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Over the past years, the use of a presumed probability density function (PDF) for combustion progress variable or/and mixture
fraction has been becoming more and more popular approach to average reaction rates in premixed and partially premixed
turbulent flames. Commonly invoked for this purpose is a beta-function PDF or a combination of Dirac delta functions, with
the parameters of the two PDFs being determined based on the values of their first and second moments computed by integrating
proper balance equations. Because the choice of any of the above PDFs appears to be totally arbitrary as far as underlying physics
of turbulent combustion is concerned, the use of such PDFs implies weak sensitivity of the key averaged quantities to the PDF
shape. The present work is aimed at testing this implicit assumption by comparing mean heat release rates, burning velocities, and
so forth, averaged by invoking the aforementioned PDFs, with all other things being equal. Results calculated in the premixed case
show substantial sensitivity of the mean heat release rate to the shape of presumed combustion-progress-variable PDF, thus, putting
the approach into question. To the contrary, the use of a presumed mixture-fraction PDF appears to be a sufficiently reasonable
simplification for modeling the influence of fluctuations in the mixture fraction on the mean burning velocity provided that the
mixture composition varies within flammability limits.

1. Introduction

When simulating combustion of a turbulent gas mixture,
characterized by large magnitude of temperature fluctua-
tions, the key challenge consists of averaging (or filtering if
large eddy simulation is concerned) quantities that depend
nonlinearly on the temperature, for example, reaction rates,
density ρ, and so forth. To resolve the problem, fresh
reactants and equilibrium combustion products are often
assumed to be separated by thin, inherently laminar, self-
propagating layers (sometimes called flamelets) that are
wrinkled and stretched by turbulent eddies [1–3]. Within the
framework of such a paradigm, the probability of finding
intermediate (between unburned and burned) states of
the mixture is assumed to be much less than unity and
turbulent flame propagation is addressed by solving a bal-
ance equation for the Favre-averaged combustion progress
variable c̃ ≡ ρc/ρ, which is equal to zero (unity) in unburned
(burned) mixture and is often associated with properly
normalized temperature. Accordingly, the probability of

finding combustion products is equal to the Reynolds-
averaged combustion progress variable c and the Reynolds-
averaged density ρ is evaluated as follows [4]:

ρ = ρu(1− c) + ρbc, (1)

ρbc = ρc̃, (2)

where subscripts u and b designate unburned and burned
mixture, respectively. To close the c̃-equation, the mean
mass rate W of product creation is modeled by considering
the influence of turbulence on flamelet surface area and
internal structure. Alternatively, a G equation [5] is also
invoked to simulate premixed turbulent combustion within
the framework of the same paradigm of thin flamelets. In the
latter case, turbulent flame speed St should be modeled.

While significant progress was already made by invoking
the above approaches to simulate premixed turbulent flames,
certain important problems have not yet been resolved.
For instance, first, the influence of turbulent fluctuations
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in equivalence ratio F on W and St should be thoroughly
studied, because the composition of unburned reactants
is inhomogeneous in many internal combustion engines
developed currently to respond environmental challenges.
Second, to simulate emissions from the engines, not only a
single global rate W but also rates of pollutant formation
should be averaged invoking a chemical mechanism of
combustion. Third, in sufficiently intense turbulence, the
paradigm of thin flamelets does not work properly [1–3] and,
in particular, (2) may be wrong.

Among methods developed to resolve the above prob-
lems, the so-called presumed probability density function
(PDF) approach has been becoming more and more popular
tool over past years. The approach consists of specifying a
shape of a Favre PDF ρ(ξ)P(ξ)/ρ for a random variable ξ
associated with either c or mixture fraction f , which is com-
monly used instead of F in numerical simulations of partially
premixed or nonpremixed flames [5], because variations in
f are limited by unity. If the shape of ˜P(ξ) is specified,

the PDF may be determined by using the first ˜ξ, second

ρ(ξ)ξ′′2/ρ, and eventually higher moments ρ(ξ)ξ′′n/ρ, with
these moments being computed by solving proper balance
equations closed by invoking ˜P(ξ). Such an approach was
already used for evaluating W = ∫ 1

0 W(c)P(c)dc [6–10],
or
∫ 1

0 W(c̃, f )P( f )df and ρb = ∫ 1
0 ρb( f )P( f )df [11–13],

or St = ∫ 1
0 St( f )P( f )df and ρb [14–19], or W =

∫∫ 1
0W(c, f )P(c, f )dcdf and ρ = ∫∫ 01

ρ(c, f )P(c, f )dcdf [20–
25]. Note that the use of the G-equation to simulate partially
premixed burning [14–19] implies that (1) holds provided
that ρu and ρb are substituted with ρu( f ) and ρb( f ),
respectively, with the dependence of the unburned density
on the mixture fraction being commonly disregarded. In the
following, the density will be normalized using the unburned
gas density, that is, ρu = 1.

It is worth also stressing that the well-known Bray-
Moss-Libby (BML) PDF, that is, the sum of two Dirac delta
functions associated with c = 0 and 1 [4], does not allow
us to average W(c), because W(c = 0) = W(c = 1) =
0. Accordingly, the following discussion is solely restricted
to PDFs presumed in the range of 0 < ξ < 1, while the
BML PDF, which does not address the intermediate range of
0 < c < 1, is beyond the scope of the present paper.

In the vast majority of the cited papers, two basically
different shapes of PDFs were presumed. First, a beta-
function PDF given by the following expression

P(ξ, x, t) = Γ(a + b)
Γ(a)Γ(b)

ξa(x,t)−1(1− ξ)b(x,t)−1 (3)

was introduced into the combustion literature by Janicka
and Kollmann [26] who simulated a turbulent nonpremixed
flame and considered P( f , x, t), that is, ξ = f in (3). Later,
a beta-function PDF P(c, x, t), that is, (3) with ξ = c,
was applied to premixed and partially premixed flames in a
couple of papers [6–13, 15, 17, 20, 21]. Here, t is time, vector
x is associated with spatial coordinates, and a ratio of gamma
functions Γ(z) ≡ ∫∞0 ηz−1e−ηdη is used in order to satisfy the
normalizing constraint of

∫ 1
0 P(ξ)dξ = 1.
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Figure 1: Beta-function PDFs calculated using (3) for (1) ξ = 0.5
and g = 0.05, (2) ξ = 0.5 and g = 0.15, (3) ξ = 0.5 and g = 0.40,
(4) ξ = 0.1 and g = 0.15, (5) ξ = 0.8 and g = 0.25.

Equation (3) involves two unknown parameters a(x, t)
and b(x, t), which are commonly evaluated using the follow-
ing expressions:

a(x, t) = ξ
(

g−1 − 1
)

, b(x, t) =
(

1− ξ
)

(

g−1 − 1
)

,

(4)

where

g ≡ ξ′2

ξ
(

1− ξ
) (5)

is a segregation factor. To do so, the first ξ(x, t) and second

ξ′2(x, t) moments are determined by solving proper balance
equations. If Favre-averaged balance equations are integrated

to compute ˜ξ(x, t) and ρξ′′2(x, t), then (i) the right hand side
(RHS) of (3) is used to approximate the Favre PDF

˜P(ξ, x, t) ≡ ρ(ξ)P(ξ, x, t)
ρ(x, t)

(6)

and (ii) ξ(x, t) and ξ′2(x, t) are substituted with ˜ξ(x, t) and

ρξ′′2(x, t)/ρ(x, t), respectively, in (4) and (5).
The shape of the beta-function PDF is very flexible and

looks like either a Gaussian function or the sum of two Dirac
delta functions at g � 1 and 1 − g � 1, respectively, see
Figure 1. For instance, if a < 1 (or b < 1), then the PDF given
by (3) tends to infinity and resembles Dirac delta function
at ξ → 0 (or ξ → 1). However, contrary to Dirac delta
function, substitution of (3) into the integral

∫ ε
0 P(ξ)dξ with

ε → 0 yields vanishing probability of finding ξ = 0, for
example, vanishing probability of finding unburned mixture
in the case of premixed combustion (ξ = c). Indeed, if c� 1
and g differs markedly from zero and unity, then, a � 1,
Γ(a + b) ≈ Γ(b), and the above integral is approximately
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equal to εa/[aΓ(a)]. Moreover, if a � 1, then, Γ(a) ≈ a−1,
because Γ(z + 1) = zΓ(z) and Γ(1) = 1. Therefore, in the
considered example, the integral

∫ ε
0 P(c)dc ≈ εa vanishes as

ε → 0, that is, the probability of finding unburned mixture
(in the case of premixed combustion) or oxidizer (in the
case of nonpremixed burning) vanishes. Similarly, one can
easily show that the probability of finding burned mixture
(in the case of premixed combustion) or fuel (in the case
of nonpremixed burning) also vanishes if the beta-function
PDF is invoked. This basic limitation of the approach should
be borne in mind.

Second, another presumed PDF, that is, a combination of
Dirac delta functions δ(ξ)

P
(

c, f , x, t
) = α(x, t)δ[c − c1(x, t)]δ

[

f − f1(x, t)
]

+ [1− α(x, t)]δ[c − c2(x, t)]δ
[

f − f2(x, t)
]

(7)

was introduced by Libby and Williams [27] to simulate
partially premixed flames. The second term on the RHS is
multiplied with factor [1 − α(x, t)] in order to satisfy the
normalizing constraint of

∫∫ 1
0P(c, f )dcdf = 1.

The use of (7) substantially simplifies averaging reaction
rates, for example,

W(x, t) = α(x, t)W[ξ1(x, t)] + [1− α(x, t)]W[ξ2(x, t)]
(8)

if we consider a double-delta-function PDF

P(ξ, x, t) = α(x, t)δ[ξ1(x, t)− ξ]

+ [1− α(x, t)]δ[ξ2(x, t)− ξ]
(9)

for a single random variable ξ. However, evaluation of the
parameters α(x, t), ξ1(x, t), ξ2(x, t) is more difficult, because

the first two moments ξ(x, t) and ξ′2(x, t) are not sufficient
to determine the three unknown parameters and the system
of three nonlinear algebraic equations

ξ(x, t) = α(x, t)ξ1(x, t) + [1− α(x, t)]ξ2(x, t),

ξ′2(x, t) = ξ2(x, t)− ξ
2
(x, t)

(10)

= α(x, t)ξ2
1 (x, t) + [1− α(x, t)]ξ2

2 (x, t)− ξ
2
(x, t),

(11)

and, for example,

ξ′3(x, t) = ξ3(x, t)− 3ξ(x, t)ξ′2(x, t)− ξ
3
(x, t)

= α(x, t)ξ3
1 (x, t) + [1− α(x, t)]ξ3

2 (x, t)

− 3ξ(x, t)ξ′2(x, t)− ξ
3
(x, t)

(12)

should be solved for this purpose. To avoid such numerical
complications, Ribert et al. [22] have proposed a simplified
model that yields

ξ1(x, t) = ξ(x, t)
[

1− g1/2(x, t)
]

,

ξ2(x, t) = ξ(x, t) +
[

1− ξ(x, t)
]

g1/2(x, t),

α(x, t) = 1− ξ(x, t)

(13)

in the case of a single random variable ξ. Note that the
Reynolds-averaged moments ξn(x, t) used in the above equa-
tions may be substituted with the Favre-averaged moments
ρξn(x, t)/ρ(x, t) provided that P(ξ, x, t) is simultaneously
substituted with the Favre PDF defined by (6).

In the following, we will call the presumed PDF given by
(7) or (9) and (10)–(12) the 2δ-PDF, while the presumed
PDF given by (7) or (9) and (13) will be called the R-
2δ-PDF, by referring to the paper by Ribert et al. [22].
Moreover, the dependencies of the above moments, of the
parameters of presumed PDFs, and so forth on time t and
spatial coordinates x will not be specified for the sake of
brevity.

As far as premixed or partially premixed turbulent
combustion is concerned, neither the beta-function shape
of the presumed PDF for ξ = c (or ξ = f ) nor (7) has
been substantiated by basic physical arguments and, to the
best of the present authors knowledge, the main reasons for
invoking either (3) or (7) consist of (i) numerical efficiency
and (ii) simplicity of implementation. Such reasons are
certainly of importance, but only if the mean reaction rate
and other key mean quantities are mainly controlled by the
first moments of a presumed PDF, but are weakly sensitive
to its shape. If, however, two different presumed PDFs

characterized by equal ξ and by equal ξ′2 yield substantially
different W , or St, or ρ, then, the use of such PDFs does
not seem to be a solid predictive approach until the shape
of one of them is justified by basic arguments or by extensive
experimental or DNS study.

The present work is aimed at (i) investigating the
sensitivity of W , St, and ρ to the shape of presumed PDFs
P(c) and P( f ) and (ii) at identifying conditions under that
the sensitivity may be considered to be sufficiently weak and
the use of the studied presumed PDFs appears to be justified.

2. Method of Research

The following analysis is based on comparison of the results
of averaging dependencies of w(c, f ), ρ(c), sL( f ), s1/2

L ( f ), and
ρb( f ) obtained by invoking presumed PDFs given by either
(3) or (7), with all other things being equal. Here, the
combustion progress variable c = (T − Tu)/[Tb( f ) −
Tu] is equal to the normalized temperature, the burned
temperature Tb depends on the mixture fraction defined as
follows f = (F − Fmin)/(Fmax − Fmin), where Fmin and Fmax

are presumed limits of fluctuations in the equivalence ratio,
w(c, f ) ≡ W(c, f )/Ω( f ) is the heat release rate W(c, f )
normalized using its maximum value Ω = max{W(c)}
calculated by varying the combustion progress variable,
sL( f ) = SL( f )/ max{SL( f )} is the laminar flame speed
SL( f ) normalized using its maximum value max{SL( f )}
calculated by varying the mixture fraction, and the densities
ρ and ρb( f ) are normalized using the unburned gas density.
The normalized laminar flame speed sL and its square root
are addressed, because variations in turbulent flame speed
St with mixture composition are mainly controlled by the
dependence of SL on the equivalence ratio and numerous
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Figure 2: Data for averaging invoking presumed PDFs. (a) Normalized heat release rates w(c) versus combustion progress variable c,
calculated for various gasoline-air mixtures, with the equivalence ratio being specified in legends. (b) Normalized laminar flame speed
sL (solid curve) and maximum heat release rate Ω (dashed curve) versus equivalence ratio F.
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Figure 3: Validation of the chemical mechanism. Symbols show experimental data, and curves have been computed. (a) Laminar flame
speed versus equivalence ratio. (1) Tu = 298 K, data by Metghalchi and Keck [29]. (2) Tu = 350 K, data by Metghalchi and Keck [29].
(3) Tu = 353 K, data by Zhao et al. [30]. (4) Tu = 500 K, data by Zhao et al. [30]. (b) Laminar flame speeds versus pressure at three different
equivalence ratios specified in legends. Tu = 373 K. Data by Jerzembeck et al. [31].

experimental data reviewed elsewhere [28] indicate that St ∝
S
q
L, with q being close to 0.5.

Dependencies to be averaged are shown in Figure 2. They
have been computed by running the PREMIX code [32] of
the Chemkin-II package [33] and using a semidetailed (111
species and 616 reactions) chemical mechanism for gasoline-
like fuel mixture (iso-octane, toluene, and n-heptane in

volumetric proportions of 55%, 35%, and 10%, resp.)
developed by Golovitchev et al. [34, 35]. Dependencies
of SL on the equivalence ratio, pressure, and temperature,
yielded by this mechanism, are compared with available
experimental data [29–31] in Figure 3, while results of
validating the mechanism against published data on ignition
delay times are reported elsewhere [35].
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We will firstly consider premixed flames. In this case, the
equivalence ratio is stationary and spatially uniform and the
f -dependent part of a presumed PDF is reduced to a single
Dirac delta function at a given f0, for example, f1 = f2 = f0
in (7). Accordingly, we will compare the normalized mean
heat release rates

w
(

c, c′2, f0
)

=
∫ 1

0
w
(

c, f0
)

P
(

c, c, c′2
)

dc, (14)

the normalized densities

ρ
(

c, c′2, f0
)

=
∫ 1

0
ρ
(

c, f0
)

P
(

c, c, c′2
)

dc, (15)

and the normalized turbulent burning velocities

ut = δt

∫∞

−∞
wdζ = δt

∫ 1

0
w

(

dc

dζ

)−1

dc (16)

obtained for various given first c and second c′2 moments
by substituting either (i) (3)-(4), or (ii) the 2δ-PDF, or (iii)
the R-2δ-PDF into the integrals on the RHSs, with ξ being
associated with c in all the three cases. Here,

ρ = 1
1 + τc

, (17)

τ = ρ−1
b − 1 is the heat release parameter, ζ = (z − z f )/δt is

the normalized spatial distance z counted along the normal
to the mean flame brush, which has a presumed thickness δt,
which was not varied in the present simulations, z f is asso-
ciated with c = 0.5, and the well-known complementary-
error-function profile [28]

c = 1− 1
2

erfc
(√

πζ
)

(18)

is invoked to calculate the last integral on the RHS of (16).
When addressing fluctuations in the mixture fraction, we

will compare the mean quantities

q
(

f , f ′2
)

=
∫ 1

0
q
(

f
)

P
(

f , f , f ′2
)

df (19)

obtained for various given first f and second f ′2 moments
by substituting either (i) (3)-(4), or (ii) the 2δ-PDF, or
(iii) the R-2δ-PDF into the integral on the RHS, with ξ
being associated with f in all the three cases. Here, q
is equal to either ρb( f ), or to sL( f ), or to s1/2

L ( f ), or
to the normalized maximum (for various c) heat release
rate ω( f ) = Ω( f )/ max{Ω( f )}, where max{Ω( f )} is the
maximum value of Ω( f ) determined by varying f , while
Ω( f ) is the maximum value of W( f , c) calculated by varying
only c.

Note that averaging w(c)-curves implies that turbulence
does not change the dependence of the normalized heat
release rate on the normalized temperature c in a premixed
flame. Moreover, averaging sL( f ), s1/2

L ( f ), and ω( f ) implies
that a partially premixed turbulent flame is associated with
an ensemble of premixed flames characterized by various
equivalence ratios.

Because the use of the 2δ-PDF requires knowledge

of the third moment ξ′3, it was evaluated invoking the

beta-function PDF P(ξ, ξ, ξ′2) and was subsequently set to
determine the 2δ-PDF. Thus, when comparing quantities
averaged invoking either the beta-function PDF or the 2δ-
PDF, both functions were characterized not only by the
same first and the same second moments, but also by the
same third moments. To the contrary, when the R-2δ-PDF
was invoked, the third moment yielded by it could differ

significantly from ξ′3 calculated using the beta-function

PDF with the same ξ and the same ξ′2. However, obtained
numerical results indicate that the beta-function and R-2δ
PDFs yield almost equal ξ′3 for the same ξ and the same g
if g ≥ 0.5 (cf. curves 1 and 2 in Figure 4(c) and note that
curves 1 and 3 are indistinguishable). When g is decreased,

the difference in ξ′3 given by the two PDFs is increased (see
Figures 4(a) and 4(b)).

3. Results: Combustion Progress Variable PDF

Figures 5 and 6 clearly show that the mean heat release rate
may be very sensitive to the shape of presumed PDF even if
two different PDFs are characterized by the same first, the
same second, and the same third moments. Such sensitivity
is weakly pronounced only at low g (see Figure 5(a)), but is
substantial even at g = 0.25 (see Figure 5(b)) and becomes
extremely strong as g → 1, see Figure 5(c).

This trend is caused by the highly nonlinear dependence
of the heat release rate on the combustion progress variable,
whereas for a weakly nonlinear function like p0 + p1ξ +
p2ξ2 + p3ξ3, its mean value controlled by the first three
moments should be the same for the two PDFs. Because the
nonlinearity of w(c) is more pronounced in lean and rich
mixtures as compared with near-stoichiometric ones (cf. the
half-widths of the computed curves plotted in Figure 2(a)),
the influence of the shape of a presumed PDF on w(c) is
enhanced by an increase in |1− F|.

Figure 5(b) indicates that the use of the δ-PDFs may
yield two peaks in the obtained dependencies of w(c). This
observation is explained in Figure 7. If the 2δ-PDF is invoked
and c is sufficiently large, then (10)–(12) may not have a
solution consistent with c2 ≤ 1 (thin dashed curve does not
reach c = 1 in Figure 7). At slightly lower c, the parameter
c1 rapidly grows with c (see thin dashed curve) and reaches
a value close to cm = 0.685 that is associated with the
maximum w(c) for F = 1, see solid curve in Figure 2(a).
Accordingly, the first term on the RHS of (8) is significantly
increased by c as c1 → cm and the mean rate w calculated
using this equation is also increased by c yielding the second
peak of the w(c)-curve. If the R-2δ-PDF is invoked (see
solid curves in Figure 7), then a similar second peak is also
observed (see curve 2 in Figure 5(b)), but the effect is less
pronounced, because c1 is substantially less than cm and
w(c1) � max{w(c)}. Accordingly, an increase in w(c1) by
c on the RHS of (8) is less pronounced and counteracted by
a decrease in α as c tends to unity, see (13). Moreover, when
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Figure 4: Dependencies of ξ′3 on ξ, calculated for the beta-function PDF (curves 1), the R-2δ-PDF (curves 2), and the 2δ-PDF (curves 3).
(a) g = 0.05, (b) g = 0.25, (c) g = 0.5.

the R-2δ-PDF was invoked, we obtained 0 ≤ c1 < c2 ≤ 1 in
all studied cases, contrary to the 2δ-PDF.

Due to the sensitivity of the mean heat release rate to the
shape of a presumed PDF, the normalized burning velocity ut
is also sensitive to the PDF shape, with the effect being most
pronounced in rich mixtures, see Figure 8. It is worth noting
that the observed decrease in the normalized ut with g does
not mean a decrease in the turbulent burning velocity with
the segregation factor, because the mean turbulent flame
brush thickness, used to evaluate ut , may also depend on
g. For the goals of the present work (i.e., comparison of
various presumed PDFs), eventual dependence of δt on g is
of minor importance and was disregarded, but it should be
taken into account in order to investigate the influence of the
segregation factor on the burning rate integral.

Figure 8 also shows that the dependencies of ut(g) calcu-
lated invoking the 2δ-PDF (bold curves) are nonmonotonic
and may have two local maxima. This behavior is explained
in Figure 9(a), which indicates that an increase in the
segregation factor results in (i) widening the computed w(c)-
curves and (ii) decreasing their maxima. The former trend is
associated with a weaker dependence of c2 on c at a larger
g, see bold curves in Figure 9(b) and note that the second
term dominates on the RHS of (8) under typical conditions.
At moderate g and small (large) c, the parameter c2 is lower
(higher) than the value of cm = 0.868 associated the peak
w(c) for the considered mixture (F = 1.6). Therefore, there
is a c such that c2(c) = cm, with this c decreasing when the
segregation factor is increased, see bold curves in Figure 9(b).
Accordingly, the parameter α evaluated for this particular
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Figure 5: Dependencies of the normalized mean heat release rate on the Reynolds-averaged combustion progress variable, calculated for the
beta-function PDF (curves 1), the R-2δ-PDF (curves 2), and the 2δ-PDF (curves 3). F = 1.0. (a) g = 0.05, (b) g = 0.25, (c) g = 0.9.

c increases, see Figure 9(c); that is, the second term on the
RHS of (8) decreases, thus, reducing max{w(c)}, which is
roughly equal to [1−α(c = cm)]w(cm). However, at a larger g,
this trend is overwhelmed by the widening of the computed
w(c)-curves and ut ∝

∫∞
−∞wdζ is increased by g. To the

contrary, if the segregation factor is sufficiently large, for
example, g = 0.8, see dotted-dashed curves in Figure 9,
then c2 > cm even for low c and a further increase in g
reduces not only (1 − α), but also w(c2) on the RHS of
(8). Accordingly, a decrease in max{w(c)} with increasing g
becomes much more pronounced, overwhelms the widening
of the computed w(c)-curves, and results in decreasing ut.

The above results, particularly Figures 5, 6, and 8, imply
that the use of a presumed PDF P(c) in order to average
heat release rate and evaluate turbulent burning velocity is

a flawed approach unless the shape of the PDF is supported
by solid physical arguments or by a wide set of experimental
or DNS data. The approach could be useful only in the case
of low g < 0.2 (cf. thin and bold curves in Figure 8), but a
typical premixed turbulent flame is characterized by a larger
g, as reviewed elsewhere, see [36, Section 3.1].

As far as the mean density is concerned, the studied
presumed PDFs yield similar dependencies of ρ(c) at various
g (cf. thin curves 1, 2, and 3 in Figure 10), because the
dependence of ρ on c, given by (17) is weakly nonlinear.
However, at moderate g, the obtained ρ(c)-curves 1–3
differ substantially from curves 4 calculated using the BML
Equations (1) and (2). When the segregation factor tends
to unity or zero, curves 1–4 become close to each other
(not shown in Figure 10). The above difference is controlled
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Figure 6: Dependencies of the normalized mean heat release rate
on the Reynolds-averaged combustion progress variable, calculated
for various equivalence ratios specified in legends and g = 0.5 using
the beta-function PDF (thin curves) and the 2δ-PDF (bold curves).
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Figure 7: Dependencies of the parameters c1 (thin curves) and
c2 (bold curves) on the Reynolds-averaged combustion progress
variable, calculated for F = 1.0 and g = 0.5 using the R-2δ-PDF
(curves 1) and the 2δ-PDF (curves 2).

by the difference between bold c̃(c)-curves 1–3, obtained
invoking the studied PDFs, and bold curves 4, computed
using (2). It is worth remembering that if (17) is averaged,
then (1) holds for any g and any P(c). Indeed, on the one
hand, the Favre-averaged quantity ρ−1 is equal to 1+τc̃ due to
(17), but, on the other hand, the Favre-averaged ρ−1 is equal
to ρ−1 by definition of a Favre-averaged quantity q̃ ≡ ρq/ρ.

As far as each of the two presumed PDFs investigated here
is concerned separately, the sum of Dirac delta functions at
c1 and c2 does not seem to be a proper approach to average
w(c) for the following reasons.
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Figure 8: Dependencies of the normalized burning rate integral
ut on the segregation factor c′2/[c(1 − c)], calculated for various
equivalence ratios specified in legends using the beta-function PDF
(thin curves) and the 2δ-PDF (bold curves).

First, Figure 11 shows dependencies of the parameters of
the 2δ-PDF (bold curves) and R-2δ-PDF (thin curves, which
are very close to the counterpart bold curves) on c, calculated
in the flamelet regime of premixed turbulent combustion
(g = 0.9). In this case, c1 � 1 (dashed curves) and 1−c2 � 1
(dotted-dashed curves). Therefore, both w(c1) and w(c2) are
small (see solid line in Figure 2(a)) and the use of the 2δ-
PDFs strongly underestimates the mean heat release rate (see
Figure 5(c)) and turbulent burning velocity, compare thin
and bold solid curves in Figure 8.

Second, using (9) with ξ = c, one can easily obtain

c = αc1 + (1− α)c2,

c(1− c) = [αc1 + (1− α)c2][1− αc1 − (1− α)c2],

c′2 = α(c1 − c)2 + (1− α)(c2 − c)2

= α(1− α)2(c1 − c2)2 + α2(1− α)(c1 − c2)2

= α(1− α)(c1 − c2)2.

(20)

In the limit case of g → 1 and, hence, c′2 → c(1 − c), (20)
results in

α −→ c2(1− c2)
c2(1− c2)− c1(1− c1)

. (21)

Because c1(1 − c1) ≥ 0, the RHS of (21) may be within
the limits of [0, 1] if either (i) c1 = 0 and c2 < 1, or (ii)
c1 > 0 and c2 = 1, or (iii) c1 = 0 and c2 = 1. For brevity,
we consider c1 ≤ c2 here. In cases (i) and (ii), α = 1
and α = 0, respectively, and the first equality in (20) does
not hold. In case (iii), w(c1) = w(c2) = 0 and (8) yields
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Figure 9: Dependencies of (a) the normalized mean heat release rate, (b) parameters c1 (thin curves) and c2 (bold curves), and (c) parameter
α on the Reynolds-averaged combustion progress variable, calculated invoking the 2δ-PDF for F = 1.6 and different segregation factors
specified in legends.

w = 0. Thus, the PDF given by (9) cannot be used to
average w(c) in the flamelet regime of premixed turbulent
combustion.

The beta-function PDF P(c) does not seem to be well
tailored for simulating the flamelet regime either. Indeed, (4)
yields a� 1 and b� 1 in the case of 1−g � 1. Accordingly,

even a small error in computing c and/or c′2 by solving
proper balance equations can result in substantial errors in
calculating the small parameters a and b and, therefore,
substantial errors in evaluating w by invoking the beta-
function PDF P(c). Too small parameters a and b cannot
be determined accurately by subtracting one finite quantity
from another finite quantity if the two quantities are

calculated even with small errors, which are inevitable, not
only for numerical reasons, but also and mainly due to
limitations of physical models invoked to close the relevant
balance equations. A possible way of resolving the problem

could consist of replacing a balance equation for c′2 with a
balance equation for 1− g [37].

Finally, it is worth noting the following interesting feature
of the use of a presumed beta-function PDF P(c). In order
to determine the shape of such a PDF, one has to know its
first and second moments. The two moments are commonly
evaluated by solving proper balance equations, with the
Favre-averaged equations being addressed. Accordingly, the
PDF shape should be found based on known values of c̃
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Figure 10: Dependencies of the normalized mean density (thin curves) and Favre-averaged combustion progress variable c̃ (bold curves) on
the Reynolds-averaged combustion progress variable, calculated invoking the beta-function PDF (curves 1), the R-2δ-PDF (curves 2), the
2δ-PDF (curves 3), and the BML equations (curves 4) for F = 1.0 and (a) g = 0.25, (b) g = 0.5, and (c) g = 0.75.

and ρc′′2/ρ. This could easily be done if the RHS of (3)
is assumed to approximate the Favre PDF ˜P = ρP/ρ. In
such a case, ρcn/ρ and w̃ evaluated using ˜P(c) are equal
to cn and w, respectively, calculated invoking P(c) provided
that both ˜P(c) and P(c) are approximated by the same beta
function.

However, the above substitution of P(c) with ˜P(c)
substantially affects the shape of computed w(c)-curves. To
show this effect, we compared the following two ways of
averaging the heat release rate. First, we specified c and

gR ≡ c′2/[c(1− c)] and calculated w(c)-curve by varying c,
keeping gR constant, and using (3), (4), and (14). Second, we

specified c̃ and gF ≡ ρc′′2/[ρc̃(1 − c̃)] and computed w(c̃)-
curve by varying c̃, keeping gF constant and equal to the

above gR, and using the following equations:

w =
∫ 1

0
w(c)P(c)dc

=
∫ 1

0
w(c)

ρ ˜P(c)
ρ

dc

= Γ(a + b)
Γ(a)Γ(b)

∫ 1

0
w(c)

ρ

ρ
ca−1(1− c)b−1dc,

a = c̃
(

g−1
F − 1

)

, b = (1− c̃)
(

g−1
F − 1

)

.

(22)

Subsequently, we transformed the latter w(c̃)-curve to
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Figure 11: Dependencies of the parameters of the R-2δ (thin
curves) and 2δ (bold curves) PDFs on the Reynolds-averaged
combustion progress variable, calculated for g = 0.9 and F = 1.0.
(1) α, (2) c1, (3) c2.
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Figure 12: Dependencies of the normalized mean heat release rate
on the Reynolds-averaged combustion progress variable, calculated
for g = 0.9 and various equivalence ratios, specified in legends,
by invoking the beta-function PDF. Thin and bold curves are
associated with P(c, c, c′2) and ˜P(c, c̃, ρc′′ 2/ρ), respectively.

w(c)-curve using

c
(

c̃, gF
) = Γ(a + b)

Γ(a)Γ(b)

∫ 1

0
c
ρ

ρ
ca−1(1− c)b−1dc. (23)

Results are shown in Figure 12 in thin and bold curves,
respectively. While the w(c)-curves computed invoking

P(c, c, c′2) look symmetrical with respect to c = 0.5 and
reach peak values around c = 0.5, in line with numerous
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Figure 13: Dependencies of the Reynolds-averaged (curves 1) and
Favre-averaged (curves 2) combustion progress variables, associated
with the maximum mean heat release rate, on the segregation factor
g. F = 1.0. Thin and bold curves are associated with P(c, c, c′2) and
˜P(c, c̃, ρc′′2/ρ), respectively.

experimental studies [38–43] of flame surface density (FSD);
bold curves calculated using the Favre PDF are strongly
nonsymmetrical with the peaks being significantly shifted
to the trailing edge of the flame brush. The shift (i) is
mainly associated with the fact that the Reynolds-averaged c
is significantly larger than the Favre-averaged c̃ in the largest
part of a mean turbulent flame brush and (ii) holds for other
magnitudes of the segregation factor, see Figure 13.

These numerical data and the aforementioned experi-
mental results that indicate almost symmetrical dependen-

cies of the FSD on c favor the use of P(c, c, c′2) at least
at larger g. However, such a method is more complicated,

because it requires evaluation of c and c′2 based on computed
c̃ and ρc′′2/ρ.

4. Results: Mixture Fraction PDF

Figure 14 shows that two very different presumed mixture-
fraction PDFs (beta function and the sum of two Dirac
delta functions) yield sufficiently close dependencies of
the mean normalized density ρb of burned gas, the mean

normalized maximum heat release rate ω, and s1/2
L on the

mean equivalence ratio F even if g f ≡ f ′2/[ f (1 − f )] is
as large as 0.4. It is worth remembering that, contrary
to fluctuations in the combustion progress variable, which
may be characterized by g → 1, fluctuations in mixture
fraction are characterized by significantly lower g f in a
typical stratified turbulent flame.

The difference between results obtained by invoking
the considered presumed PDFs is decreased when g f is
decreased, for example, see Figure 15 and note that a
similar trend is observed for other simulated quantities
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Figure 14: Dependencies of the normalized mean density ρb of burned gas (a), the normalized maximum heat release rate ω (b), and the

square root s1/2
L of the normalized laminar flame speed (c) on the mean equivalence ratio F, calculated either invoking the beta-function

(curves 1), the R-2δ (curves 2), and 2δ (curves 3) PDFs, or neglecting fluctuations in the mixture composition (curves 4). Fmin = 0.5 and
Fmax = 1.9, g f = 0.4.

q = {ρb,ω, sL, s1/2
L }. Results computed using the 2δ-PDF are

not shown here and in the following, because they are close
to results calculated using the R-2δ-PDF.

It is worth also stressing that the values of ρb(F), ω(F),
and s1/2

L (F), obtained by neglecting fluctuations in mixture
composition, differ substantially from counterpart quantities
averaged by invoking the presumed PDFs (cf. curves 4 and
1-3, respectively, in Figure 14 or unity with the maxima of
curves in Figure 15). Therefore, the above results (sufficiently
weak dependence of q( f ) on the shape of presumed PDF
P( f ), but significant difference in q( f ) and q( f )) support
invoking a presumed PDF P( f ) for simulating stratified
turbulent combustion if fluctuations in mixture fraction are
weak or moderate, for example, g ≤ 0.4.

However, such a conclusion is correct only if the
equivalence ratio always fluctuates within flammability limits
Fl < F < Fr . If the amplitude of fluctuations in F is
increased so that inflammable mixture composition may
be observed with a finite probability pq =

∫ Fl
Fmin

P(F)dF +
∫ Fmax

Fr P(F)dF, then computed q( f ) is more sensitive to the
shape of presumed PDF. For instance, Figure 16 indicates
that a decrease in Fmin from 0.5 to 0.4 and an increase in Fmax

from 1.9 to 2.2 make s1/2
L evaluated in statistically lean or rich

mixtures sensitive to the shape of presumed PDF (cf. thin
and bold solid curves). In the present simulations, the lean
and rich flammability limits are arbitrarily set to be equal
to 0.5 and 2.0, respectively. Such a simplification appears
to be reasonable in order to gain insight into the influence



Journal of Combustion 13

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Equivalence ratio

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 la
m

in
ar

 fl
am

e 
sp

ee
d 

g = 0.4
g = 0.2

g = 0.1
g = 0.05

Figure 15: Dependencies of the normalized mean laminar flame
speed sL on the mean equivalence ratio F, calculated invoking
the beta-function (thin curves) and R-2δ (bold curves) PDFs for
different g f specified in legends. Fmin = 0.5 and Fmax = 1.9.
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Figure 16: Dependencies of the square root s1/2
L of the normalized

mean laminar flame speed on the mean equivalence ratio F,
calculated invoking the beta-function (thin curves) and the R-2δ
(bold curves) PDFs. g = 0.2. (1) Fmin = 0.5 and Fmax = 1.9,
(2) Fmin = 0.4 and Fmax = 2.2, (3) Fmin = 0.3 and Fmax = 2.5,
(4) Fmin = 0.1 and Fmax = 4.0.

of PDF shape on averaged quantities. However, it is worth
remembering that local flammability limits in a partially
premixed turbulent flame are affected by local gradients of
mixture fraction, stretch rate, transient effects, and so forth
and a model capable for predicting these local phenomena
has not yet been elaborated.

If the sum of two Dirac delta functions is invoked, then
s1/2
L drops at certain F1 < 1 and F2 > 1 (see bold solid line),

because both f1 and f2 are increased by f (this trend is shown
for ξ = c in Figure 11) and f1 (or f2) reaches the lean (or rich)
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Figure 17: Dependencies of the probability of finding flammable
mixture composition on the mean equivalence ratio F, calculated
invoking the beta-function (thin curves) and the R-2δ (bold curves)
PDFs. g = 0.2. (1) Fmin = 0.4 and Fmax = 2.2, (2) Fmin = 0.3 and
Fmax = 2, 5, (3) Fmin = 0.1 and Fmax = 4.0.

flammability limit when F = F1 (or F = F2). Accordingly, if
F < F1 (or F > F2), then f1 (or f2) is outside the lean (or
rich) flammability limit, hence, sL( f1) = 0 [or sL( f2) = 0],

and, consequently, s1/2
L is small. Further extension of the

range of fluctuations in the mixture composition makes the
discussed effects more pronounced (cf. thin and bold dashed

curves in Figure 16), and the dependencies of s1/2
L on F,

calculated by invoking the beta-function and R-2δ PDFs,
differ substantially from one another if, for example, Fmin =
0.1 and Fmax = 4.0 (cf. thin and bold dotted curves).

Figure 17 shows that the probability p f = 1 − pq of
finding flammable mixture is very sensitive to the shape of
presumed PDF P( f ). If the beta-function PDF is invoked,
p f depends smoothly on F (thin curves), whereas the
probability calculated using the sum of two Dirac delta
functions drops sharply (bold curves) as f1 or/and f2 moves
beyond the flammable range fl < f < fr .

5. Conclusions

The use of a presumed combustion-progress-variable PDF
P(c) for averaging heat release rate in a premixed turbulent

flame characterized by sufficiently large c′2/[c(1 − c)] > 0.4
does not seem to be justified, because the mean rate is

sensitive to the shape of P(c) even if first c, second c′2, and
third c′3 moments are kept constant when changing the PDF
shape.

Because q( f ) differs substantially from q( f ) and q( f )
depends sufficiently weak on the shape of a presumed

mixture-fraction PDF P( f , f , f ′2), with f and f ′2 being

kept constant and f ′2/[ f (1 − f )] < 0.4, the use of P( f )
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for simulating the influence of fluctuations in mixture
composition on mean quantities appears to be a reasonable
approach to modeling stratified turbulent combustion, but
only if the mixture composition always fluctuates within
flammability limits. If the probability of finding inflammable
mixture is substantial, the mean burning rate is sensitive to
the PDF shape.

Although results computed by invoking the beta-
function PDF given by (3) look often more reasonable than
results obtained by using the Dirac-delta-function PDF given
by (7), this trend puts the latter PDF into question, but does
not validate the former PDF.

If g > 0.5, then the R-2δ-PDF model by Ribert et al.
[22] yields the third moment approximately equal to the
third moment calculated invoking the beta-function PDF
provided that the two PDFs are characterized by the same
first and the same second moments.
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