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Abstract—The Voronoi regions of a block code govern many aspects of the code’s

performance on a Gaussian channel, and they are fundamental instruments in, for example, error

probability analysis and soft decision decoding. This paper presents an efficient method to find the

boundaries of the Voronoi regions for an arbitrary binary linear block code. Two theoretical results

together lead to the Voronoi regions. First, it is shown that the question of Voronoi neighborship

can be reduced into testing a simpler relation, called Gabriel neighborship. Second, a fast method to

recognize Gabriel neighbors is proposed. These results are finally employed to describe the

Voronoi regions for the Golay codes and several BCH codes, including Hamming codes.

Index Terms—Linear block codes, Euclidean codes, Voronoi regions, soft decision decoding.
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I . INTRODUCTION

The Voronoi region appears in all applications where analog input vectors are represented as

elements of a discrete point set, provided that the Euclidean distance is the entity to be minimized.

The Euclidean distance is an appropriate distortion measure for a wide class of detection rules, such

as MMSE and, under some assumptions, MAP and ML. Especially, the Gaussian channel is

strongly connected to the Euclidean distance criterion. If this distortion measure is used by a soft

decision decoder [1, pp. 26–30 and 141–180; 2, pp. 464–473], then the set of all demodulator

output blocks that would be decoded as the same codeword forms a Voronoi region.

Considerable efforts have been devoted to the problem of computing Voronoi regions for

general point sets [3]. One common solution is to project the point set onto the surface of a

hypersphere in one higher dimension, and then apply a convex hull algorithm on this transformed

point set [4, pp. 95–100 and 257–261; 5, pp. 246–248]. A different approach is to employ linear

programming [6, 7]. In [8, p. 41], some additional references on methods for the construction of

Voronoi regions are mentioned.

The special case when the point set constitutes a lattice was thoroughly covered by Conway and

Sloane [8, esp. Chapters 4 and 21]. Fast methods have been developed for different classes of

lattices. Consequently, the Voronoi regions are known for many important lattices.

This paper considers another special case, binary linear block codes. Knowledge of their

Voronoi regions is valuable for the theoretical analysis of codes and their geometrical properties.

“The shape of the Voronoi region determines almost all properties of [the code] that are important

for communications,” as Forney stated [9].

Slepian pioneered in the study of group codes1 in Euclidean space and gave some general

1 Slepian’s definition of “group codes,” which allows for non-integer point sets, is different from the algebraic

definition that is usual in error-correcting coding [1, p. 10]. However, all binary linear block codes belong to both
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theorems on their Voronoi regions [10]. The relation between block codes and lattices was analyzed

by Conway and Sloane [11], who also gave a covering summary of soft decision decoding

algorithms for various types of both binary codes and lattices. Gao, Rudolph, and Hartmann

defined a class of spherical codes, derived from maximal-length (simplex) codes, whose Voronoi

regions have a special structure [12]. A decoding algorithm utilizing this structure was proposed for

the class. Forney introduced the class of geometrically uniform codes [9], which includes both

Slepian group codes (and thereby binary linear block codes) and lattices, and developed some

general properties of their Voronoi regions. Recently, Butovitsch presented a soft decision

decoding algorithm based on Voronoi regions and described the regions for some codes [13, Parts

D and E]. He also gave a useful approximation of Voronoi regions, and applied it in a decoder.

The subject of the present paper is the problem of determining the Voronoi regions for an

arbitrary binary linear block code. The outline is as follows. The notation and terminology to be

used in the paper is introduced in section II. The two most important concepts are Voronoi

neighbors and Gabriel neighbors. Section III is a treatment of binary linear block codes from a

geometrical point of view. This leads to the theorem that all hyperplanes that bound the Voronoi

region of a codeword correspond to Gabriel neighbors of the codeword. Section IV presents a fast

method to recognize Gabriel neighbors. In Section V, these theoretical results are employed to find

the Voronoi regions for some codes of common interest. Section VI is a summary.

II. PRELIMINARIES

Consider a set of M  points in n ,     C = { }c c1, ,L M , and the distance measure

d x y x y,( ) = − 2 , where the norm z 2  equals the squared Euclidean distance z z⋅ . If all vectors

in n  are grouped together according to which of the points in   C  they are closest to, space will be

types of group codes.
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c1 c2
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Fig. 1. Seven points in n  and their Voronoi regions.

The points c1 and c2  are Voronoi neighbors, but not

Gabriel neighbors.

partitioned into Voronoi regions. The Voronoi region   Vi  of a point   ci ∈C  is defined as the set of

vectors in n  that are closest to ci , that is,

  V Ci
n

id d= ∈ ( ) ≤ ( ) ∀ ∈{ }x x c x c c: , , , . (1)

In case of a tie between two or more points in   C , the vector belongs to more than one Voronoi

region. However, no vector can belong to the interior of more than one Voronoi region. Fig. 1

shows a set of seven points and the two-dimensional Voronoi region of each point.

Each inequality in (1) defines a half-space, a semi-infinite region bounded by a hyperplane. The

Voronoi region, as defined by the M  inequalities in (1), is the intersection of such half-spaces, that

is, a convex polytope in n  dimensions. The polytope has usually considerably fewer facets than

M , which is to say that several of the inequalities are redundant. The same region can be described

by a subset of them,

  V Ni
n

i id d= ∈ ( ) ≤ ( ) ∀ ∈{ }x x c x c c: , , , . (2)
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The minimal set   N i  for which the right-hand side equals the Voronoi region (1) is called the set of

(Voronoi) neighbors of ci . The point itself, ci , obviously does not belong to   N i . In Fig. 1, c2  is

an example of a neighbor of c1.

An equivalent definition is that two points in   C  are neighbors if their Voronoi regions have an

( n − 1)-dimensional facet in common, that is if

  ∃ ∈ ( ) = ( ) < ( ) ∀ ∈ { }x x c x c x c c c cn
i j i jd d d: , , , , \ ,C . (3)

Note the use of a strict inequality. That two Voronoi regions share a lower-dimensional face does

not imply their being neighbors in the sense defined here.2 This convention is significant for the

classification of degenerate point sets, see Section IV.

A related concept is Gabriel neighbors [14; 4, pp. 116–117]. Two points ci  and c j  in   C  are

Gabriel neighbors if

  d d dij i ij j ij i jm c m c m c c c c, , , ; \ ,( ) = ( ) < ( ) ∀ ∈ { }C , (4)

where mij  is the vector halfway between ci  and c j ,

m c cij i j= +( )1

2
. (5)

An interpretation of this definition is that ci  and c j  are Gabriel neighbors if the straight line joining

the two points goes directly from   Vi  to   V j , without touching a third Voronoi region. For example,

c1 and c2  in Fig. 1 are not Gabriel neighbors. In consequence with the definition (3) of Voronoi

neighbors, Gabriel neighbors (4) are also defined using a strict inequality.

2 There is no uniform agreement in the computational geometry literature regarding the borderline between neighbors

and non-neighbors. The strict inequality in (3), which is used throughout this paper, is necessary for a minimal

description of Voronoi regions.
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If two points are Gabriel neighbors, then they are also Voronoi neighbors. This is obvious from

a comparison between (3) and (4), and it holds for any point constellation. The converse, however,

is not necessarily true. For a general constellation, the set of Gabriel neighbors is a subset of the set

of Voronoi neighbors.

We now confine the discussion to point sets in which each point ci  is a codeword in an n k,( )

binary linear block code. The bit values 0 and 1 are interpreted as coordinates, so that   C ⊆ { }0 1, n

and M k= 2 .3 Two types of addition will be used, component-wise, on binary vectors: x y⊕

denotes modulo-2 integer addition, whereas x y+  retains its normal real-valued meaning.

The purpose of the next section is to prove that for this special class of point sets, the two

neighbor concepts defined above are equal.

III. VORONOI NEIGHBORS ARE GABRIEL NEIGHBORS

If two codewords in a binary linear block code are Voronoi neighbors, then they are also

Gabriel neighbors. That is, the relation illustrated by c1 and c2  in Fig. 1 cannot exist for a binary

linear block code. We prove this indirectly, by considering two codewords that are not Gabriel

neighbors and showing that they cannot be Voronoi neighbors either. In order to make the proof

more accessible, we introduce three lemmas before tackling the main theorem. The first lemma

states that the midpoint of the line joining any two codewords does not lie in the interior of any

Voronoi region.

Lemma 1: If ci  and c j  are two codewords in a binary code, then the vector mij  halfway

between them lies on the boundary of both   Vi  and   V j .

3 To facilitate the simultaneous treatment of codewords as binary sequences and as points in Euclidean space, the

usual mapping 0 1 1 1→ → −{ },  is not applied in this paper.
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Proof: Let hij  be the Hamming distance between ci  and c j . Then hij  components differ

between ci  and c j , and the corresponding components of mij  will be equal to 1/2. Since the

components of an arbitrary codeword c in a binary code are either 0 or 1, the distance from this

codeword to mij  satisfies the bound

d hij ijm c,( ) ≥ 1

4
. (6)

Equality holds for ci  and c j , so mij  cannot be closer to any other codeword than to these two.

Thus, both   Vi  and   V j  contain mij , according to the definition (1). o

Note that, because of the strict inequality in (4), Lemma 1 does not imply that all pairs of

codewords are Gabriel neighbors.

Lemma 2: For a binary code, if mij  belongs to a third Voronoi region   Vl , then

c c c cl i l j−( ) ⋅ −( ) = 0. (7)

Proof: Lemma 1 and (1) together imply that

d dl ij i ijc m c m, ,( ) = ( ), (8)

which after expansion of the squares, cancellation of common terms, and factorization yields (7).o

Lemma 3: If three Voronoi regions in a binary linear block code meet at mij , then a fourth

Voronoi region also reaches this vector. The fourth codeword is, if the first three are ci , c j , and

cl , equal to

c c c cm i j l= + − . (9)

Proof: A reordering of the terms in (9) yields c m m cm ij ij l− = − , which implies that

d dij m ij lm c m c, ,( ) = ( ) . This distance is according to the assumptions also equal to d ij im c,( ) and
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d ij jm c,( ), so the four points have the same distance to mij .

What remains to prove is that the point cm  belongs to the code. We accomplish this by showing

that

c c c cm i j l= ⊕ ⊕ (10)

when ci , c j , and cl  satisfy Lemma 2. Consider the inner product in (7). It can be expanded as

c c c cl
b

i
b

l
b

j
b

b

n
−( ) −( )

=

−
∑

0

1
, (11)

where cb  denotes the b th component of the vector c. The terms c c c cl
b

i
b

l
b

j
b−( ) −( ) are all non-

negative, because the components are either 0 or 1. Since the sum (11) is equal to zero (Lemma 2),

all of the terms must be zero,

   c c c c b nl
b

i
b

l
b

j
b−( ) −( ) = = −0 0 1; , ,L . (12)

An equivalent way to write this relation is

  0 1 0 1≤ + − ≤ = −c c c b ni
b

j
b

l
b ; , ,L , (13)

which is easily verified by insertion of all possible combinations of bit values c c ci
b

j
b

l
b, ,( ). Thus,

c c c c c c

c c c
i j l i j l

i j l

+ − = + −( )
= ⊕ ⊕

mod

,

2

(14)

which is a codeword. o

The algorithm to be introduced in the next section is based upon a generalization of this lemma,

namely that the number of Voronoi regions meeting at a midpoint mij  is always a power of two.

This will be shown using Theorem 2.
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These three lemmas constitute the background for the main theorem of this paper, namely that

the Voronoi and Gabriel neighbor concepts are equivalent.

Theorem 1: All Voronoi neighbors in a binary linear block code are Gabriel neighbors.

Proof: Suppose that ci  and c j  are not Gabriel neighbors. Then Lemmas 2 and 3 hold, so

there exist some codewords cl  and cm  that satisfy (7) and (9). Consider an arbitrary vector x  in

n . Its distance to cm  is

x c x c c c c c

x c c c c c

x c c c c c c c

x c x c c c x c

− = −( ) + −( ) + −( )
= −( ) + −( ) + −

+ −( ) ⋅ −( ) + −( ) ⋅ −( )
= − + −( ) + −( ) − −

m l l i l j

l l i l j

l l j l i l j

i l l j l

2 2

2 2

2 2 2

2 2

, (15)

where the first equality is due to (9) and the third to (7), or equivalently

d d d dm l i jx c x c x c x c, , , ,( ) + ( ) = ( ) + ( ). (16)

This implies that there does not exist any vector x ∈ n  for which

d d di j m lx c x c x c c c c, , , ; ,( ) = ( ) < ( ) ∀ ∈{ } (17)

and consequently (3) is not satisfied. The codewords ci  and c j  are not Voronoi neighbors. o

We emphasize that the two restrictions for this theorem, and thus for the Voronoi region

determination in the next section, are that the block code is linear and binary. Obviously, non-

linear codes do not in general satisfy Lemma 3. That non-binary codes do not always follow the

theorem is easily demonstrated through an example. Consider the simple ternary linear block code

consisting of the three codewords 0 0 0 0, , ,( ) , 1 1 1 2, , ,( ) , and 2 2 2 1, , ,( ) . The third codeword is a

Voronoi neighbor of the zero codeword, but not a Gabriel neighbor.



10

IV. DETERMINATION OF VORONOI REGIONS

Several methods exist to determine the Voronoi regions for an arbitrary finite point set.

However, two properties make them intractable for the special case when the point set is formed by

a binary block code. First, they are slow. In particular, the time required to examine a point set

increases rapidly with the dimension (block length), cf. [15]. Second, they do not handle the case

of degenerate point sets properly, that is, when more than n + 1 Voronoi regions meet at the same

vector in n . This situation has zero probability for a random point set (assuming continuous

probability density functions), but it occurs frequently for block codes. For example, the

codewords in any binary code lie on vertices of a hypercube. Its center,   1 2 1 2, ,L( ), belongs to all

Voronoi regions, but this does not mean that all codewords are neighbors of each other, see the

definition (3). The problem with degenerate point sets is that an arbitrarily small numerical error

will make the difference between classifying a pair of points as neighbors or not. This calls for

integer computations.

Voronoi regions for any point set are convex polytopes. For a binary code, these polytopes

have a special structure. Since all codewords in a binary code lie on the surface of the same

hypersphere, Voronoi regions are conical, that is, they have only one vertex, which is at the center

of the hypersphere, and extend infinitely in some direction [10]. In other words, if x  belongs to a

certain Voronoi region, so does   α αx + −( )( )1 1 2 1 2, ,L  for any α ≥ 0.

A description of the Voronoi regions for a given point set requires the knowledge of their

n −( )1 -dimensional sides (facets), that is, the Voronoi neighbors of all points must be found. To

decide whether two given points in an unstructured point set are Voronoi neighbors is, as

mentioned, a time-consuming task. A test for Gabriel neighbors is much faster. In the previous

section, it was shown that the Gabriel test can replace the Voronoi test, if the point set is a binary

linear block code.
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The standard method to test whether two given points ci  and c j  in   C  are Gabriel neighbors is

to compute mij  and evaluate the comparisons in (4). Faster methods to find the Gabriel neighbors

in an arbitrary point set have been developed [14], but if the point set is a binary linear block code,

this fact can be exploited to provide a further complexity reduction. First, we concretize what being

Gabriel neighbors means in a binary code.

Theorem 2: Whether two codewords in a binary code are Gabriel neighbors depends only on

the positions where both codewords have the same value. If and only if the code does not contain

any other codeword that has the same values in these positions, the two codewords are Gabriel

neighbors.

Proof: This theorem is an extension of Lemma 1. It was shown that (6) holds with equality

for c c= i  and c c= j . Suppose that there exists a third codeword that agrees with mij  in all

positions where mij  is not 1/2, that is, in positions where ci  and c j  are equal. Then (6) is an

equality for this codeword, too, which violates (4). If no such codeword exists, then (4) is satisfied

and ci  and c j  are Gabriel neighbors. o

Because of the symmetrical properties inherent in a linear block code, geometrical problems can

be transformed into a form where the zero codeword is involved. Specifically, two codewords ci

and c j  are neighbors if and only if c ci j⊕  and   0 = ( )0 0, ,L  are neighbors. Therefore it is

sufficient to specialize Theorem 2 into situations where one of the two codewords is 0 .

Corollary 1: A codeword c in a binary code is a neighbor of 0  if and only if there is no more

codeword having zeros where c has zeros.

The obvious way to perform this test it to generate all codewords in the code, comparing each

one of them to c. The computational complexity of this approach is O n k⋅( )2 . In the Appendix, a

more efficient algorithm is presented. Instead of generating all codewords, the number of
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codewords having zeros in certain positions is found by linear row operations on the generator

matrix G . The matrix is reorganized into another valid generator matrix for the same code,

consisting of two parts: all of the last r  rows contain the specified zero pattern, and the first k r−

rows are such that no linear combination of them can yield this pattern. Then a total of 2r

codewords, including c and 0 , will contain the zero pattern. If r = 1, then c and 0  are neighbors

according to Corollary 1; if r > 1, this is not the case.4

The complexity for the test of one codeword is O n k2( ) , using the algorithm in the Appendix,

which is a considerable improvement over O n k⋅( )2 , except when k  is very small. To find all

facets of the Voronoi region of 0 , all 2 1k −  non-zero codewords have to be classified as neighbors

or not neighbors, so the complexity for the complete determination of one Voronoi region is

O n k k2 2⋅( ). The complexity for several Voronoi regions is the same as for one, since all Voronoi

regions are congruent [10].

A few observations can reduce the complexity. First, Corollary 1 is connected to the distance

properties of the code [13, Part D]. It is easily shown that all codewords with a weight equal to

      
w d dmax max ,= ( ) ( )( ) −2 11 2C C  or less, where     dr C( ) is the   r th generalized Hamming weight of

the code   C  [16], have to be neighbors of 0 . The number of codewords that satisfies this condition

can be quite large for some codes and negligible for others, depending on the weights. The

breakpoint is at about     w nmax = 2 . A promising area for future research appears to be to investigate

the relation between Hamming weight hierarchy and Voronoi regions further, and to improve the

algorithm by incorporating weight information into it. This approach is encouraged by the progress

that has been made in using generalized Hamming weights to characterize the complexity of trellises

for linear block codes [17].

Second, any known automorphism [18, pp. 229–238] of the code can be exploited to reduce

4 The value of r  is, when the algorithm in the Appendix exits, equal to k i− + 1.
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the number of codewords that need to be examined by the algorithm. For example, if the

considered code is cyclic, it is sufficient to test one representative of each cycle. (A cycle is a set of

codewords that are cyclic shifts of one another.) This reduces the number of needed Gabriel tests

by a factor close to n , since most cycles contain n  different codewords, so the total complexity is

O nk k⋅( )2 . An efficient algorithm for the generation of cycle representatives is given in [19].

The codewords in the code are not stored simultaneously. Instead, they are generated at need,

which makes the memory requirement very modest, only O nk( ) . The major part thereof is for

storage of the generator matrix.

V. VORONOI REGIONS FOR SOME COMMON CODES

The theory of the preceding sections makes it possible to obtain explicit results on the Voronoi

regions for many interesting binary linear codes. This section considers all primitive binary BCH

codes of block length n  up to 31, including the Hamming codes. Also, a few longer BCH codes

and the two binary Golay codes are discussed.

To begin with, consider the n n, −( )1  single-parity code, which consists of all binary vectors of

length n  with an even weight. If any two bits of a codeword are inverted, the result is another

codeword. Thus, the interpretation of Theorem 2 for this simple code is that two codewords are

neighbors if and only if their distance is 2, regardless of the block length n .
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TABLE I

THE FACETS OF THE VORONOI REGION OF THE ZERO

CODEWORD IN THE (15,7) BCH CODE

Codeword Number of
equivalent shifts

Neighbor of 0?

000000111010001 15 Yes
000001001110011 15 Yes
000010100110111 15 Yes
000011010010101 15 Yes
000101110111111 15 No
000110011111011 15 Yes
000111101011001 15 Yes
001001001001001 3 Yes
001011010101111 15 Yes
011011011011011 3 No
111111111111111 1 No

In the (7,4) Hamming code, the 16 codewords were compared using Theorem 2. This showed

that each codeword has 14 neighbors. A given codeword is a neighbor of all the others except the

antipodal one. Thus, the Voronoi regions for this code are 14-sided 7-dimensional polytopes,

described by (2), where     N Ci i i= ⊕ ( ){ }\ , , ,c c 1 1L , for all i .

Table I shows the results for the (15,7) BCH code, which has a minimum distance of 5. All

codewords except the zero codeword 0  are listed, exploiting the cyclic property to compress the

table. The relation to 0  (neighbor or not neighbor) is given for the codewords. Of the 127 non-zero

codewords, 108 were found to be neighbors of 0 . Table II, in which the codewords are collected

according to their Hamming weights, shows that the set of neighbors consists of all codewords

with a weight less than or equal to 9, and no others.
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TABLE II

THE NUMBER OF NEIGHBORS OF 0  WITH A GIVEN

HAMMING WEIGHT, FOR THE (15,7) BCH CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

5 18 0
6 30 0
7 15 0
8 15 0
9 30 0
10 0 18
15 0 1

All 108 19

The middle column in this type of table, which gives the weight distribution of the neighbors, is

called the local distance profile. It can be used to compute an upper bound on the error probability

for a soft decision decoder that is tighter than the usual union bound [9]. Denoting the number of

neighbors with weight w  with Lw , the error probability for equiprobable signaling over a discrete-

time channel with additive white Gaussian noise is bounded by

P L
w SNR

e w
w

n
≤ 



=

∑1
2 2 21

erfc , (18)

where SNR is the ratio between signal and noise power. The usual union bound would use the full

distance profile, that is the sum of the second and third columns, instead of Lw . For the (15,7)

BCH code, the difference between the two bounds is minor, since most codewords are included in

the local distance profile, but subsequent tables will demonstrate codes for which this is not the

case. Other bounds related to the union bound, such as Berlekamp’s tangential union bound [20],

may be improved in a similar fashion.
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The relation between neighbors and weights for the (15,11) and (31,26) Hamming codes is

shown in Tables III and IV, respectively. Note that it is not possible to conclude whether two

codewords in the (31,26) Hamming code are neighbors or not by considering the distance between

them alone. Codewords with a Hamming distance of 6 can be either type, according to Table IV.

TABLE III

THE (15,11) HAMMING CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

3 35 0
4 105 0
5 168 0
6 0 280
7 0 435
8 0 435
9 0 280
10 0 168
11 0 105
12 0 35
15 0 1

All 308 1739



17

TABLE IV

THE (31,26) HAMMING CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

3 155 0
4 1085 0
5 5208 0
6 13888 8680
7 0 82615
8 0 247845
9 0 628680
10 0 1383096
11 0 2648919
12 0 4414865
13 0 6440560
14 0 8280720
15 0 9398115
16 0 9398115
17 0 8280720
18 0 6440560
19 0 4414865
20 0 2648919
21 0 1383096
22 0 628680
23 0 247845
24 0 82615
25 0 22568
26 0 5208
27 0 1085
28 0 155
31 0 1

All 20336 67088527



18

TABLE V

THE (23,12) GOLAY CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

7 253 0
8 506 0
11 1288 0
12 1288 0
15 0 506
16 0 253
23 0 1

All 3335 760

TABLE VI

THE (24,12) GOLAY CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

8 759 0
12 2576 0
16 0 759
24 0 1

All 3335 760

The Voronoi regions for the (23,12) Golay code all have 3335 facets, see Table V. Adding a

parity bit to create the (24,12) Golay code (Table VI) does not topologically alter the Voronoi

regions, even though the inter-codeword distances are changed.

In both the (31,16) and the (31,21) BCH codes, summarized in Tables VII and VIII, there exist

neighbors that have a greater weight than some non-neighbors. The (15,5), (31,6), and (31,11)

BCH codes are not tabulated here, because their Voronoi regions have always M − 2  facets. All

non-trivial pairs of codewords are neighbors, just as in the (7,4) Hamming code.
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TABLE VII

THE (31,16) BCH CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

7 155 0
8 465 0
11 5208 0
12 8680 0
15 13888 4371
16 13888 4371
19 0 8680
20 0 5208
23 0 465
24 0 155
31 0 1

All 42284 23251
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TABLE VIII

THE (31,21) BCH CODE

Hamming
weight

Number of
neighbors

Number of
non-neighbors

5 186 0
6 806 0
7 2635 0
8 7905 0
9 18910 0
10 35092 6510
11 41664 43896
12 0 142600
13 0 195300
14 0 251100
15 0 301971
16 0 301971
17 0 251100
18 0 195300
19 0 142600
20 0 85560
21 0 41602
22 0 18910
23 0 7905
24 0 2635
25 0 806
26 0 186
31 0 1

All 107198 1989953

The tables show, not surprisingly, that for a fixed n , the percentage of the codewords that are

neighbors decreases with increasing k . This behavior is summarized, for the BCH codes, in Figs.

2 and 3. As endpoints in the diagrams, the n,1( ) repetition code and the n n,( ) universe code, which

fills the binary code space, are included.
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Fig. 2. The probability that two arbitrary codewords in a

primitive BCH code with n = 15 are neighbors.
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Fig. 3. The probability that two arbitrary codewords in a

code with n = 31 are neighbors.

The transition between few and many neighbors is surprisingly fast. For k  values up to

approximately one third of n , practically all pairs of codewords are neighbors of each other, and

for k  values above two thirds, almost none of them are. Fig. 4, which shows the corresponding

curve for some primitive 63,k( ) BCH codes, suggests that the same tendency holds for larger block

lengths n , too. This curve also demonstrates the algorithm’s capability to handle large codes.

Voronoi regions were determined for code sizes up to k = 30. It took a couple of hours to examine

the 1 billion codewords of the (63,30) BCH code, using a modern workstation.
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Fig. 4. The probability that two arbitrary codewords in a

code with n = 63 are neighbors.

VI. SUMMARY

The paper contains results on two levels. It tabulates the Voronoi regions for several binary

linear block codes, mostly BCH codes, and it presents an efficient method to determine such

Voronoi regions. The study of different block codes displays a strong connection between the ratio

k n/  and the percentage of codeword pairs that are neighbors of each other. Another conclusion is

that the codewords that bound the Voronoi region of a given codeword are not necessarily those

that are closest to this codeword.

The employed algorithm is based primarily on two theoretical results for binary linear block

codes. First, two codewords are Voronoi neighbors if and only if they are Gabriel neighbors.

Second, a simple reorganization of the generator matrix shows whether two codewords are Gabriel

neighbors.
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APPENDIX:
AN ALGORITHM TO DECIDE WHETHER
c BOUNDS THE VORONOI REGION OF 0

Input:   g g1, ,L k , the rows of a k n×  generator matrix G . Destroyed in the algorithm.

c, a codeword to test.

Exits:  NEIGHBOR if c and 0  are neighbors, otherwise NOT NEIGHBOR.

Algorithm:

Set i  = 1.

For p  = the position of all zeros in c:

Set firstone = TRUE.

For j  = i  to k :

If g j  has a one in position p :

If firstone:

Set pivot  = j .

firstone = FALSE.

else:

Set g j  = g gj pivot⊕ .

end.

end.

end.

If not firstone:

Swap gi  and g pivot .

Set i  = i + 1.

If i  = k : Exit(NEIGHBOR).

end.

end.

Exit(NOT NEIGHBOR).
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