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Abstract  Ñ This paper presents how to study the geometry of Voronoi
regions in an arbitrary vector quantizer. Methods to find the location, the
extent, and the faces of any region are summarized.

I. INTRODUCTION
It is well known [4] that a vector quantizer (VQ) performs better, in
terms of signal-to-noise ratio, than a scalar quantizer. The
improvement increases with the dimension, but the price paid is
complexity. In particular, the encoding process is slower. In the case
of nearest neighbor quantization, which this presentation considers,
the straightforward encoding method is calculating the squared
Euclidean distance

      d i iw r w r,( ) = − 2
(1)

between an input vector w  and every reconstruction vector

        ri i n; , ,= 1 K , and selecting the codeword that gives the minimum
distance. The set of vectors that are encoded as a certain codeword j
according to this rule is called the Voronoi region  (VR)

        
V d d i nj j i= ( ) ≤ ( ) ={ }w w r w r: , , ; , ,1 K (2)

Sometimes suboptimal VQs are accepted in order to decrease the
encoding time. Several structures have been developed for which
fast search algorithms exist, e.g. lattice or multi-stage coders. A
cruder case is scalar quantization of every component, which is very
convenient in this aspect, although the advantages of vector
quantization are surrendered.

However, there are also methods to improve the encoding speed
for arbitrary vector quantizers, without paying with signal-to-noise
ratio. Such methods often require precomputing some geometrical
properties of the VRs. A new method to obtain such information is
presented here, as well as an encoding algorithm based on the
precomputed data.

II. EXAMINING THE GEOMETRY OF VORONOI REGIONS
Some relevant types of problems concerning the structure of given
VRs are:

1. What values of a certain component may vectors in this VR
take on?

2. On which side of a certain hyperplane lies this VR, or is the VR
intersected?

3. Have these two VRs a common face?
The three questions are closely related. All of them have applications
in different algorithms for the design of fast encoders, see below.
Probabilistic methods have been proposed to obtain approximate, or
likely, answers to them [2], [3]. In this section, deterministic
methods, based on different applications of linear programming, are
presented for solving these and related problems reliably.

Consider the following standard formulation of a linear
programming problem:
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Much research and much literature have been devoted to methods
for solving it. Two of the main approaches are the Simplex Method
and KarmarkarÕs algorithm, both having numerous variations [1].
From optimization theory it is known that there exists a dual
problem to (3),
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the solution of which is closely related to the solution of (3).
Actually, both mentioned methods generate the solution of (4) as a
by-product when solving (3).

The inequality constraints in (4) form a convex polytope. They
describe the VR   Vj  (2) of a certain codeword j if
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Thus, the dual problem can be used for finding extrema of a VR.
Depending on the choice of the dual objective vector b , different

extrema will be found and different properties of the VR will be

investigated. Especially, if b  is chosen first as a unit vector and next
as the same unit vector negated, problem 1 above is solved by two
linear programs. If this is repeated for all coordinates and all VRs, a
circumscribed hyperrectangle will be found for each VR, which is
the precomputed information required for encoding with the
Projection Method [2].

Problem 2 is solved similarly by two linear programs, if b is set
orthogonal to the given hyperplane, pointing in both directions. If
these two extrema lie on the same side of the given hyperplane, so
does the whole VR; otherwise it is intersected. The answer to this
kind of questions is vital for the design of the decision tree used in
the Binary Hyperplane Testing Algorithm  [3].

Finally, to test the neighborship between VRs j and k (problem 3),
b is chosen equal to     ak , which is orthogonal to the common face of

  Vj  and   Vk , if such a face exists, whereas A and c as before denote   Vj
(5). With this  input, a linear programming algorithm will return the
point     Ãw  in   Vj  whose projection on     ak  is closest to     rk . If the two VRs
have a common face, the dual optimum     Ãw  will inevitably lie on it.
The primal optimum shows whether this has occurred: the face was
reached if and only if the component of     Ãx  corresponding to     ak  is
greater than zero.

A table of all neighborships in a VQ is a useful tool both for
theoretical analysis and in applications. One application is the fast
encoding algorithm described below.

III. THE ÒNEIGHBOR DESCENTÓ ENCODING METHOD
A VR is defined by     n − 1 linear inequalities as in (2) or (4). Some of
them are in general redundant. Define the set   N j  of neighbors to a
codeword j as all codewords whose VRs have a face in common with

  Vj . The corresponding inequalities are the only ones needed to be
considered in order to determine if a vector w  belongs to a certain
VR   Vj :

      
V i Nj i

T
i j= ≤ ∈{ }w a w c: ; (6)

This fact can be used to speed up encoding. Since the method
described in the previous section now makes it possible to compute
a complete neighborship table   N j  for every codeword in a
moderate-size VQ, an encoding algorithm that makes use of these
tables is of more than theoretical interest. One such method, called
neighbor descent , is introduced here. It can be used independently or
to improve a solution given by any suboptimal encoding algorithm.

Suppose that a vector w  is to be encoded and that there is reason
to believe that     rj  is a good reconstruction vector for w. (If no such
knowledge is available, choose instead a codeword j whose
reconstruction vector is fairly central in relation to the others.)
Calculate the distance d (w,    ri ) between w  and       ri ji N; ∈ , the
neighbors of j, one at a time. As soon as a neighbor i is encountered
that has a smaller distortion (distance to w) than j, replace j with i
and restart. If no better codeword is found in   N j , then stop.

Theorem of uniqueness : In any VQ, for any input w, no more than
one codeword can have a smaller distortion than all its neighbors.

A necessity for the success of the method is that a path through
neighboring VRs, along which the distortion d(w,    rj) is
monotonically decreasing, does not terminate in a suboptimal local
minimum. The above theorem states that this can never be the case.
Its proof follows as a direct consequence of (6) and the observation
that a vector cannot belong to the interior of more than one VR.

The performance of the neighbor descent method was evaluated
in experiments on vector quantizers without an induced structure. A
table of computed distances was maintained during the search to
avoid duplication of work. The results show that many of the n
distance calculations can be avoided when the neighbor descent
method is used. The reduction is greatest for VQs with high bit rates.
The speed of the method can be further increased by combining it
with known ways to speed up distance calculations, such as the
Partial Distance Method  [2], [4].
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