes that codewords are interpreted as points in Euclidean
space, not just as strings of bits.

The minimum distance decoding rule partitions Euclidean space
into a number of regions, one around each codeword. The regions,
nowadays normally called Voronoi regions [6], can be defined as
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the set of all sequences that would be decoded as the same
codeword. Soft-decision decoding is hence to determine which
Voronoi region a received sequence belongs to.

We will confine the present study to the class of binary linear
block codes, which possesses some appealing properties for soft-
decision decoding, theoretically as well as practically. Firstly, a
binary code is, when regarded as a set of points in Euclidean space,
a spherical code, whose Voronoi regions were characterized already
by Shannon in 1959 [7]. They are pyramidal polytopes, with flat
sides and infinite size, and all of them share the same apex.
Secondly, a linear code has (still assuming that it is binary) the
property that all its Voronoi regions are congruent, so it is sufficient
to analyze one of them, see below. A class of codes with this
property was studied by Slepian in 1965 [8] and more generally in
1968 [9], and, even more generally, by Forney in 1991 [10]. The
topic of codes for the Gaussian channel and their Voronoi regions is
also addressed in, e.g., [11], [12], and references therein.

In Section II, the terminology to be used is introduced, and the
neighbor ratio is defined. Some known methods to determine
Voronoi regions are summarized in Section III, and a new method is
presented that complements the old ones nicely. The neighbor ratio
and related properties of some common codes are determined in
Section IV. These results are generalized to longer codes in Section
V, and some asymptotic properties are discerned. The two next
Sections, VI and VII, consider in detail the asymptotic neighbor
ratio as a function of the rate. Section VIII contains a discussion and
a short summary.

II. PRELIMINARIES

If 
�

 is a binary linear block code, we denote by M �( )  the number
of codewords and by n �( )  the number of bits in a codeword (the
code length).2 The rate is defined as R k n

� � �
( ) = ( ) ( ), where

k M
� �

( ) = ( )log2 . The (Hamming) weight w c( ) of a binary
codeword c is defined as the number of ones in it; if the bit values 0
and 1 are interpreted as coordinates in Euclidean space, the relation
between weight and Euclidean norm is w c c( ) = 2 . The minimum
weight of the code is

d w
� �( ) = ( )

∈ { }
min

\c 0
c (1)

where 0
�

 is the all-zero vector.3 The triplet n k d
� � �

( ) ( ) ( )[	 ], ,
summarizes the most fundamental properties of a code 
 ;
sometimes we will also use the abbreviated form n k

� �
( ) ( )[� ], . The

functions G 
( )  and H �( ) represent any generator matrix and
parity-check matrix, respectively, for the considered code.

With this nomenclature, the Voronoi region of 0
�

 is the n -
dimensional body� �

0
2 2= ∈ ≤ − ∈{ }x x x c cn :  for all . (2)

It can be shown that the Voronoi region of any codeword c ∈ �  can

2 When there is no doubt of which code is concerned, we simply write these
functions as M , n , etc., omitting the argument.
3 Later, the symbol 0

�
 will represent all-zero matrices, too. All-one vectors will be

denoted with 1� .
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be expressed as4

c x I c x+ − ( )( ) ∈{
�

}2 0 diag : � (3)

where diag c( ) is the diagonal matrix having the elements of the
vector c along the diagonal. Since this region is just a translation,
rotation and reflection of � 0 , all Voronoi regions in a binary linear
block code have the same shape, and � 0  can be used as a
representative of all of them. All significant properties of a code can
be derived from � 0  [10]. This correspondence is about the structure
of � 0  for various codes.

The complete specification of a multidimensional polytope,
including lists of the vertices, edges, etc., and their interrelations, is
surprisingly complex [13, chs. 1 and 6], and memory considerations
alone are sufficient reason to abandon that data structure for n  in the
order of 10 or greater [14]. On the other hand, a Voronoi region is
fully defined through a list of its sides, or facets, only, and such a
list suffices for most purposes, including error analysis and soft-
decision decoding. Edges and vertices do not play as important
roles, as will be discussed in the following.

Consider the inequalities in (2) again; each one of them
contributes one or zero facets to � 0 . The codewords whose
inequalities define a facet are called 0-neighbors in the code � .
Moreover, two codewords whose Voronoi regions share a common
facet are called neighbors. If c1 and c2 are neighbors, then c c1 2⊕
is a 0-neighbor, where ⊕  denotes addition over GF 2( ) . Denoting
the set of 0-neighbors with � �0( ), the Voronoi region � 0  can be
equivalently written as�  !

0
2 2

0= ∈ ≤ − ∈ ( ){ }x x x c cn :  for all (4)

which in a sense has removed all redundancy from (2).
The main results of this correspondence concern the number of

neighbors in various codes. We propose the neighbor ratio

Γ " # ""( ) = ( )
( )
0

M
(5)

to characterize the code in this sense. The neighbor ratio lies
between 0 and 1, these values excluded. Of special interest is what
happens with the neighbor ratio when the code length increases.
Suppose that a constant 0$ 1< ≤R  is given, and consider an infinite
sequence of codes % i , i = 1 2, , & , whose parameters satisfy
n i

'( ) → ∞ and k n Ri i

( (( ) ( ) →  as i → ∞ . Then the asymptotic
neighbor ratio Γ∞( )R  for this sequence of codes is defined as

Γ Γ∞ →∞
( ) = ( )R

i
ilim ) . (6)

provided that the limit exists.
It is normally not possible to obtain an exact expression for the

error probability Pe of soft-decision decoding, because it involves
computing an n -dimensional integral over the polytope * 0 . A
standard approximation is the union bound, which is

P Q w
E

N

A Q i
E

N

e
b

i
b

i

n

≤ ( )





= ( ) 





∈ { }

=

∑

∑

c
c 0

2

2

0

01

+
,\

(7)

assuming equiprobable codewords and biorthogonal modulation
(say, BPSK or QPSK) with bit energy Eb  [2, pp. 29–30], [11]. The
variance of the discrete-time Gaussian noise is N0 2, Q x( ) denotes
the integral 2 21 2 2π( ) −( )−∞

∫ exp z dz
x

, and Ai -( ) denotes a
component of the weight distribution

4 All vectors are row vectors.

A w i i ni . . .( ) = ∈ ( ) ={ } = ( )c c: , ,for 0 & (8)

where ⋅  means the cardinal number of a set. Hence, the weight
distribution gives the number of codewords with a certain weight.
Weight distributions of many codes were tabulated in [15, ch. 16].
Another important characteristic of a code is the local weight
distribution with components

L w i i ni / 0 / /( ) = ∈ ( ) ( ) ={ } = ( )c c0 0: , ,for & (9)

which gives the number of 0-neighbors with a certain weight.
Straightforward combination of (4), (7) and (9) yields another bound
on the error probability,

P Q w
E

N

L Q i
E

N

e
b

i
b

i

n

≤ ( )





= ( ) 





∈ ( )

=

∑

∑

c
c

2

2

0

01

0
132
4

(10)

which is tighter than the usual union bound [10]. However, this
bound requires that the local weight distribution Li 5( )  can be
found, which is much harder than to find Ai 6( ). Methods to
compute Li 7( )  are summarized in the next section, where also a
third bound is given, being tighter than (7) but just as easy to
compute.

Besides being a valuable theoretical instrument, the Voronoi
regions in a code can be employed in the decoding process itself.
This was suggested by Landau [16], who also pointed out the
significance of the number of facets of the Voronoi regions. An
iterative algorithm was developed by Hwang [17] and investigated
in more detail by Butovitsch [18, pts. D–E]. The idea, which has
also been considered for other point sets and in other applications
[19], [20], is basically as follows: (i) Select a codeword c and
compute its distance δ8  to the input x . (ii) Compute the distance ′δ8
from a new codeword ′ = ⊕c c a  to x , where a ∈ ( )

9 :
0 . If ′ <δ8 δ ,

set c c:= ′  and go to (ii). (iii) If ; <0( ) contains unexamined
codewords, go to (ii). Otherwise, output c. The complexity of this
algorithm, which performs maximum-likelihood decoding, is
proportional to Γ =( ).

III. IDENTIFICATION OF NEIGHBORS

In this section, rules to determine the neighbors in a binary linear
block code are summarized. First, we adopt a geometric viewpoint
on the problem and interpret some basic theory in geometric terms.
Then, rules will be given to determine whether a given codeword is
a 0-neighbor, and in some cases, to identify 0-neighbors and 0-
nonneighbors based on their weights alone.

The n -dimensional binary space 0 1,{ }n  describes the vertices of
an n -dimensional hypercube, and an n k,[ ] binary code >  forms a
subset of these vertices. This special structure makes it possible to
analyze the geometry of a binary code in much more detail than is
possible for a general point set, which in turn leads to explicit results
about the neighbors. The following properties characterize any
binary linear code, regarded as a point set. (Actually, the two first
properties apply to binary nonlinear codes as well.) The proofs,
which we omit, follow immediately from the theory in [12].

(i) No three codewords can form an obtuse angle.
(ii) If the dots in Figure 1 are two codewords in the code, all

codewords lie within the shaded region.
(iii) If and only if two given codewords are the only codewords

on the sphere of Figure 1, they are neighbors.
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Fig. 1. Two parallel hyperplanes touching a hypersphere,
where the points of contact are defined by any two codewords
(dots). All codewords in a binary code lie between the planes,
outside the sphere.

(iv) If three codewords form a right angle, there is a fourth
codeword completing the rectangle.

(v) Two codewords forming the diagonal of a rectangle are
nonneighbors. Two codewords that do not form any
diagonal are neighbors.

Again regarding codewords as strings of bits, the last of these
statements can be translated into the following important rule, which
was first given in [17], though not in Voronoi terminology. To show
that ? @0( ) is equal to the “projecting set” of [17], compare
Corollary 1 in [12] with Definition 2 in [17].

C rule: A codeword is a 0-neighbor if and only if it covers5 no
other nonzero codeword.

To establish whether a given codeword c ∈ A  is a 0-neighbor or
not, it is not necessary to generate all codewords one by one and
check if they are covered by c. Instead, the test implied by the C
rule can be performed by a sequence of row operations on the
generator matrix G B( ) . An explicit algorithm for this purpose was
presented in [12]. A condensed version of the algorithm can be
formulated as the following rule.

G rule: Let G c0 C ,( )  denote the matrix formed by the columns
of G D( )  corresponding to positions where a given codeword c ∈ E
has zeros. Then c is a 0-neighbor if and only if
rank G c0 1

F F
,( ) = ( ) −k .

We now introduce a useful dual of this rule. It can, just as the G
rule, be proved through the C rule.

H rule: Let H c1 G ,( ) denote the matrix formed by the columns
of H H( ) corresponding to positions where a given codeword c ∈ I
has ones. Then c is a 0-neighbor if and only if
rank H c c1 1

J
,( ) = ( ) −w .

The G and H rules complement each other nicely. Both of them
yield the same results, but the complexity involved varies with the
code parameters and with the weight of the codeword to test. When
G c0 K ,( )  is a large matrix, H c1 L ,( ) is small. Generally, the speed of
a G rule test increases for lower rates and higher weights, and vice
versa.

Example: Is

c = [ ]1 1 0 0 0 1 0

a 0-neighbor in the [7,4,3] Hamming code with

G M( ) =
















1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

as a generator matrix? The G rule answers in the affirmative,
because

G c0

1 1 0 0
0 1 1 0
1 0 1 0
0 1 0 1

N
,( ) =

















5 A binary codeword c1 is said to cover another one, c2 , if c1 has a one in all
positions where c2  has a one [21, p. 63].

has a rank of 3 1= ( ) −k O . Equivalently, we can employ the H rule.
Selecting the proper columns of the parity-check matrix

H P( ) =












1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

.

yields

H c1

1 1 0
0 1 1
0 0 0

Q
,( ) =













whose rank is 2R 1= ( ) −w c , which confirms that c is a 0-neighbor.
❏

Even though the time required to decide whether one given
codeword is a 0-neighbor or not is moderate, the accumulated
classification of all codewords in a code can be prohibitive. Thus,
we would need a method to classify large sets of codewords
simultaneously. Such a method can be based on the weight of a
codeword, which sometimes provides enough information to make
the decision. Specifically, the C rule assures that codewords with
low enough weights are always 0-neighbors, and by upper-bounding
the rank of G c0 S ,( )  or H c1 T ,( ), it can be shown that codewords
with sufficiently high weights are never 0-neighbors. The two
bounds thus obtained, which were given by Hwang [17], can be
summarized in the following theorem.

Theorem 1: For any binary linear block code U ,

c ∈ V : 1≤ w c( ) ≤ 2d W( ) −1{ } ⊆ X 0 Y( )
⊆ c ∈ Z : 1≤ w c( ) ≤ n [( ) − k \( ) +1{ }

.
(11)

The left-hand side of the theorem states that the weight of any
nonzero 0-nonneighbor c satisfies w dc( ) ≥ ( )2 ] . A generalization
of this property is possible. Suppose that a weight w  is present in
the weight distribution of a code (i.e., Aw ^( ) ≥ 1) and that we want
to analyze the codewords with this weight. We can then attempt to
write w  as the sum of two nonzero integers, both of which are
present in the same weight distribution. This can be done for all 0-
nonneighbors, which is proved through the following theorem. It
can be done for some 0-neighbors as well, so the theorem is not
useful for identifying 0-nonneighbors.

Theorem 2: If the weight w  of a nonzero codeword c ∈ _
cannot be written as w i j= + , where i ≥ 1, j ≥ 1, Ai `( ) ≥ 1, and
Aj a( ) ≥ 1, then c is a 0-neighbor.

Proof of Theorem 2: From property (v) we see that any 0-
nonneighbor c 0∈ { }

b
\  can be written as c c c= +1 2 , where

c 01 ∈ { }
c

\ , c 02 ∈ { }
d

\ , and c c1 2 0⋅ = . Thus, w c c( ) = =2

c c c c c c1
2

2
2

1 2 1 22+ + ⋅ = ( ) + ( )w w . ❏

To find the 0-neighbors e f0( ) in a code g , the first thing to
do would be to find the weight distribution [15, ch. 16] and combine
it with Theorems 1 and 2. For some codes, especially short ones,
Theorem 1 yields a complete description of h i0( ); otherwise, it
leaves a subset of the codewords for individual examination. (Both
cases will be illustrated in the next section.) Then either the G or the
H rule is applied to the remaining subset, which possibly can be
further reduced using the automorphism group of the code, see [12].

As an example of the information provided by the weight
distribution, consider the [64,22,16] Reed-Muller code. It contains
codewords with weights 0, 16, 24, 28, 32, 36, 40, 48, and 64.
According to Theorem 1, all codewords with weights 16, 24, and 28
are 0-neighbors, and no codewords with weights 48 and 64 are.
Furthermore, Theorem 2 classifies the weight-36 codewords as 0-
neighbors. Weights 32 and 40 remain to be examined with the G
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TABLE I
PARAMETERS OF SOME COMMON CODES.

Type [n,k,d] R w− w+ j M k 0 Ld Γ

Universe [n,n,1] 1 2 1 0 n n n n2−

Even-weight [n,n–1,2] 1l 1− n 4 2 0 n n −( )1 2 n n −( )1 2 n n n−( ) −1 2

Repetition [n,1,n] 1 n 2n n 0 1 1 1l 2

Hamming [7,4,3] 0.571 6 4 0 14 7 0.875

Hamming [15,11,3] 0.733 6 5 0 308 35 0.150

Hamming [31,26,3] 0.839 6 6 3 4 10 4. ⋅ − 20,336 155 0.000

Ext. Hamming [8,4,4] 0.500 8 5 0 14 14 0.875

Ext. Hamming [16,11,4] 0.688 8 6 0 588 140 0.287

Ext. Hamming [32,26,4] 0.813 8 7 0 29,016 1,240 0.000

Dual Hamming [7,3,4] 0.429 8 5 0 7 7 0.875

Dual Hamming [15,4,8] 0.267 16 12 0 15 15 0.938

Dual Hamming [31,5,16] 0.161 32 27 0 31 31 0.969

Golay [23,12,7] 0.522 14 12 0 3,335 253 0.814

Ext. Golay [24,12,8] 0.500 16 13 0 3,335 759 0.814

BCH [15,5,7] 0.333 14 11 0 30 15 0.938

BCH [15,7,5] 0.467 10 9 0 108 18 0.844

BCH [31,6,15] 0.194 30 26 0 62 31 0.969

BCH [31,11,11] 0.355 22 21 0 2,046 186 0.999

BCH [31,16,7] 0.516 14 16 0.56 42,284 155 0.645

BCH [31,21,5] 0.677 10 11 6 1 10 2. ⋅ − 107,198 186 0.051

BCH [63,7,31] 0.111 62 57 0 126 63 0.984

BCH [63,10,27] 0.159 54 54 0 1,022 196 0.998

BCH [63,16,23] 0.254 46 48 0 65,534 1,890 1.000

BCH [63,18,21] 0.286 42 46 5 5 10 3. ⋅ − 262,139 1,452 1.000

BCH [63,24,15] 0.381 30 40 0.68 15,840,940 651 0.944

BCH [63,30,13] 0.476 26 34 0.75 695,053,516 1,764 0.647

BCH [63,36,11] 0.571 22 28 0.22 10,198,908,660 5,670 0.148

RM [16,5,8] 0.313 16 12 0 30 30 0.938

RM [32,6,16] 0.188 32 27 0 62 62 0.969

RM [32,16,8] 0.500 16 17 0.56 42,284 620 0.645

RM [64,7,32] 0.109 64 58 0 126 126 0.984

RM [64,22,16] 0.344 32 43 0.72 3,821,804 2,604 0.911

rule, which is less complex than the H rule in this case. (It turns out
that all codewords with weight 40 are 0-nonneighbors, whereas both
0-neighbors and 0-nonneighbors have weight 32.)

Finally, an interesting consequence of the right-hand side of
(11) is that the summation interval in (7) can be reduced. The
obtained bound on the error probability,

P A Q i
E

Ne i
b

i

n k

≤ ( ) 



=

− +

∑ m 2

01

1

, (12)

combines the advantages of (7) and (10). The sum does not require
more information about the code than does the usual union bound,
but the resulting bound is tighter.

IV. SOME CODES AND THEIR 0-NEIGHBORS

The tools discussed in the previous section were applied to several
well-known codes. In anticipation of the asymptotic theory in the
next sections, we summarize some general properties of code
families below and list results for some specific codes in Table I. In
the table, w d− = 2  is the lowest weight possible for a nonzero 0-
nonneighbor, w n k+ = − +1 is the highest possible weight for a 0-
neighbor, and n o= ∈ ≤ ( ) ≤{ }− +c c: w w w  is the set bounded by

these values. Hence, p M  is the proportion of codewords not
being identified through Theorem 1. The table also gives the number
of 0-neighbors, q 0 , the number of 0-neighbors at minimum
distance, Ld = Ad , and the neighbor ratio, Γ . Other investigations of
the neighbors in some codes are included in [17], [18], and [12].

Trivial codes: The 0-neighbors of the n n, ,1[r ] universe code, the
n n, ,−[ ]1 2  even-weight code, and the n n, ,1[ ] repetition code are all

determined by Theorem 1. The number of 0-neighbors is,
respectively, n , n n −( )1 2, and 1.

Hamming codes: The Hamming codes and their relatives are
almost completely determined by Theorem 1. The
2 1 2 1 3m m m− − −[s ], ,  Hamming code has w− = 5 and w m+ = +1, so

the gap between the bounds is relatively narrow. The neighbor ratio
rapidly tends to zero with increasing code length. Conditions are
similar for the 2 2 1 4m m m, ,− −[ ] extended Hamming code. Theorem
1 identifies all 0-neighbors for the 32 26 4, ,[r ] and shorter extended
Hamming codes and leaves only one weight for further analysis in
the codes with lengths 64 and 128. In the 2 1 2 1m mm−[s ]−, ,  dual
Hamming code, or simplex code, all nonzero codewords have the
same weight. Hence, all of them are 0-neighbors, according to the C
rule.

BCH codes: The Bose-Chaudhuri-Hocquenghem (BCH) codes,
provide valuable information for the present study, because there is
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Fig. 2. The estimated neighbor ratio Γ t( ) vs. the rate
R u( ) for various primitive binary BCH codes. The lines
connect codes with n v( ) = 15, 31, 63, 127, and 255,
respectively.
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Fig. 3. The neighbor ratio Γ w( ) vs. the rate R x( ) for RM
codes. Lines connect codes with the same length n m= 2 ; solid
lines for even values of m  and dashed lines for odd.

a relatively large number of codes with the same length within the
family. Several examples are listed in the table. We save the
comments and generalizations until the next section.

RM codes: The Reed-Muller (RM) codes constitute another
large family, which contains several other types of codes as special
cases. A general RM code is denoted y u m,( ), where u  is the order,
and its parameters are

2 2
0

m m u

i

r m
i

, ,( )





−

=
∑ . (13)z

0,m( )  is the 2 1 2m m, ,[ ] repetition code, { m m−( )2,  is the
2 2 1 4m m m, ,− −[| ] extended Hamming code, and } m m−( )1,  is the
2 2 1 2m m, ,−[ ] even-weight code. The first-order RM code ~ 1,m( )

is the dual of the extended Hamming code. All codewords in�
1,m( ) , except 0�  and 1� , have the same weight, 2 1m− , and these

M − 2 are thus the 0-neighbors.

V. THE NEIGHBOR RATIO OF LONG CODES

Exact values of the neighbor ratio were computed for many codes in
the previous section. In this section, we study the neighbor ratio for
long codes, that is, codes for which n �( )  is large. We will observe
that low-rate (R �( ) < 1 2) and high-rate (R �( ) > 1 2) codes6 behave
quite differently, which will be explained in subsequent sections.

For codes with many codewords (say, k �( ) > 35), it is too time-
consuming to find exact neighbor ratios through the methods
described is Section III. However, an accurate estimate of the
neighbor ratio can be obtained by studying random codewords,
equiprobably selected from � . The probability that such a
codeword is a 0-neighbor is equal to Γ �( ).

Figure 2 extends some of the results of Table I to longer codes,
suggesting an asymptotic behavior of the neighbor ratio. In the
diagram, the neighbor ratio of primitive binary BCH codes has been
estimated using 1 million randomly chosen codewords from each
code. It can be observed that for increasing code length, Γ �( ) tends
to either 0 or 1, depending on the rate. The threshold appears to be
at a rate equal to 1 2:

Γ∞( ) = <
>{R

R
R

1 1 2
0 1 2

if 
if 

. (14)

Note also that the neighbor ratio is not a monotonically decreasing
function of the rate. This is because the low-rate BCH codes have
only two 0-nonneighbors, 0�  and 1� . For such codes,
Γ � � � ���( ) = ( ) −( ) ( ) = − − ( ) ( )M M R n2 1 21 , which, for a constant
n �( ) , is a slowly increasing function of R �( ).

Figure 3 presents the corresponding results for the RM codes�
u m,( ). The appearance of the curves divides the set of RM codes

into two types, depending on whether m  is even or odd. Only the
latter type contains codes with R �( ) = 1 2, which explains the
perceived difference between the two types. However, both of them
approach the same step function, namely, the function that was also
observed for BCH codes above.

This raises the question how general the pattern (14) is. Does it
hold for more codes than just BCH and RM codes?

VI. ASYMPTOTIC ANALYSIS: HIGH-RATE CASE

A partial answer to the question above is that the first part of (14)

6 This precise definition of “low-rate” and “high-rate” follows Forney [22].

holds quite generally: Γ
�

∞( ) =R 0 if R > 1 2, for any binary linear
block code. This will be proved in the following; we will return to
the low-rate case, which is more complicated, in the next section.

As an aid in the analysis, it is convenient to define two types of
codes, compressible and incompressible. With a compressible code,
we mean a code that satisfies one (or both) of the following
conditions:

(i) There is a position in which all codewords are zero.
(ii) There is a pair of positions in which all codewords have

two equal bits.
An incompressible code is a code for which neither of these
statements is true.

Obviously, a compressible code �  can be made incompressible
by removing every all-zero column and every duplicate column
from the G

�
 matrix. The parameters of the incompressible code ′

�
thus created satisfy n n′( ) < ( )

� �
, k k′( ) = ( )
� �

, and d d′( ) ≤ ( )
� �

.
Furthermore, the neighbor ratios are the same for the two codes,
Γ Γ′( ) = ( )
� �

, which is easily shown using the G rule.
The theoretical usefulness of the concept of compressible codes

comes from the following theorem, which implies that in long,
incompressible codes, almost all codewords have a weight close to
n 2. Introducing the relative weight ρ c c( ) = ( )w n , a proof can be
formulated based on [21].

Theorem 3: For any incompressible binary linear block code � ,
the proportion of the codewords c ∈ �  whose relative weights ρ c( )
satisfy ρ εc( ) − ≥1 2  is less than or equal to 4 2 1ε n �( )( )−

 for any
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ε > 0.
Proof of Theorem 3: The minimum number of linearly

dependent columns in G
�

 gives the minimum distance of the dual
code; for an incompressible code, this value is greater than 2. Thus
[21, p. 131], the relative weights have a “mean”

ρ ρ=
( )

( ) =
∈
∑1 1

2M � � c
c

(15)

and a “variance”

σ ρ ρρ
2 21 1

4
=

( )
( ) −( ) =

( )∈
∑M n

� �� c
c

. (16)

Applying Chebyshev’s inequality (or, more precisely, a determinis-
tic variant thereof) completes the proof. ❏

Returning to the neighbor ratio, we can now concretize its
behavior for long codes. First, Theorem 4 gives an upper bound on
the neighbor ratio of high-rate incompressible codes. The upper
bound converges to zero with increasing code length n �( ) .
Theorem 5 is a generalization to allow for compressible codes, too.

Theorem 4: For an incompressible binary linear block code
whose parameters satisfy

k

n n
> +1

2
1

(17)

the neighbor ratio is upper-bounded by

Γ ≤ − −



 ( )

−
−k

n n
n

1
2

1
4

2
1. (18)

Proof of Theorem 4: According to the right-hand side of
Theorem 1, the set   0  of all 0-neighbors of 0

¡
 satisfies¢ £

£
£

0 1

1
2

1
2

1

1
2

1
2

1

⊆ ∈ ( ) ≤ − +{ }

= ∈ ( ) ≤ − − −



{ }

⊆ ∈ ( ) − ≥ − −{ }

c c

c c

c c

:

:

: .

w n k

k

n n
k

n n

ρ

ρ (19)

Theorem 3 is now applicable to the set given by the last line. The
proportion of ¤  that is contained in this set is upper-bounded by
4 2 1ε n( )−

, where ε = − −k n n1 2 1 . The proportion of ¥  that is
contained in the set on the left-hand side, ¦ 0 , is by definition
Γ n k,( ) , which completes the proof. ❏

The constraint to incompressible codes can be immediately
relaxed, which is done in the following theorem.

Theorem 5: For any binary linear block code whose parameters
satisfy

k

n n
> +1

2
1

(20)

the neighbor ratio is upper-bounded by

Γ ≤ − −



 ( )

−
−k

n n
n

1
2

1
4

2
1. (21)

Proof of Theorem 5: As mentioned above, there is for any
binary linear block code §  an incompressible code ′

¨
 with the

same number of 0-neighbors, where the parameters satisfy
n n′( ) ≤ ( )
© ©

 and k k′( ) = ( )
ª ª

. Hence, (20) implies

0 2 2 2 2< ( ) − ( ) − ≤ ′( ) − ′( ) −k n k n
« « « «

(22)

or

k

n n
′( )
′( )

> +
′( )

¬¬ ¬1
2

1
. (23)

This inequality shows that Theorem 4 is applicable to the
incompressible code ′

­
. Since ®  and ′

¯
 have the same neighbor

ratio,

Γ °( ) = Γ ′
±( )

≤ k ′
²( )

n ′
³( ) − 1

2
− 1

n ′
´( )







−2

4n ′
µ( )( )−1

= n ′
¶( )

n ·( )
2k ¸( ) − n ¹( ) − 2

2k ′
º( ) − n ′

»( ) − 2







2

⋅

1

4n ¼( ) k ½( ) n ¾( ) −1 2 −1 n ¿( )( )2

≤ k À( )
n Á( ) − 1

2
− 1

n Â( )






−2

4n Ã( )( )−1 (24)

where the last inequality follows from (22). ❏

Now we study (21) for increasing code length n , where the ratio
k n  approaches a constant rate R . Then Γ  tends to Γ∞( )R ,
k n n− −( )−1 2 1 2 tends to the positive constant R −( )−1 2 2, and
4 1n( )−  tends to zero. This proves the following important corollary.

Corollary 6: The asymptotic neighbor ratio satisfies

Γ∞( ) = >R R0 1 2if (25)

for any sequence of binary linear block codes such that Γ∞( )R
exists.

Thereby the high-rate study is complete, and the right-hand
sides of the diagrams in Figures 2 and 3 have been explained.

VII. ASYMPTOTIC ANALYSIS: LOW-RATE CASE

Now we turn to the left-hand side of the diagrams, that is, we
consider low-rate codes. It is tempting to suggest that Γ∞( ) =R 1
whenever R < 1 2. This would be a nice counterpart to Corollary 6,
and Figures 2 and 3 indeed support the suggestion for two common
families of codes.

Unfortunately, the hypothesis is false, though not very often. In
practice, we have observed a threshold at R = 1 2 for many
sequences of codes—indeed, for all codes except those that were
explicitly conceived to violate the hypothesis. We will try to explain
this behavior in the following. First, we study the set of all binary
linear block codes and show that almost all codes in this set have the
R = 1 2 threshold. Then, to emphasize almost, a class of codes is
given for which Γ

Ä
∞( ) =R 0 for all 0$ 1< <R . The section is

concluded by some observations on the relation between minimum
weight and asymptotic neighbor ratio.

To investigate the asymptotic neighbor ratio for low rates, an
averaging argument is employed over a large number of codes of the
same size. Such arguments have been successfully employed in the
past, ever since Shannon employed a random coding argument to
prove the channel coding theorem [23], [24, pp. 198–203]. That the
method can produce quite strong results is to some extent explained
by Pierce’s results [25], according to which the Gilbert-Varshamov
bound7 is tight for almost all binary linear block codes, if n Å( )  is
large. Hence, a random code is a good code. (See also [23] and [27]
regarding the error probability of random codes.) We will now
verify the observation in Section V, that Γ Æ( ) is close to 1 for
R Ç( ) < 1 2 and large n È( ) , for random codes. We first give a
theorem about a random codeword in a random code in É n R,( ),
which denotes the set of all binary linear block codes Ê  for which

7 The Gilbert-Varshamov bound [26, ch. 4] is still the best known lower bound on
the highest possible d n

Ë Ë
( ) ( ), as a function of the code rate.
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n n
Ì

( ) =  and R R
Í

( ) = . The proof, which is lengthy and not too
enlightening per se, is only sketched.

Theorem 7: If a code is selected equiprobably from Î n R,( ),
where R < 1 2, and a codeword is selected equiprobably from this
code, the probability that this codeword is a 0-neighbor tends to 1 as
n → ∞ .

Outline of proof of Theorem 7: Suppose that two constants n
and k  are given and consider a pair H c,(

Ï
) , where H ∈{ } × −( )0 1, n n k

and c ∈{ }0 1, n. Let H1 denote the w n kc( ) × −( )  matrix that consists
of the columns of H

Ð
 in the positions where c has ones. For c to be

a 0-neighbor in a code with parity check matrix H, the following
three conditions must be satisfied:

( A) rank H = −n k . (H is the parity check matrix of an n k,[ ]
code).

( B ) 1 H 01
T =  (c is a codeword).

( C ) rank H c1 1= ( ) −w  (c is a 0-neighbor).
If H and c are random variables, equiprobably selected from their
respective set, the probability Pn  that a random codeword in a
random code is a 0-neighbor can be expressed in terms of the events
A , B , and C :

P C A Bn = ∧{ }Pr . (26)

Using standard probability rules, Pn  can be lower-bounded by

P
A C B C B

A B

C B

A Bn = − ∨{ } − { }
{ }

≥ − − { }
{ }

1 1
1Pr Pr

Pr
Pr

Pr
. (27)

The two conditional probabilities in the bound can be evaluated by
counting the total number of pairs H c,(

Ï
)  that satisfy B , A  and B ,

and B  and C . The results that come forth after a tedious excursion
into combinatorics are that Pr A B{ } → 1 as n → ∞  and k → ∞ , and
Pr C B{ } → 1 as n → ∞  if k n< 2. Insertion of these limits into (27)
completes the proof. ❏

This theorem can be translated into the neighbor ratio of codes,
which is done in Theorem 8. The essence is that almost all codes
have a ratio close to one.

Theorem 8: For any R < 1 2 and any ε > 0, the proportion of
codes Ñ Ò∈ ( )n R,  that satisfy Γ Ó( ) > −1 ε  tends to 1 as n → ∞ .

Proof of Theorem 8: The probability Pn  that a random
codeword of a random code in Ô n R,( ) is a 0-neighbor is, assuming
equiprobable selection,

P
n Rn

n R

=
( )

( )
∈ ( )
∑1Õ Ö×ÙØ, ,

Γ . (28)

This probability tends to 1 for large n , according to Theorem 7. The
set Ú n R,( ) is split into Û ε  and Ü ε  such thatÝ Þ Ý Þ

ε ε= ∈ ( ) ( ) > −{ }n R, : Γ 1 , (29)ß à ß à
ε ε= ∈ ( ) ( ) ≤ −{ }n R, : Γ 1 . (30)

These subsets are now employed to bound Pn :

P
n R

n R

n R

n =
( )

( ) + ( )







≤
( )

+ −( )







= −
( )

∈ ∈

∈ ∈

∑ ∑

∑ ∑

1

1
1 1

1

á â â
á

áá

ãÙä ãÙä
ãÙä ãåä

,

,

,

Γ Γ
ε ε

ε ε

ε

ε ε (31)

or ææ
ε

εn R
Pn,( )

≤ −( )1
1 . (32)

As n  grows to infinity, Theorem 7 states that Pn  tends to 1 for any
R < 1 2. Hence, the right-hand side of the inequality tends to 0 for
any given positive constant ε , and so does the left-hand side, which
measures the proportion of ç n R,( ) that does n o t  satisfy
Γ è( ) > −1 ε . ❏

If we constrain our interest to systematic codes only, properties
similar to Theorems 7 and 8 can be derived for such a set of codes,
too. A useful method to modify the theory was given in [25].

Theorem 8 complements Corollary 6, and together they
characterize the curves of Figures 2 and 3. However, as mentioned
above, there exist indeed exceptions to the rule of low-rate codes
having a high neighbor ratio. This will be demonstrated through an
example.

Consider a code é  that is the direct sum of two identical codes
′
ê

, that is, the generator matrix Gë  of ì  is formed as [28], [21, p.
76]

G
G 0
0 G

= ′
′







(33)

where ′G  refers to the code ′
í

. The parameters of î  satisfy
n n
ï ï

( ) = ′( )2 , k k
ð ð

( ) = ′( )2 , d d
ñ ñ

( ) = ′( ) , and R R
ò ò

( ) = ′( ).
The 0-neighbors in ó  are given by the C rule, provided that the 0-
neighbors in ′

ô
 are known. They areõ ö

÷3ø0
0

( ) = { } ∪ { }( )
∈ ′( )

c 0 0 c
c

ù
(34)

which tells us that there are only twice as many 0-neighbors in ú  as
in ′
û

. Hence,

M M
ü ü ü ü

( ) ( ) = ′( ) ′( )Γ Γ2 (35)

or

Γ Γ
ý ýþ þ þÿþ( ) = ′( )

≤

′( )+

( )

− ( ) ( )

2
2

2

1

1 2

k

k

n R . (36)
The neighbor ratio can now be studied for a sequence of codes �
such that n �( )  approaches infinity and R �( ) approaches a constant
R . The resulting asymptotic neighbor ratio

Γ∞( ) = >R R0 0if (37)

contradicts the hypothesis above of R = 1 2 being the threshold for
all types of binary linear block codes.

The small neighbor ratio of codes of the type (33) can be
explained in the light of property (v) in Section III. In a code that
contains no right angles, all codewords are neighbors of each other,
whereas there are few neighbors in a code with many right angles.
There are very many right angles in the code generated by (33),
since half of the rows of Gë  are orthogonal to the other half.

There are cyclic codes as well that contradict the hypothesis.
Suppose, for example, that ′( )g x  is a generator polynomial for a
code ′
�

, and consider the code ′′
�

 with length n n′′( ) = ′( )
� �

2
generated by ′′( ) = ′( )( ) =g x g x 2  ′( )g x2 . This code is identical to the
direct sum code �  given by (33), except for a reordering of the bits.
Other aspects of binary cyclic codes with even lengths are discussed
in [29] and [30].

The purpose of this example is to point out the possibility to
design codes with R �( ) < 1 2 for which the Voronoi region (4) is
less complex. However, the considered code is not a very good one.
Its minimum weight is equal to the minimum weight of a half as
long code. Hence, since d n′( ) ′( ) ≤

� �
1 2 (see, e.g., [31, p. 167]),

d n
	 	

( ) ( ) ≤ 1 4. In fact, a minimum weight as low as this is a
necessary requirement for incompressible codes with few neighbors.
Any class of incompressible codes with higher minimum distance
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follows (14), having a threshold at R = 1 2, according to the
following theorem.

Theorem 9: Γ∞( ) =R 1 for any class of incompressible binary
linear block codes 
  that satisfies d n

� �
( ) ( ) > 1 4.

The proof of this theorem is similar to the proof of Theorem 4.
The set ��
 �\ 0( ) is bounded using the left-hand side of Theorem
1 in combination with Theorem 3, for incompressible codes. The
proof is completed by letting n �( )  approach infinity, as in Corollary
6. We omit the details.

In a sense, Theorem 9 is the complement of Corollary 6, being
derived from the other half of Theorem 1. However, note that
Corollary 6 is not constrained to incompressible codes; this
constraint was removed through Theorem 5. Somewhat surprisingly,
the same generalization is not possible for Theorem 9. As a
counterexample, consider a code �  that is formed as the direct sum
of a 2 1 2 1a aa−[
�

]−, ,  dual Hamming code and a 2 1 21 1a a− −[
�

], ,
repetition code. The created code, which is compressible, satisfies
d n
� �

( ) ( ) > 1 3 and Γ �( ) = 1 2 for any a .
Theorem 9 might appear to hold for codes with any rate R �( ),

thus contradicting Corollary 6. However, a constraint on R �( ) for
long codes is implicit in the condition d n

� �
( ) ( ) > 1 4. The

McEliece-Rodemich-Rumsey-Welch bound [32], which is the best
known upper bound on the rate of long binary codes with a given
ratio d n

� �
( ) ( )  [33, p. 81], assures that if d n

� �
( ) ( ) > 1 4, then

R �( ) < 0 354.  as n �( ) → ∞.

VIII. SUMMARY

The Voronoi regions of binary linear block codes have been studied,
with special emphasis on their number of facets. The neighbor ratio,
which is the normalized number of facets of a Voronoi region, was
investigated as a function of the rate. For almost all long codes with
R < 1 2, the neighbor ratio is close to 1. This was showed by
averaging the number of facets over the set of all binary linear block
codes of the same length and rate. A counterexample was also given
to demonstrate that there indeed exists some long low-rate codes
with a low neighbor ratio, even though such codes are generally bad
in terms of the minimum distance.

For rate values that satisfy R > 1 2, however, the neighbor ratio
is close to 0 for all sufficiently long codes. In contrast to the low-
rate case, this property holds without any exceptions, as proved
through Theorem 5.

In summary, the asymptotic neighbor ratio as a function of the
rate is a step function for almost all classes of codes, with a
transition from 1 to 0 at a rate equal to one half. This theoretical
results was well predicted by the computation of the Voronoi
neighbors in a number of well-known codes. It was observed that
the longer the code, the closer the asymptotic neighbor ratio adheres
to the step function.
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