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Abstract

The brain tumour glioblastoma is characterised by diffuse and infiltrative growth into surrounding brain tissue. At the
macroscopic level, the progression speed of a glioblastoma tumour is determined by two key factors: the cell proliferation
rate and the cell migration speed. At the microscopic level, however, proliferation and migration appear to be mutually
exclusive phenotypes, as indicated by recent in vivo imaging data. Here, we develop a mathematical model to analyse how
the phenotypic switching between proliferative and migratory states of individual cells affects the macroscopic growth of
the tumour. For this, we propose an individual-based stochastic model in which glioblastoma cells are either in a
proliferative state, where they are stationary and divide, or in motile state in which they are subject to random motion. From
the model we derive a continuum approximation in the form of two coupled reaction-diffusion equations, which exhibit
travelling wave solutions whose speed of invasion depends on the model parameters. We propose a simple analytical
method to predict progression rate from the cell-specific parameters and demonstrate that optimal glioblastoma growth
depends on a non-trivial trade-off between the phenotypic switching rates. By linking cellular properties to an in vivo
outcome, the model should be applicable to designing relevant cell screens for glioblastoma and cytometry-based patient
prognostics.
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Introduction

Cancer progression is the macroscopic outcome of numerous

cellular processes, such as elevated proliferation rates, defects in

apoptosis regulation and abnormal angiogenesis [1]. In the

development of targeted anticancer therapies, the proliferation,

survival and angiogenesis phenotypes are often singled out as the

most important. Recently, however, much attention has been

given to cancer cell migration as a possible therapeutic target, since

it underlies both the local invasive process whereby cancer cells

degrade and move through the adjacent tissue, and the formation

of distant metastases.

The importance of cancer cell migration is perhaps most

evident in the common brain tumour glioblastoma, which is

characterised by rapid and infiltrative growth into the surrounding

brain tissue. In glioblastomas, neoplastic cells are often found at a

long distance (several centimeters) from the main tumour mass.

This diffuse growth pattern presents a difficult clinical problem,

since residual ‘satellite cells’ can mediate rapid recurrence of the

disease after surgery [2]. Key factors that underlie glioblastoma

cell invasiveness include high migration speeds in comparison to

other types of cancer (up to 100 mm/h) and the fact that brain

parenchyma provides a penetrable substrate for invasion [3].

Thus, inhibition of migration pathways might constitute an

interesting complement to standard glioblastoma therapies that

seek to inhibit cell proliferation rate or angiogenesis. Several

pathways have been suggested to mediate the highly migratory

phenotype of glioblastoma cells, including signaling via Focal

adhesion kinase (FAK) [4], Phosphoinositide 3-kinase PI3K [5]

and Signal transducer and activator of transcription 3 (STAT3)

[6]. Other concepts for targeting of migration have also been

proposed, including inhibition of integrins [7], perturbing the

interactions between ECM components [8], and administering

lithium chloride [9]. Further, potential gene targets have also been

revealed using molecular profiling efforts [10].

However, the potential of migration as a therapeutic target is

complicated by the strong dependency between migration and

proliferation phenotypes. Early in vitro experiments by Giese et al.

[11] showed that when plated on a substrate, that supports

migration, the proliferation rate of glioblastoma cells is markedly

reduced. Later, it was shown that cells at the tumour’s invasive rim

proliferate more slowly than cells in the central parts of the

tumour, again suggesting that migration has a ‘cost’ in terms of

reduced proliferation [2]. These and several additional observa-

tions led to the so called ‘go or grow’ hypothesis, stating that

migration and proliferation are mutually exclusive phenotypes.

Although a molecular explanation for this dichotomy still is

missing, it has been suggested that cytoskeleton dynamics could be

limiting, as it is involved in both cell division and force generation

in migration [12].

In recent experiments, in vivo imaging of fluorescent glioblasto-

ma cells enabled direct observation of phenotypic switching
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between the ‘go’ state (migration) and the ‘grow’ state (prolifer-

ation). More precisely it was observed that glioma cells move in a

saltatory fashion, where bursts of movement are interspersed by

periods of immobility, and it is during these stationary periods that

the cells divide [13,14]. Taking these observations into account

allows for a more comprehensive understanding of glioblastoma

progression, where tissue-level traits, such as progression rate,

emerge from cell-level behaviour. Mathematical models at the

resolution of individual cells enable a quantitative connection

between these scales, and can hence be of great assistance.

Here, we focus on the relationship between cell-level phenotypic

switching in glioblastoma, and the properties of the tumour as a

whole. In particular we elucidate how the growth rate of the

tumour and speed of invasion depends on the specific underlying

microscopic parameters, such as phenotypic switching rates, rate

of apoptosis et cetera. Please note that the we use the word ‘invasion’

to denote the process by which glioma cells spread into and

displace the surrounding brain tissue, and do not refer to branched

finger-like growth patterns. Although several models of glioma

growth have previously been proposed (see next section), this

model is the first to connect experimentally measurable cell-level

traits with gross tumour volume in an analytical way. This yields

hope for the future understanding of glioma biology and therapy,

since it is the understanding of how drug induced changes on the

cell-level scale propagate to the organ scale, that are required in

order to accurately predict therapeutic outcome.

In the following we first review previous work in the field of

glioblastoma modelling and then proceed by introducing our

individual-based (IB) stochastic model of glioma growth. From this

model we derive an approximate continuum description of the

system, whose properties are compared to the IB-model. We

proceed to analyse the continuum model to reveal the influence of

the model parameters on the rate of spread of the tumour, and

finally discuss our results in the context of other models and

experimental results.

Previous work
The growth of glioblastomas was first modelled by means of a

continuum approach, which captures the two main features of

glioma cells: proliferation and migration ([15,16], and [17],

chapter 11). In that model, the partial differential equation

(PDE) that describes the time evolution of the concentration of

glioma cells u(x,t) in space and time has the form:

Lu

Lt
~D+2uzru(1{u) ð1Þ

where the migration is captured by a diffusion term with diffusion

coefficient D (first term) and proliferation of the glioma cells is

described by a locally logistic growth function with growth rate r
(second term). This equation is known as the Fisher (or

Kolomogorov) equation, and was first derived in order to describe

the spread of an advantageous gene in a spatially extended

population [18,19]. The derivation, originally by Fisher and later

refined by Kolmogorov, starts by assuming a contact distribution

that describes the probability of migration between two spatial

locations, and by then assuming that all moments of that

distribution higher than two are negligible (known as the diffusion

approximation, see for example [20]) one arrives at the above

equation.

The Fisher equation has been of particular interest since it gives

rise to traveling wave solution u(x,t)~U(x{ct), whose shape is

preserved and position in space is shifted at a speed c as time

progresses. Significant interest has been devoted to determining

the wave speed c, and it has been shown that for reasonable initial

conditions (exponentially decaying [20] or of compact support

[19]) the wave speed is given by c~2
ffiffiffiffiffiffiffi
Dr
p

[21]. The speed of

propagation thus depends on both the motility, captured in the

diffusion constant D, and the rate of proliferation r. Both D and r
can be determined from time-course Magnetic Resonance

Imaging (MRI) data from actual patients, and it has been shown

that their values are of prognostic power [22].

The above modeling approach rests on the assumption that

glioblastoma cells follow a random walk (which at the macroscopic

scale corresponds to the diffusion of cells). Recently this

assumption has been under scrutiny, and this has led to a number

of explorations of non-random migration, i.e. where migration is

influenced by biological processes such as cell-cell signaling,

oxygen pressure, nutrient availability and phenotype switching. In

one line of work, Aubert et al. [23] used an individual based (IB)

model to show that attraction between glioblastoma cells is likely

to influence the dynamics of tumour invasion. Deroulers et al.

[24], derived the macroscopic PDE for this case, obtaining a

density dependent diffusion equation (D~D(u) in terms of eq. (1)),

whose solution deviates significantly from the Fisher-Kolmogorov

PDE (see also [25,26]). Khain et al. [27], used IB models to

characterise the role of hypoxia in glioblastoma, showing that

reduced oxygen levels may down-regulate cell-cell adhesion,

leading to increased motility.

The cellular behaviour implied in the ‘go-or-grow’ hypothesis

(see Introduction) is also thought to affect migration and growth

dynamics of glioblastomas, in a manner that is not captured by the

Fisher-Kolmogorov equation. Hatzikirou et al. [28] proposed a

lattice-gas cellular automaton model in which the switching

between the proliferative (P) state and migratory (M) state is driven

by lack of oxygen, and went on to show that in the corresponding

macroscopic (Fisher) equation, there is a tradeoff between diffusion

and proliferation reflecting the inability of cells to migrate and

proliferate simultaneously. Similar results where obtained by

Fedotov and Iomin [29] but with a different type of model known

as continuous time random walk model. That model contains two

distinct subpopulations (P-cells which are stationary and divide

and M-cells that perform random walks), and a cell switches from

one compartment to the other after a time tp (and tm respectively)

which is exponentially distributed. They analytically show that the

spreading rate is smaller than one would expect from the Fisher

equation (1). Finally, Lewis and Schmitz have studied the general

Author Summary

In this work, we develop a spatial mathematical model in
order to analyse the growth behavior of the brain tumour
glioblastoma. Tumours of this type have a diffuse
boundary, with considerable local invasion of surrounding
brain tissue, making surgery difficult. At the cellular level,
the progression of a glioblastoma is known to depend on
the balance between cell division (proliferation) and cell
movement (migration). Based on recent evidence, our
model assumes that each cell in a glioblastoma tumour
resides in either of two mutually exclusive states: prolif-
erating or migrating. From a probabilistic model of
switching between these two phenotypes, we go on to
derive equations that link cellular phenotypes to disease
progression. The model has several possible applications.
For instance, it could be used to predict the rate of disease
progression in an individual patient, and to improve
screening methods.

The Impact of Phenotype Switching on Glioma Growth
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relation between organism migration and proliferation and its

impact on population spread using reaction-diffusion equations

[30]. They show that the system exhibits travelling wave solutions

and that the wave speed depends on the rates of switching between

the states.

The model that we propose draws from these previous models,

but is different in some crucial ways. We consider two distinct

subpopulations with a stochastic switching in between (as in

Fedotov and Iomin, and Lewis and Schmitz), but instead of

starting with a continuum description, we begin with an IB-model

in which the cells occupy a lattice and obey size exclusion (as in

Deroulers et al.), and from that derive a system of PDEs. This

allows for an analytical treatment of the IB-model which

establishes a connection between cell characteristics and the

macroscopic behaviour of the system previously not demonstrated.

Results

The individual-based stochastic model
The cells are assumed to occupy a d-dimensional lattice (we will

consider d~1,2,3), containing Nd lattice sites, where N is the

linear size of the lattice and each lattice site either is empty or

holds a single glioma cell. This means that we disregard the effects

of the surrounding brain tissue, such as the different properties of

grey vs. white matter [31], and the presence of capillaries which

might influence the behaviour of the cancer cells. But since the soft

tissue in the brain presents little resistance to invading cancer cells

and the precise nature of interaction with stromal cells is unclear,

focusing on the dynamics of the glioma cells is a reasonable first

approximation. Further, the process of angiogenesis, which has

been modelled extensively [32], is ignored, and we hence assume

the growing tumour to be well vascularised. For the sake of

simplicity we do not consider any interactions between the cancer

cells (adhesion or repulsion), although this could easily be included,

and we also disregard other types of mechanical interactions, such

as cell pushing (see Discussion).

The lack of knowledge of the intra-cellular dynamics and extra-

cellular cues that lead to the phenotypic switching behaviour poses

a problem, but we will circumvent it by, as a first approximation,

considering the switching as a stochastic event. The behaviour of

each cell is therefore modelled as a time continuous Markov

process where each transition or action occurs with a certain rate,

which only depends on the current and not previous states, known

as the Markov property. The rates are interpreted in the standard

way, i.e. if transition in a variable X (t) from state i to j occurs at

rate qij then the probability of a transition occurring in the time

interval ½t,tzDt� is given by

Pr½X (tzDt)~jDX (t)~i�~Dtqijzo(Dt) ð2Þ

where o(Dt) means that remaining terms are bounded from above

by Dt, and thus that in the limit of small Dt the transition

probability is proportional to qij .

Each cell is assumed to be in either of two states: proliferating or

migrating, and switching between the states occurs at rates qp (into

the P-state) and qm (into the M-state). A proliferating cell is

stationary, passes through the cell cycle, and thus divides at a rate

a. The daughter cell is placed with uniform probability in one of

the empty 2d neighbouring lattice sites (using a von Neumann

neighbourhood). If the cell has no empty neighbours cell division

fails. A migrating cell performs a size exclusion random walk,

where each jump occurs with rate n. Size exclusion means that the

cell can only move into lattice sites which were previously empty.

If only a motile subpopulation is considered, size exclusion does

not affect the macroscopic diffusive nature of a population of

random walkers, but if two or more subpopulations are taken into

account then, as we shall later see, diffusion becomes non-linear.

Lastly, cells are assumed to die, through apoptosis, at a rate m
independent of the cell state. Since this type of cell death is

associated with cell shrinking and rapid removal of the dead cell, a

cell which goes through apoptosis is instantly removed from the

lattice and leaves an empty lattice site behind.

The stochastic process is depicted schematically in figure 1. In

fact the whole system comprises a continuous time Markov chain

with a finite, but very large state space, containing N3d different

states, where N is the linear size of the system and the 3 comes

from the three distinct lattice states: empty, P-cell and M-cell.

Parameters
We will consider a lattice of linear size N~200 with a spacing

of Dx~20 mm, the typical size of a cancer cell. For the most part

we will consider the system in d~2 dimensions, which means that

we simulate a lattice, which corresponds to a 4|4mm2 slice of

tissue. This is of course considerably smaller than a clinically

relevant glioma, but sufficient to capture the effects of the

phenotypic switching on tumour growth rate. The time scale of the

model is set to agree with that of the cell cycle (approximately

24 hrs [2]) which means that the proliferation rate

a~1 cell cycle{1, and that we scale all other parameters

accordingly. We are mainly interested in the effect of the

phenotypic switching rates qp and qm on the growth of the

tumour and they will therefore be varied within a biologically

reasonable range. It follows from equation (2) that the time spent

in one phenotypic state is exponentially distributed with parameter

qp,m and thus that the average time spent in each state is given by

1=qp,m (cell cycles). It has been observed that the switching from a

stationary to motile state (and back) does not occur faster than on

the time scale of one hour [13]. This gives an upper limit on the

transition rates, which since time in the model is measured in cell

cycles, is given by qp,mv24.

The motility rate is set to n~5 cell cycle{1. This means that a

motile cell on average moves one lattice site, i.e. Dx~20 mm, in a

time 1=n~1=5 cell cycles, which gives a linear velocity of

100mm cell cycle{1, that lies within experimentally determined

values of 34mm=24 hours [14] and 500mm=24 hours [13]. The

rate of apoptosis is set to the value m~10{3 cell cycle{1, which is

small compared to the other transition rates in the model.

Simulations
Our concern is the influence of the microscopic cell-level

parameters on the growth rate of the tumour as a whole, and we

will therefore measure the size the tumour after a fixed time for a

given set of initial conditions, as a function of the phenotypic

switching rates. More specifically we will measure the tumour mass

(the total number of cells), and also later, quantify the rate of

spread by measuring the velocity of the tumour interface. The

precise initial condition of the model has little impact on the long-

term rate of spread (data not shown), but in line with the clonal

origin of cancer we initialise the model with a single cell (in the P-

state). All simulations of the IB-model are carried out using the

commonly employed Gillespie algorithm [33].

Figure 2 illustrates the results of simulating the model in two

dimensions for T~25 cell cycles when (qp,qm)~(20,10) in three

different ways. Panel (a) shows the result of a single simulation,

where P-cells are coloured blue and M-cells are red, (b) shows the

results of the model averaged across a large number of realisations

and gives the occupancy probability Q(i,j) of finding a cell at

The Impact of Phenotype Switching on Glioma Growth
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location (i,j) on the lattice, and (c) shows a slice through this

function Q(i,j~50). This figure gives us a general idea of the

growth dynamics of the model. The tumour grows with a radial

symmetry, and exhibits a solid core, while the tumour margin is

diffuse and somewhat rugged. Please note that the time span

considered in this simulation is smaller than the time scale of

actual glioblastoma growth, which usually occurs on the time scale

of months to years, but still sufficient to investigate the dynamics of

the model.

In order to quantify the dependence on the phenotypic

switching rates we measured the tumour mass at T~50 in the

parameter range 0vqp,mv30. The results are displayed in

figure 3a and show a strong dependence on the two parameters.

For qm~0 all cells are in the proliferative state, and as expected

the mass is independent of qp. The other extreme where qp~0

gives rise to tumours with a zero mass, which occurs since the

motile cells cannot multiply and eventually die off due to the small

but non-zero apoptosis rate m. These results are intuitive, but what

is more interesting is that tumour cells with intermediate switching

rates are the ones that give rise to the largest tumours. Although

migratory behaviour does not directly contribute to an increase in

the number of cancer cells it has the secondary effect of freeing up

space which accelerates growth compared to the tumours

dominated purely by proliferation (qm~0). The results suggest

that for each qpw0 there is a qm=0 which gives a maximal

tumour growth rate. These results also hold for the more

biologically plausible 3-dimensional case (see figure 3b). Although

the maximal tumour mass seems to occur for a smaller qm, and the

region of parameter space giving rise to small tumours is

considerably larger (upper left region), the qualitative behaviour

is similar. The implications of the observation that qm influences

tumour size in a non-monotone way will be discussed later, and we

will now proceed to an analytical treatment of the problem.

Derivation of continuum model
In an effort to get a deeper understanding of the somewhat

unintuitive relationship between tumour growth rate and pheno-

typic switching rates we will derive a set of two coupled PDEs

which will serve as an approximate way of describing the time

evolution of the occupancy probability Q(i,j) (see figure 1b and c).

For the sake of clarity we will however constrain the derivation to a

one-dimensional system. In fact, radially symmetric travelling

wave solutions with constant velocity do not exist for d§2, but

instead the velocity of the front depends on the local curvature.

However, for large enough times the interface of the circular

(spherical) solution has almost zero curvature and its dynamics is

Figure 1. Schematic describing the continuous time Markov process each cell is subject to. A living glioma cell can be in either of two
states, proliferating (P) or migrating (M), and transitions between the states with rates qp and qm respectively. A P-cell divides at rate a while an M-cell
moves with rate n. Both cell types go into apoptosis and die with a constant rate m.
doi:10.1371/journal.pcbi.1002556.g001

Figure 2. Simulating the individual-based model. Simulation results for (qp,qm)~(20,10) and T~25. (a) The result of a single realisation where
P-cells are coloured blue and M-cells are coloured red. (b) The occupancy probability Q(i,j) of finding a cell at location (i,j) obtained by averaging
over a large number of simulations. (c) A slice through the function in panel (b) at j~50.
doi:10.1371/journal.pcbi.1002556.g002

The Impact of Phenotype Switching on Glioma Growth

PLoS Computational Biology | www.ploscompbiol.org 4 June 2012 | Volume 8 | Issue 6 | e1002556



well approximated by the one dimensional solution. A further

simplification in our derivation is that we assume the occupancy

probabilities of neighbouring sites as independent, which in

practice means that we for example allow ourselves to write:

Pr(site i empty and site iz1 occupied) = Pr(site i empty)|Pr(site

iz1 occupied).

The derivation is carried out in two steps: firstly, a set of coupled

master equations, for the two sub-populations, are derived by

considering the processes which alter the occupation probabilities

at a given site, and secondly these master equations are

approximated by a set of PDEs. In brief, the second step is

achieved by identifying the on-lattice master equations with a set

of coupled PDEs, which when discretised on the length scale of the

lattice spacing, equal the master equations. The full derivation is

given in Methods and results in the following system of coupled

PDEs:

Lp

Lt
~Da(1{p{m)

L2p

Lx2
zap(1{p{m){(qmzm)pzqpm ð3Þ

Lm

Lt
~Dn((1{p)

L2m

Lx2
zm

L2p

Lx2
){(qpzm)mzqmp: ð4Þ

Here p(x,t) denotes the density of proliferating cells, and m(x,t) that

of the motile cells. In equation (3) we recognise the first term as a

diffusion term, modulated by a density-dependent prefactor and the

second term as a logistic growth term. The remaining terms are due

to the switching between the subpopulations and to apoptosis. In the

equation for the motile cells (4) there is also density-dependent

diffusion, but of a different type. This is typical of a two species size

exclusion process [34], and contains the second-derivative of both

species. The values of the diffusion constants are Da~a=2 and

Dn~n=2, and depend crucially on the choice of spatial scale, which

for simplicity is chosen to be that of the cell size Dx. If a coarser

spatial scale is considered then the diffusions constants would have

to be scaled accordingly (see Methods for details). We will now

proceed to investigating the properties of this system of PDEs

through both numerical solutions and analysis.

Travelling wave solutions and their velocity
The first question one might ask about a system of equations

that presumably describes tumour growth is if it exhibits tumour

invasion and hence travelling wave solutions, and further how the

model parameters influence the wave speed, i.e. the velocity of the

invading tumour front. The results from the IB-model (figure 2

and 3) suggest that the switching rates qp,m strongly influence the

tumour mass, and hence we expect them to also have an effect on

the speed of invasion.

In order to investigate this, we first solved the continuum model

(3)–(4) numerically (which actually corresponds to reverting to the

master equations eq. (8)–(9)), for a range of parameter values, in

the domain xw0. The initial condition was set to

p(x,0)~ exp ({bx), b~10 cell width{1 and m(x,0)~0, meant

to represent a situation where a tumour is initiated by a small

number of proliferating cells (p(x,t)) and no migratory cells

(m(x,t)). In fact the balance between p and m in the initial

condition is largely irrelevant for the long-term dynamics of the

model, the exceptions being the extremes (qp,qm)~(1,0) and

(0,1), when flow between the phenotypes is unidirectional or

completely blocked. The boundary conditions of the domain were

set to no-flux.

The results can be seen in figure 4 and shows the occupancy

probabilities after T~40 and 50 cell cycles. From these results it is

clear that the system exhibits an invading front of cancer cells,

similar to what is observed for the Fisher equation. The leftmost

panel (a) shows the dynamics of a tumour which only contains

proliferating cells, while (b) and (c) exhibit a mix of P- and M-cells.

The solutions remain stationary in a moving frame, suggesting that

travelling wave solutions exist, with wave speeds c&1.48, 1.88 and

1.63 respectively. These numerical results mirror what was seen in

figure 2, where an intermediate qm gave rise to the largest

tumours. Please note that the wave speed for the case qm~0 is

roughly what one would expect from a Fisher equation with

D~a=2 and r~a, since c~2
ffiffiffiffiffiffiffi
Dr
p

~2
ffiffiffiffiffiffiffiffiffiffi
a2=2

p
~½a~1�~ffiffiffi

2
p

&1:41. However, this is not what occurs in the IB-model

where the tumour interface moves at an average velocity of

c~a~1. The source of this discrepancy is the assumption of

independence between sites, which applies the least in this

Figure 3. The impact of phenotypic switching rates on tumour mass. (a) The tumour mass at T~50 for the 2-dimensional model as a
function of the phenotypic switching rates qp (the rate at which cells become proliferative) and qm (the rate at which they become motile). (b) The
tumour mass at T~25 for the 3-dimensional as a function of qp and qm . The results in 2 and 3 dimensions are similar, although a larger variability
seems to exists in the 3-dimensional case.
doi:10.1371/journal.pcbi.1002556.g003
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particular case (qm = 0), when there is no random motion within

the cell population. Migration of the cells tends to break up the

correlations that build up as the tumour is growing, and as we later

shall see, the continuum approximation works better when the

cells are more motile.

The observation that the numerical solutions are stationary in a

moving frame suggests the existence of travelling wave solutions.

In order to close in on these solutions, and get an estimate of their

velocity, we will make use of the travelling wave ansatz:

p(x,t)~P(z) and m(x,t)~M(z) with z~x{ct, where c is the

velocity of the interface. The problem of determining how c
depends on the model parameters is solved by applying phase-

space analysis (see Methods), and boils down to a four-dimensional

eigenvalue problem, namely to find the smallest c such that the

eigenvalues of the Jacobian all have imaginary part equal to zero.

This problem is analytically intractable, but provides us with a

numerically easy way of determining the velocity.

Influence of the parameters on the wave speed
Although phase-space analysis does not yield an analytic closed-

form expression for the wave speed c, it still provides us with a

computationally simple way of determining the velocity of the

tumour margin in the model: for a given set of parameter values

we start by setting c~0 and calculate the eigenvalues of the

Jacobian (18) (or equivalently the roots of the corresponding

characteristic polynomial P(l)). If not all eigenvalues are real we

increment c slightly and reevaluate the eigenvalues. This

procedure is terminated as soon as we find all eigenvalues real,

and the value of c for which this occurs corresponds to the wave

speed for those parameter values.

In order to test the validity of the wave speed analysis we

compared the wave speeds obtained in the continuum and IB

models with those from the phase space analysis. For the

continuum model an estimate of the wave speed was obtained

by, from the initial condition p(x,0)~ exp ({bx) (for proliferating

cells), b~10 and m(x,0)~0 (for migrating cells), integrating the

equations (3)–(4) for 200 time steps (cell cycles). From these

solutions we estimated the velocity of the front by measuring the

position of a reference point xc, defined as the point where

p(xc,t)zm(xc,t)~1=2, as a function of time. The comparison

between the speed of propagation in the numerical solution and

the wave speed obtained from the phase space analysis is shown in

figure 5. The agreement is fairly good and the discrepancies are

probably due to error in integration and the deviation in the

numerical solution from a perfect travelling wave, which from a

given set of initial conditions, is only attained in the limit t??.

However, since we are interested in biologically relevant scenarios

the time frame considered is reasonable.

When it comes to the IB model, we have to take into account

the stochastic nature of the model, and therefore need to estimate

the average margin velocity from a large number of simulations

(100 independent realisations). Each simulation was started with a

single P-cell at the center of the lattice and the model was

simulated for 100 time steps (cell cycles). In each time step the

location of the cells was recorded and from this we calculated the

occupation probability Q(i,j,t) of finding any cell at location (i,j)
at time t. The wave speed was then approximated by taking the

average propagation speed of Q(i,j,t) in the i{ and j{direction

(as in the PDE case). In comparing with the two-dimensional

simulations we need to rescale the diffusion coefficient Dn?Dn=2,

since cell movement occurring tangential to the two-dimensional

front does not contribute to its propagation. The result can be seen

in figure 6, which shows that the analytical result is in good

agreement with the discrete individual-based model. The disparity

between the IB-model and the analytic answer is largest for small

qm, when the dynamics are dominated by proliferation. This is to

be expected since for larger qm the movement of the cells

decorrelates the sites, and hence our assumption about site

independence is closer to truth. The analytical results recapitulates

the non-monotone dependence on qm and using this method we

found that the largest tumours occur when qmax
m &qp=2, i.e. when

the ratio between the switching rates is 1:2.

Naturally the other model parameters also affect the rate of

tumour invasion (see figure 7). Increasing the proliferation rate a
leads initially (for small a) to an increase in velocity according to

c*
ffiffiffi
a
p

, while for a 2 there is a cross-over to a linear dependence

with c*ka, with k&0:7. The motility rate n also influences the

wave speed in a non-linear way according to the relation c*
ffiffiffi
n
p

,

which holds for all nw0. Finally, increasing the rate of apoptosis m,

as expected, decreases the wave speed, and does so in a non-linear

way. Actually the dependency on m looks very much like that of a

second-order phase transition, where the derivative dc=dm

diverges at a critical point mc&0:675 cell cycle{1, and we have

for mvmc that c*(mc{m)c (see inset of figure 7c). We observed

that the critical apoptosis rate mc, above which no travelling wave

solutions exists and hence the tumour disappears, depends on the

other parameters of the model, but that the critical exponent

c~0:5049+0:0004 is independent of the other parameters.

Figure 4. Numerical solutions of the continuum model. Solutions of the 1-dimensional continuum model (equation (3) and (4)) for three
different values of the switching rates at T~40 (black) and T~50 (red). The initial condition was set to p(x,0)~exp({bx), b~10 and m(x,0)~0. In
(a) (qp,qm)~(10,0), (b) (qp,qm)~(20,10) and in (c) (qp,qm)~(10,20). All solutions exhibit similar characteristics with an invading front of cancer cells
stretching into the healthy tissue, similar to the solutions of the Fisher equation (1). The similarity between the solutions at the two different time
points clearly shows that our system exhibits travelling wave solutions.
doi:10.1371/journal.pcbi.1002556.g004
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Discussion

Phenotypic switching affects growth by altering the
tumour interface composition

Our model gives considerable insight into the dependency

between five cell-level parameters (switching rates qp and qm,

motility rate n, proliferation rate a and rate of apoptosis m) and the

macroscopic dynamics of tumour growth and invasion. Focusing

on the impact of the phenotypic switching rates we showed that

tumour cells with a small qp and large qm (see fig. 3) give rise to

small tumours (low c) while those characterised by a large qp and

intermediate qm grow into large tumours (high c). To see why this

is the case, consider a one-dimensional growth process in which

the tumour expands in a narrow channel. If qm~0, then the

tumour expands only through proliferation of the cells at the

interface (since interior cells cannot divide), and the interface thus

moves with velocity a, equal to the proliferation rate. If qm=0

then cells at the interface spend some time in the motile state,

freeing up space and allowing previously blocked cells to

proliferate. This process increases the interface velocity, but it is

also clear that a large qm has a negative effect on tumour growth,

since if qm&qp fewer cells are in the proliferative state and can

thus take advantage of the space created via cell migration. From

this line of reasoning it is clear that the tumour interface velocity

will depend on qm in a non-monotone way. Taken together, our

analysis shows that qm and qp affect glioblastoma progression by

altering the composition and structure of the tumour interface,

and that for each qp=0 the velocity c~c(qm) attains a maximum,

which occurs at qmax
m &qp=2.

The above reasoning, and our model, do however not take into

account the effects of mechanical forces between the cells. In

particular it is, in real tumours, possible for cells to push one

another and hence to divide and move, although there is no free

space. This process will most likely lessen the positive effect of cell

Figure 6. Comparison between IB-model and analytical result. The wave speed of the propagating tumour margin determined from both the
individual-based model (dashed line) and phase space analysis of the continuum approximation (solid line). In (a) the switch rate to proliferation is
fixed at qp~15, while in (b) we have fixed qm~15.
doi:10.1371/journal.pcbi.1002556.g006

Figure 5. Comparison between continuum model and analytical result. The wave speed of the propagating tumour margin determined
from both phase space analysis (solid line) and numerical simulation (dashed line). In (a) the switch rate to proliferation is fixed at qp~22, while in (b)
we have fixed qm~6:3.
doi:10.1371/journal.pcbi.1002556.g005
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migration on tumour growth, but since it has been experimentally

established that few cell divisions occur in the core of the tumour

due to pressure build-up and hypoxia, we believe that the

conclusions of our model still hold to a large extent.

A similar trade-off between proliferation and migration has in

fact been observed in the models of Hatzikirou et al. and Fedotov

and Iomin [29]. Although a formal comparison with the former

model is difficult, the macroscopic equations that Hatzikirou et al.

derive show that the number of rest channels (comparable to the

likelihood of a cell proliferating), increases the proliferation rate,

but at the same time decreases the motility of the cells. In the work

of Fedotov and Iomin [29] a similar trade-off is present. Using a

continuous time random walk model they showed that if the

waiting times in the P- and M-state are exponentially distributed

(as in our model) then the margin velocity is non-monotone in the

ratio qp=qm and that the maximum velocity is achieved for

qp~qm. However it should be noted that their model does not take

size exclusion into account, and hence yields an overestimate of

the effects migration has on invasion.

A trade-off between proliferation and migration has also been

investigated in relation to cancer stem cells and tumour

progression by Enderling et al. [35]. They showed that cell

migration can lead to the formation of secondary tumour loci, in a

process termed self-metastasis, which might accelerate tumour

growth, depending on the ratio of migratory and proliferative

behaviour. In a related study it was shown that cancer stem cell

migration might lead to branched tumour morphology and that it

can increase the chance of tumour recurrence [36]. These

modelling results together with those presented in this study

highlight the importance of cell migration in tumour progression

and motivate future experimental studies.

The model recapitulates the wave speed dependency in
the Fisher equation

We have also demonstrated that the other parameters in the

model affect the speed of invasion. Firstly, the impact of the

motility rate and the proliferation rate imply that the wave speed

dependence observed in the Fisher equation (1), c*
ffiffiffiffiffiffiffi
Dr
p

, also

holds in our system, when equating the diffusion constant D with

the motility rate n and the proliferation rate r with a (at least for

small and biologically realistic values of a). The Fisher equation

has been shown to give an accurate macroscopic description of

glioblastoma progression in vivo [22], which also lends support to

our model. The correspondence to the Fisher equation is

particularly interesting since it allows for a connection between

cell level characteristics (n and a) and tissue-scale behaviour, and

suggest a means of parametrising our model, not only using single-

cell measurements, but also from tissue-level data, such as MRI-

scans. From consecutive images the position and hence velocity of

the invading tumour margin can be determined and compared

with the results of the model.

Progression depends on apoptosis rate in a
discontinuous fashion

Secondly, we observed a second-order phase transition in the

velocity with respect to the rate of apoptosis m. This means that

there is a critical apoptosis rate mc above which no tumour can

grow and that for mvmc we have c*(mc{m)c, where mc is

parameter-dependent, but c&1=2 seems to hold for all parameter

values. The discontinuous behaviour of dc=dm is interesting, not

only from a theoretical perspective, but also because it implies that

if a high enough rate of apoptosis is induced, it may not only retard

tumour growth, but in fact lead to regression. However, these

results should viewed with caution, since the model would need to

be modified and extended in order to properly account for the

dynamics of drug delivery and treatment (cf. [37]).

Experimental implications of our model
While data from Farin et al. [13] served as the impetus for our

model, we note that a few additional experiments support our

modeling assumptions. First, the general observation that glioma

cells sampled from invasive fast-growing tumours are characterised

by a blend of proliferative and migratory behaviour [2] supports

our results, although only in a qualitative way. Second, a recent

study on different glioma subclones obtained from the same

patient identified a particular cell type as being particularly

invasive. Subsequent analysis of proliferation of these clones

(determined by Ki67-staining) showed that the most invasive

subclone (giving rise to the largest tumours in vivo) had the lowest

proliferation rate [38]. Although the subclones were not subject to

a motility assay, these results still diminish the importance of cell

proliferation in determining tumour growth rate, and future

studies that measure both proliferation and migration could be

even more useful in this respect.

In order to gain further experimental support for our model, we

plan in future work, to measure the five cell specific parameters

directly. Such measurements should be possible by applying live

imaging microscopy techniques to primary glioblastoma-derived

cell cultures. A first application of such measurements could be

exploited to develop the model further, to predict progression for

an individual patient based on cell-level phenotyping, and to

develop chemical compound screens where the impact of a

chemical on the model parameters are observed. This might in

turn lead to a strategy to define in vivo-relevant compounds more

likely to inhibit progression.

Future work
The current model is however far from these highly set goals,

and there are a number of extensions that would make the model

more realistic. In its current form the model does not account for

cell-cell adhesion, which could be incorporated letting the motility

rate n be dependent on the neighbourhood of the cell [25,26]. The

preferential migration along capillaries and myelin tracts, and the

tendency for glioma cells to divide at capillary branch points, is

also something that could be included. A further complication is

that cancer cells within a real glioblastoma are not identical with

respect to their behaviour, but exhibit both genotypic and

phenotypic heterogeneity, e.g. cells with a migratory phenotype

tend to be located at the tumour boundary whereas dividing cells

are commonly found in the main tumour mass, a fact which is not

captured by the current model.

Despite this we would still expect the results of our model to

hold at least with respect to the large-scale behaviour of the

tumour. The real situation is also complicated by the fact that

cancer cells are selected for based on their phenotype. One

hypothesis which emerges from our model is that selection could

drive the behaviour of the cells to the optimal balance between qp

Figure 7. Impact of model parameters. The wave speed of the propagating tumour margin as a function of (a) a, (b) n and (c) m. The phenotypic

switching rates were fixed at (qp,qm)~(20,10). The dashed line in the inset of (c) has slope 1/2 and shows that c*(mc{m)1=2 .
doi:10.1371/journal.pcbi.1002556.g007
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and qm, although this hypothesis would require a model that

allows for population heterogeneity in order to be tested.

Adding these mechanisms would of course make the model less

tractable from an analytical point of view, but this trade-off

between simplicity and reality is something that all modellers must

deal with.

Methods

Derivation of continuum model
Let us consider a one-dimensional lattice indexed by the

integers. We let pk(t) denote the probability of finding a P-cell at

site k at time t, and equivalently let mk(t) represent the occupation

probability of M-cells. The general strategy is to formulate two

coupled master equations for the occupation probabilities, which

will then be approximated by a set of PDEs, amenable to a wave

speed analysis that hopefully will reveal the influence of qp,m on

tumour growth.

Let us first consider pk(t). Which are the processes that affect

this quantity at a given site?

1. an existing P-cell can die through apoptosis (with rate m)

2. an existing P-cell might switch to an M-cell (with rate qm)

3. an M-cell residing at the site might switch into becoming a P-

cell (with rate qp)

4. a neighbouring cell might divide placing its offspring in the

(empty) considered site (with rate a=2)

Summarising all these processes we can write:

pk(tzDt){pk(t)~{mDtpk(t){qmDtpk(t)zqpDtmk(t)

z
aDt

2
(1{pk(t){mk(t))(pk{1(t)zpkz1(t))

where the first term is a loss term due to apoptosis, while the

second and third term are due to phenotypic switching. The final

term is due to cell division from the neighbouring sites, and here

we have made use of the independence assumption discussed

above. After dividing both sides by Dt and going to the limit Dt?0
we end up with the following expression:

dpk(t)

dt
~

a

2
(1{pk(t){mk(t))(pk{1(t)

zpkz1(t)){(qmzm)pk(t)zqpmk(t):

ð5Þ

In order to simplify the expression and also draw parallels to

continuum systems we define a discrete Laplace operator

~DDpk~
pkz1zpk{1{2pk

h2
ð6Þ

where h corresponds to the spacing of the lattice. Equation (5) can

now be written as

dpk

dt
~

ah2

2
(1{pk{mk)~DDpk

zapk(1{pk{mk){(qmzm)pkzqpmk:

ð7Þ

If we now turn to the motile cells, the following processes affect

mk(t):

1. an existing M-cell can die through apoptosis (with rate m)

2. an existing M-cell might switch to a P-cell (with rate qp)

3. a P-cell residing at the site might switch into becoming a M-cell

(with rate qm)

4. an existing cell might move away from the considered site (with

rate n=2 in each direction)

5. a neighbouring cell might move into the (empty) considered site

(with rate n=2)

Taking all these processes into account we can write

mk(tzDt){mk(t)~{mDtmk(t){qpDtmk(t)zqmDtpk(t)

{
nDt

2
mk(t)((1{pk{1(t){mk{1(t))z(1{pkz1(t){mkz1(t)))

z
nDt

2
(1{pk(t){mk(t))(mk{1(t)zmkz1(t)):

The first three terms can be recognised as apoptosis and

switching terms, while the fourth and fifth are due to movement

out of and into the site. After a bit of algebra and making use of the

discrete Laplacian defined in eq. (6) we get

dmk

dt
~

nh2

2
((1{pk)~DDmkzmk

~DDpk){(qpzm)mkzqmpk:

In summary we have that the time evolution of the occupation

probabilities are described by the following coupled equations:

dpk

dt
~

ah2

2
(1{pk{mk)~DDpk

zapk(1{pk{mk){(qmzm)pkzqpmk

ð8Þ

dmk

dt
~

nh2

2
((1{pk)~DDmkzmk

~DDpk){(qpzm)mkzqmpk: ð9Þ

Please note that despite the similarity to PDEs, that describe the

changes of a quantity in continuous space and time, these

equations are defined on the lattice and describe the probability of

finding a cell of a specific type in a certain location. In many

instances it is natural to proceed by taking the spatial continuum

limit of the discrete master equation(s), but in this case, where we

are considering expansion via both cell movement and pure cell

division (the case qp~0), things are a bit more delicate, because

when the size of the cells tend to zero (h?0) so does the

contribution of cell division to tumour expansion. In order to

achieve a sensible continuum limit, a certain scaling in space and

time is required, which implicitly assumes that cell motility occurs

on a much faster time scale than cell division [39], something

which is generally not the case in the case of glioma biology.

However in order to proceed with the analysis and make use of

the toolbox of real analysis we will approximate the above

equations with the following PDEs:
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Lp

Lt
~Da(1{p{m)

L2p

Lx2
zap(1{p{m){(qmzm)pzqpm ð10Þ

Lm

Lt
~Dn((1{p)

L2m

Lx2
zm

L2p

Lx2
){(qpzm)mzqmp: ð11Þ

The motivation behind this choice is that the master equations

(8) and (9) are the (space) discretised versions of (10) and (11). The

diffusion constants are given by Da~ah2=2 and Dn~nh2=2,

where h is the spacing of the lattice, which we for simplicity

measure in terms of cell size, and accordingly set h~1. This means

that we consider the dynamics on the length scale of a single cell.

Please note that the unit of the diffusion constants Da and Dn is

distance2=time, while the unit of the underlying proliferation and

migration rates is time{1. The correspondence between the

master equations and PDEs is, however, not rigorous and implies

that the analytic results obtained for the PDEs are not in general

valid for the master equations, but, as we shall see, still reflect the

behaviour of the IB-model to a large extent.

Phase-space analysis
For the sake of clarity let us recapitulate the method applied to

the Fisher equation (1) in order to calculate its speed of invasion.

The travelling wave ansatz (z~x{ct) turns the Fisher equation

into second order ODE in the variable U(z). By introducing the

variable V (z)~U ’(z) the ODE is turned into a two-dimensional

autonomous system. The system has two fixed points

(U ,V )~(0,0) and (1,0), and by calculating the eigenvalues of

the Jacobian (a determinant of partial derivatives) at the two fixed

points, one finds that the fixed point at (1,0) (corresponding to the

invaded state) is a saddle point (independent of c), while the

characteristics of the one at the origin depend on c. For cv2
ffiffiffiffiffiffiffi
Dr
p

the fixed point is a stable spiral, while for c§2
ffiffiffiffiffiffiffi
Dr
p

it is a stable

node. The heteroclinic orbit connecting the two states goes from

(1,0) through the third quadrant (Uw0,U ’v0, as in figure 4), and

only if the origin is a stable node does it enter the fixed point

without spiralling around and attaining negative values of the

density U of cancer cells. Negativity would be inconsistent with the

non-negative solution of the equation (U(z)§0), and shows that

the smallest possible wave speed is given by c~2
ffiffiffiffiffiffiffi
Dr
p

.

In our case the travelling wave ansatz transforms the system of

PDEs (10)–(11) to the following set of coupled ordinary differential

equations (ODE):

a

2
(1{P{M)P’’zcP’zaP(1{P{M)

{(qmzm)PzqpM~0

ð12Þ

n

2
((1{P)M ’’zMP’’)zcM ’{(qpzm)MzqmP~0 ð13Þ

where prime indicates derivative with respect to z, and where we

have expressed the diffusion coefficients in terms of a and n.

Because p and m represent occupation probabilities we seek

solutions P(z)§0 and M(z)§0 for all z. In order to perform a

phase-space analysis we need to transform the coupled ODEs to

an autonomous system by introducing the variables Q~P’ and

N~M ’. This expands equation (12) and (13) into the following

four-dimensional system:

P’~Q ð14Þ

M ’~N

Q’~
2

a(1{P{M)
((qmzm)P{qpM{cQ{aP(1{P{M))

N ’~
2

n(1{P)
((qpzm)M{

nM

a(1{P{M)
((qmzm)P

{qpM{cQ{aP(1{P{M)){cN{qmP)

with boundary conditions

P({?)~p? M({?)~m? Q({?)~0 N({?)~0

P(?)~0 M(?)~0 Q(?)~0 N(?)~0
ð15Þ

where

p?~
(qpzm) a(qpzm){m(qmzqp)zm2)

� �

a((qpzm)2zqpqmzqmm)
ð16Þ

and

m?~
qm a(qpzm){m(qmzqp)zm2)
� �

a((qpzm)2zqpqmzqmm)
: ð17Þ

The boundary conditions reflect the fixed points of the system,

which are p1~(P,M,N,Q)~(0,0,0,0) and p2~(p?,m?,0,0), and

correspond to the healthy and invaded state respectively. In the

limit m?0 the invaded fixed point simplifies to (qp=(qpz

qm),qm=(qpzqm),0,0), in which case only the relative magnitude

of the switching rates qp,m determines the equilibrium occupation

probabilities (cf. the values of p and m at x~0 in figure 4b and c).

What will help us determine the wave speed c is the

characteristics of these fixed points, or more precisely the one at

the origin. This method only gives a lower bound on the wave

speed, but this minimal c turns out to be the one attained for

relevant initial conditions for the Fisher equation [21], although

this requires further proof [40].

We will now apply the same kind of reasoning of non-negativity as

for the Fisher equation in order to obtain a minimal wave speed cmin

for our system (3)–(4). The properties of the fixed point at the origin

are determined by linear stability analysis and depend on the

eigenvalues of the Jacobian J~
Lfi

Lxj

, where the fi’s are the right hand

sides of equation (14) and xj correspond to the independent variables

P,M,Q and N. The Jacobian evaluated at the origin is given by

J(p1)~

0 0 1 0

0 0 0 1

2=a(qmzm{a) {2qp=a {2c=a 0

{2qm=n 2(qpzm)=n 0 {2c=n

0
BBB@

1
CCCAð18Þ
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whose eigenvalues are given by the zeros of the characteristic

polynomial

P(l)~anl4z(2acz2cn)l3 ð19Þ

z(4c2{2a(qpzm){2n(qmzmza))l2

{4c(a{qm{qp{2m)l

{4(a(qpzm){m(qmzqpzm)):

The roots of this equation li have, for the biologically relevant

parameter values and cw0 non-zero real part, <(li)=0, implying

that the fixed point is hyperbolic and thus that its characteristics

are fully determined by linear stability analysis [41]. The aim is

now to find the smallest c such that all roots of P(l) have

imaginary part equal to zero, since only then are we guaranteed

trajectories which do not oscillate around the origin, and remain

positive in the variables P and M, which is required since these

variables represent non-negative occupation probabilities. Deter-

mining the smallest such c turns out to be intractable from an

analytic point of view, and we will therefore resort to numerical

solution of the eigenvalue problem.
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