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Maximum Likelihood-Based Blind Dispersion
Estimation for Coherent Optical Communication

Henk Wymeersch,Member, IEEE, and Pontus Johannisson

Abstract—Starting from the maximum likelihood criterion, we
derive a novel blind chromatic dispersion (CD) estimation method
in the presence of unknown data, propagation delay, polarization
state, and differential group delay. By using CD estimation,
electronic dispersion compensation (EDC) can be carried out
without prior knowledge about the amount of accumulated CD.
This adds flexibility to the EDC, which may prove valuable in
reconfigurable optical networks. Using numerical simulations,
we compare the suggested algorithm with a well-known CD
estimation algorithm based on the constant modulus algorithm.
We find that the proposed algorithm has better estimation
performance and lower computational complexity. Furthermore,
the impact of differential group delay is small. The derivation
of the algorithm also shows the close connection between CD
estimation, clock recovery, and polarization effects.

Index Terms—Optical fiber communication, coherent optical
communication, optical fiber dispersion.

I. I NTRODUCTION

COHERENT optical receivers must compensate for vari-
ous channel impairments. For performance and flexibility

reasons, many of the receiver tasks are carried out in the
electrical domain through digital signal processing (DSP)[1].
The typical stages in the DSP include: (i) electronic dispersion
compensation (EDC), often in the frequency domain for large
amounts of accumulated chromatic dispersion (CD); (ii) clock
recovery and interpolation; (iii) polarization demultiplexing
and adaptive equalization; (iv) frequency offset compensation
and phase synchronization; (v) data detection and decoding.
While CD is a static effect, characterized by the dispersion
parameter and the fiber length, the receiver must have access
to this parameter in order to perform EDC. In a flexible system,
where the signal path through the network may change with
time, the amount of accumulated CD may not be known.

Several approaches for CD estimation have already been
reported. One way is to implementoptical performance mon-
itoring. In [2], the residual CD and other channel parameters
were estimated from the filter response in the adaptive equal-
izer. This method can monitor the system, but the value for
the EDC is somewhat limited since CD estimation in this way
relies on feedback from a later (the equalizer) to an earlier
(the EDC) DSP block. CD estimation without performing the
equalization was discussed in [3]. The suggested algorithm
was based on the constant modulus algorithm (CMA) [4] and

Henk Wymeersch is with the Communication Systems Group, Depart-
ment of Signals and Systems, Chalmers University of Technology, SE-
412 96 Gothenburg, Sweden. Pontus Johannisson is with the Photonics
Laboratory, Department of Microtechnology and Nanoscience, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden. Email: {henkw,
pontus.johannisson}@chalmers.se.

assumes that the sampling rate is two samples per symbol.
Another CD estimation method, based on the autocorrelation
of the signal spectrum was proposed in [5]–[8]. Furthermore,
CD estimation based on delay-tap sampling [9], mean signal
power and eigenvalue spread [10] has been investigated. All
these algorithms are blind, i.e., they operate without any prior
knowledge of the data. This is attractive since the algorithms
are easy to integrate into the receiver and they have zero spec-
tral efficiency penalty. The alternative to a blind algorithm is
to use data-aided estimation [11], [12], at a cost of periodically
inserting training sequences. While these approaches leadto
practical methods, they are generally derived in an ad-hoc
manner.

In this paper, we describe a novel blind CD estimation
algorithm with a rigorous mathematical underpinning: starting
from the maximum likelihood (ML) criterion, we are able
to estimate the CD in the presence of unknown data, timing
offset, differential group delay (DGD), and polarization state.
The estimator operates in the frequency domain and is easy to
integrate with existing frequency domain EDC. We evaluate
the method by numerical simulations in terms of the estima-
tion error variance and compare with a well-known method
from [3]. Our results indicate that the ML-based estimator
achieves lower error variance at a smaller computational cost.
We also find that the performance penalty from DGD is
very limited for any amount of DGD and can, if necessary,
be reduced further at a marginal increase in computational
complexity.

Although we include many of the most important signal
transmission impairments, there are even more physical phe-
nomena that can be studied in this context. Examples of this
are the Kerr nonlinearity and even more general polarization
effects, such as polarization-dependent loss and polarization-
mode dispersion. However, such an investigation is outsidethe
scope of this work and we leave this for a later study.

Notation: Ex{·} denotes the expectation operator with re-
spect to the random variablex; the probability density function
of x is written p(x); vectors are denoted by bold letters;
quantities in the frequency domain are generally denoted by
capital letters;‖x‖ denotes vector norm, i.e.,‖x‖ =

√
xHx;

the identity matrix is denoted byI; ℜ(x) extracts the real part
of the complex numberx; for any real-valued functionf(·),
argmaxx maxy f(x, y) returns the value ofx corresponding
to the global maximum off(·); the component in thex
polarization of a vector-signaly(t) will be written asyx(t).
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II. PROBLEM STATEMENT

We consider a coherent optical communication system us-
ing polarization multiplexing. The transmitted signal canbe
written as

s(t) =

∞
∑

k=−∞

akp(t − kT ), (1)

whereak = [ax
k, ay

k]T is the complex2× 1 symbol vector for
symbol slotk, p(t) is a unit-energy transmit pulse, and1/T
is the symbol rate. We assume that the data symbols have
the following properties:E{ak} = 0, E{aka

T
l } = 0, ∀k, l,

andE{aka
H
l } = EsδklI, whereEs is the energy per symbol.

These assumptions hold for allM -ary quadrature amplitude
modulation formats andM -ary phase-shift keying modulation
formats forM > 2. Notable exceptions include on–off keying
and binary phase-shift keying.

The phase and polarization state of the received signal
are unknown, as is the differential group delay (DGD) along
an unknown axis. We model these effects through the Jones
matrix

T(f) = VD(f)U = V

(

e−jπfTDGD 0
0 ejπfTDGD

)

U, (2)

whereU andV are general unknown unitary Jones matrices
that can change the polarization to any possible state andTDGD

is the total difference in propagation times along the slow and
fast axes, respectively. The received electrical signal can be
expressed in the frequency domain as

R(f) = H(f)e−j2πfτT(f)S(f) + N(f)

≡ X(f) + N(f), (3)

where H(f) is the transfer function of the CD,τ is an
unknown propagation delay,S(f) is the Fourier transform of
the transmitted signal, andN(f) is complex additive white
Gaussian noise (AWGN) with power spectral densityN0/2
per each of the four real dimensions. The CD all-pass filter is
described by

H(f) = exp

(

−j
πf2λ2

c

ˆ L

0

D(z)dz

)

, (4)

whereλ is the carrier wavelength,c is the speed of light,D(z)
is the dispersion parameter, andL is the total system length.
Using the expression for the group delay [13, p. 39]

∆T = DL∆λ, (5)

we introduce

η ≡ ∆T

T
=

∆λ

T

ˆ L

0

D(z)dz = − λ2

cT 2

ˆ L

0

D(z)dz, (6)

where we used the symbol rate to find a representative
bandwidth∆λ for the channel. The transfer function (4) can
then be writtenH(f) = exp(jπηT 2f2). In the case|η| ≫ 1,
we can directly interpret|η| as the signal pulse broadening
measured in symbol slots. Our goal is to set up a structure
of the form shown in Fig. 1, where we estimateη based on
r(t), the observed time-domain counterpart ofR(f), without
knowledge ofτ , T, or ak.

r(t)

y(t)

Y(f)

Matched
filter

η̂

EDC

FT Eq. (31)

Further
DSP

Figure 1. Block diagram of the proposed CD estimator. The incoming signal
is filtered, Fourier transformed (FT), and given to the estimator, which is
stated later as (31). The estimated value is used in the EDC and the “further
DSP” includes, e.g., adaptive equalization, phase synchronization, and data
detection.

III. PROPOSEDCD ESTIMATOR

A. The ML Criterion

ML estimators are widely used in estimation problems, as
they have a number of desirable asymptotic properties, suchas
consistency and efficiency. According to the ML criterion, the
optimal estimate of an unknown parameterx in the presence
of a random nuisance parameterz from an observationr is

x̂ = argmax
x

p(r|x) = arg max
x

ˆ

p(r, z|x)dz

= argmax
x

ˆ

p(r|x, z)p(z|x)dz. (7)

In our case, we make the following associations:x ↔ [η, τ,T],
z ↔ a. For a more general description of ML estimation, see
[14, Section 12.2].

B. CD Estimation

Using the fact that the noise is AWGN and suppressing the
infinite limits to make the notation compact, we obtain

p(r|η, τ,T,a) ∝ exp

[

− 1

N0

ˆ

‖r(t) − x(t)‖2
dt

]

= exp

[

− 1

N0

ˆ

‖R(f) − X(f)‖2 df

]

, (8)

where we used Parseval’s theorem to write the likelihood in
the Fourier domain, and denoted a vector representation of
r(t) by r. Expanding the vector norm we obtain

p(r|η, τ,T,a) ∝ exp

[

2

N0
ℜ
ˆ

RH(f)X(f)df

]

, (9)

where we have removed the additive terms that do not depend
onη. We Taylor expand to second order according toexp(x) ≈
1 + x + x2/2 to obtain

p(r|η, τ,T,a) ∝ 1 +
2

N0
ℜ
ˆ

RH(f)X(f)df

+
2

N2
0

[

ℜ
ˆ

RH(f)X(f)df

]2

. (10)

It should be noticed that the Taylor expansion will yield
suboptimal results at a high signal-to-noise ratio (SNR). The
first (constant) term in (10) can be dropped, as it will not affect
the ML estimate.
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1) Expectation over the Data: We now take the expectation
of (10) with respect to the data symbolsak. For the second
term in (10), we have

Ea

{

2

N0
ℜ
ˆ

RHXdf

}

=
2

N0
ℜ
ˆ

RH
Ea {X}df, (11)

in which

Ea {X} =
∑

k

ejπηT 2f2

TEak
{ak}e−j2π(kT+τ)fP (f). (12)

As discussed above,Eak
{ak} = 0 and the second term in

(10) is therefore zero. Using the relation2ℜ(x) = x + x∗

and neglecting the irrelevant positive multiplicative factor, the
third term in (10) can be written as

[
ˆ

RH(f)X(f)df

]2

+

[
ˆ

XH(f)R(f)df

]2

+ 2

ˆ

RH(f)X(f)df

ˆ

XH(v)R(v)dv. (13)

Using (3) to substituteX(f) and taking the expectation with
respect toak, the first term of (13) will contain terms of
the form Ea{aka

T
l }. Similarly, the second term will contain

terms of the formEa{a∗
ka

H
l }. These two terms are both zero

due to the assumptions about the constellation made above.
Finally, the third term in (13) will contain terms of the form
Ea{aka

H
l } = EsδklI. In summary, we find that

p(r|η, τ,T) =
∑

a

p(r|η, τ,T,a)p(a)

∝
∑

k

¨

RH(f)T(f)TH(v)R(v)P (f)P ∗(v)

× e−j2π(kT+τ)f ejπηT 2f2

ej2π(kT+τ)ve−jπηT 2v2

dfdv, (14)

where we have dropped additive constants and positive mul-
tiplicative factors. Observe that (14) does not depend on the
data.

2) Interpretation of the Likelihood Function: We introduce

Z(f ; η,T) = e−jπηT 2f2

P ∗(f)TH(f)R(f), (15)

with the corresponding time domain signalz(t; η,T), which
we interpret as the received signal after a matched filter (with
frequency responseP ∗(f)), polarization demultiplexing and
DGD correction, and EDC with a candidate value forη. We
can then write

p(r|η, τ,T) ∝
∑

k

∥

∥

∥

∥

ˆ

Z(f ; η,T)ej2π(kT+τ)f df

∥

∥

∥

∥

2

, (16)

or

p(r|η, τ,T) ∝
∑

k

‖z(kT + τ ; η,T)‖2
. (17)

Hence, the likelihood function (14) has a direct and very
intuitive interpretation:η, τ , and T should be chosen such
that, when using these values to do EDC, compensation for
the polarization and DGD effects, and sampling at times
kT + τ , then the sum of the symbol power over all symbols
and both polarizations is maximized. In words, this can be
loosely described as “maximizing the eye opening”. The ML

estimates ofη, τ , andT are found by solving the optimization
problem

[η̂, τ̂ , T̂] = arg max
η,τ,T

p(r|η, τ,T). (18)

3) Removal of the Dependency on τ : It is clear that a direct
optimization of (18) calls for joint estimation ofη, τ , and
T, which may be impossible due to the high computational
complexity. To avoid this, we rewrite (16) as

p(r|η, τ,T) ∝ (19)
¨

ZH(f ; η,T)Z(v; η,T)ej2πτ(v−f)
∑

k

ej2πkT (v−f)dvdf,

and use
∞
∑

k=−∞

ej2πkT (v−f) =
1

T

∞
∑

k=−∞

δ(v − (f + k/T )) (20)

to perform the integration overv. We then obtain

p(r|η, τ,T) ∝
∑

k

ej2πτk/T

ˆ

ZH(f ; η,T)Z(f + k/T ; η,T)df. (21)

Examining this sum, we find that the term corresponding to
k = 0 is the total signal energy, which is not affected by
the choice ofη, τ , or T. Consequently, we can drop this
term. Furthermore, we find that the complex conjugate of term
k is equal to the term−k, allowing us to reformulate the
summation as

p(r|η, τ,T) ∝

ℜ
∞
∑

k=1

ej2πτk/T

ˆ

ZH(f ; η,T)Z(f + k/T ; η,T)df. (22)

In this infinite sum, terms corresponding tok > 1 will be
small, as the spectraZH(f ; η,T) andZ(f + k/T ; η,T) will
only have a small overlap. Hence, retaining only the term
corresponding tok = 1, we obtain

[η̂, τ̂ , T̂] = (23)

arg max
η,τ,T

ℜ
[

ej2πτ/T

ˆ

ZH(f ; η,T)Z(f + 1/T ; η,T)df

]

.

This formulation allows us to decompose the optimization to

[η̂, T̂] = argmax
η,T

∣

∣

∣

∣

ˆ

ZH(f ; η,T)Z(f + 1/T ; η,T)df

∣

∣

∣

∣

(24)

and

τ̂ = − T

2π
∠

[
ˆ

ZH(f ; η̂, T̂)Z(f + 1/T ; η̂, T̂)df

]

, (25)

where∠x denotes the phase of the complex variablex. The
estimateτ̂ in (25) corresponds to the well-known Oerder and
Meyr estimator [15]. This highlights the close connection be-
tween CD estimation, clock recovery, and polarization effects.
Note that whenη, τ , and T have been estimated, then the
EDC and the interpolation can be carried out in the most
convenient order. This offers a potential re-ordering of receiver
components.
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4) Final CD Estimator: We choose to formulate the final
result (24) in terms of the received signal after matched
filtering only. Thus, we introduceY(f) = P ∗(f)R(f), see
Fig. 1. The estimator becomes

η̂ = arg max
η

max
M

∣

∣

∣

∣

ˆ

YH(f)MY(f + 1/T )e−j2πηTfdf

∣

∣

∣

∣

,

(26)

where

M = VD(f)UUHDH(f + 1/T )VH. (27)

SinceUUH = I, we find

M = V

(

ejπTDGD/T 0

0 e−jπTDGD/T

)

VH, (28)

which does not depend onf and shows explicitly that (26) is
periodic inTDGD with periodT . It is now possible to estimate
both η and M, but the aim here is only to estimateη. To
minimize the computational complexity of the CD estimation,
we should therefore test only a minimal set of matrices,S,
selected in such a way as to achieve sufficiently high accuracy
in the estimation ofη. In the absence of DGD, we haveM = I.
If TDGD 6= 0, thenM depends onTDGD andV but we notice
that M is unitary. Using [16, Eq. (4.4)] it can therefore be
written on the form

I cos(ϕ/2) − jr̂ · ~σ sin(ϕ/2), (29)

whereϕ and r̂ are the rotation angle and normalized axis, re-
spectively, and~σ is the Pauli spin vector. This shows that every
matrixM can be written as a linear combination of the identity
and the Pauli spin matrices, i.e., the set{I, σ1, σ2, σ3}. We
suggest to chooseS as this set of matrices. However, since
M can be multiplied byj without affecting the estimate (26),
we can select an equally well performing set as

S =

{(

1 0
0 ±1

)

,

(

0 1
±1 0

)}

. (30)

To motivate this set intuitively, we first notice that sinceD

is periodic in TDGD with period T , we expect that the case
TDGD = T/2 would be a worst case. By using (29) to construct
V matrices corresponding tomπ/2 rotations, wherem is an
arbitrary integer, around any of the three axes in Stokes space,
we find that all these cases are handled exactly by the setS
for TDGD = T/2. This shows that the setS includes more
cases than what is immediately obvious. The final estimator,
to be used where indicated in Fig. 1, becomes

η̂ = arg max
η

max
M∈S

∣

∣

∣

∣

ˆ

YH(f)MY(f + 1/T )e−j2πηTfdf

∣

∣

∣

∣

.

(31)

As described in Section IV-C, this selection of the setS
leads to a small performance penalty for any amount of DGD.
However, the penalty can, if necessary, be made arbitrarily
small by increasing the number of matrices in the setS. The
increase of the computational complexity is marginal as a
larger number ofM matrices is included, which is seen by
writing (31) in terms of

´

(Y a(f))∗Y b(f + 1/T )e−j2πηTfdf
for a, b ∈ {x, y} and the matrix elements ofM. Then, for

a given value ofη, the four integrals can be calculated first,
and the results are used to form a linear combination with the
elements of the matrixM.

We notice that the final result (31) bears resemblance to the
estimator suggested in [6], which was not derived directly from
the ML criterion. However, some differences exist, e.g., (i) [6,
Eq. (1)] is for a scalar field and no explicit algorithm is given
for a polarization-multiplexed signal; (ii) while DGD and PMD
are mentioned in [6], no detailed method for handling DGD is
given; (iii) The spectral shift is±1/T in [6], while it is 1/T
in (31); (iv) two different cost functions are suggested in [6],
while the ML approach results in one single algorithm.

C. Practical Considerations

In a DSP implementation, we would sample the uncom-
pensated matched filter outputy(t) asynchronously at a rate
1/Ts during an observation window ofN symbols (orNobs =
NT/Ts samples), and apply a fast Fourier transform to obtain
a vectorY with frequency resolutionδf = 1/(NT ). Then we
find that

η̂ = arg max
η

max
M∈S

∣

∣

∣

∣

∣

Nobs−1
∑

k=0

YH
k MYk+Ne−j2πηTkδf

∣

∣

∣

∣

∣

. (32)

As a side-effect, we notice that the objective function (32)is
now periodic with periodN . This implies that thea priori un-
certainty inη must not exceedN . In the discrete domain, (32)
also places a restriction on the sampling rate at the receiver:
assuming the bandwidth ofY(f) is approximately[−B, +B],
then to avoid aliasing, the sampling rate1/Ts should satisfy
1/Ts > 2B +1/T . Finally, we mention that the complexity of
the estimator (32) scales asNobs(log(Nobs) + Neval), where
Neval is the number of values ofη for which the objective
function is evaluated.

IV. N UMERICAL SIMULATIONS

A. Simulation Setup

In order to evaluate the suggested algorithm numerically,
we use Monte Carlo simulations, and average our results over
1000 runs. We consider a 28 Gbaud system using polarization-
multiplexed quadrature phase-shift keying transmission using
RZ pulses with 50 % duty cycle. The polarization mixing
matricesU and V, and delayτ are drawn uniformly from
the set of2 × 2 unitary matrices, and[0, 10T ], respectively.
To allow a fair evaluation with a benchmark algorithm (see
below), the received signal is sampled without knowledge of
τ at two samples per symbol, and then upsampled in DSP to
four samples per symbol to fulfill the sampling rate require-
ment in Section III-C. We assumeD(z) = 17 ps/(nm km),
λ = 1550 nm, andL ∈ {300 km, 3000 km}, corresponding to
an accumulated dispersion of 5100 ps/nm and 51000 ps/nm,
respectively (equivalently,η ∈ {−32.04,−320.43}). Note that
for N = 512, the ambiguity period of the ML-based estimator
is 81491 ps/nm. The optimization problem (31) is first solved
by a coarse search over the interval[0, 10000] ps/nm forL =
300 km, and over[50000, 60000] ps/nm forL = 3000 km,
each time with a resolution of 200 ps/nm. The shape of the cost
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Figure 2. Standard deviation of the estimation error ofη for the 300 km
link and an observation duration of 512 symbols.

function is similar to what has been found for other estimation
methods; a narrow peak at the true value and smaller peaks
elsewhere. (See, e.g., [7, Fig. 4].) A fine search is then
performed using thefminsearch function in MATLAB. The
SNR at the receiver is varied from 0 dB to 21 dB. The DGD
parameterTDGD is varied between 0 ps andT = 35.72 ps.

B. Benchmark Algorithm

We compare the proposed ML-based method with a com-
peting estimator also operating at two samples per symbol.
As described in the introduction, many algorithms have been
suggested and it is not easy to select a benchmark algorithm.
We choose to use the CMA-based algorithm from [3]. (Notice
that this is not the CMA commonly used for polarization
demultiplexing.) The reasons for this selection include that
this algorithm has good performance (see [7]) and is described
in detail for a polarization-multiplexed signal. We first nor-
malize the energy per symbol and polarization to one. Then,
for every candidate value ofη, we apply matched filtering
and EDC. This leads to sampleszx

k,odd(η) and zy
k,odd(η) for

the odd samples, andzx
k,even(η) and zy

k,even(η) for the even
samples,k = 1, . . . , N . Let P x

odd(η) be the average energy
of the odd samples in thex polarization, and similarly we
introduceP y

odd(η), P x
even(η), andP y

even(η). DenotingQx(η) =
P x

even(η)/P x
odd(η) andQy(η) = P y

even(η)/P y
odd(η), we compute

Rx
odd(η) andRx

even(η) (and similarlyRy
odd(η) andRy

even(η)) as

[Rx
odd(η)Rx

even(η)] =











[Ra Rc] Qx(η) > ξ

[Rb Rb] ξ−1 < Qx(η) < ξ

[Rc Ra] Qx(η) < ξ−1,

(33)

whereRa, Rb, Rc, and ξ are optimized empirically. We use
the values from [3], i.e.,Ra = 0.6, Rb = 1.5, Rc = 2, and
ξ = 1.25. Finally the cost function is

J(η) =

N−1
∑

k=0

∑

s∈
{odd,even}

∑

p∈
{x,y}

∣

∣

∣
|zp

k,s(η)|2 − Rp
s(η)

∣

∣

∣
, (34)
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Figure 3. Standard deviation of the estimation error ofη for the 3000 km
link and an observation duration of 512 symbols.

which is to be minimized with respect toη. This method has
a computational complexity that scales asNevalNobslog(Nobs),
which is substantially higher than what was found above for
the proposed method. The reason for this is that EDC is carried
out for each candidate value and the cost function is then
evaluated in the time domain.

C. Results and Discussion

We first evaluate the performance of the two estimators
through Monte Carlo simulations over 1000 runs, in a case of
negligible DGD, i.e.,TDGD = 0 andM = I. The performance
norm used is the standard deviation of the estimation error
η̂ − η. We recall from the definition ofη that the estimation
error is directly related to the residual symbol broadening
after EDC, expressed in symbol slots. Hence, we aim for a
negligible residual broadening by demanding that the error
standard deviation is below 1. The results for the 300 km
and 3000 km link are shown in Figs. 2 and 3, respectively,
assumingN = 512. We observe that the ML-based method
significantly outperforms the CMA-based method in both
cases, especially at low SNR values. For the 3000 km link,
the ML-based method obtains a standard deviation below 1 for
an SNR below 5 dB, while the CMA-based method required
an SNR above 10 dB to obtain the same performance. For
low SNR, the performance is mainly dominated by outliers.
Both estimators exhibit a flooring phenomenon where the
performance improves only slowly with increasing SNR. In
this parameter regime, the performance is limited by the
observation length instead of the SNR.

A different view is provided by Fig. 4, showing the per-
formance at a fixed SNR of 9.8 dB, corresponding to an
uncoded bit error rate of10−3, as a function of the observation
durationN . For the 3000 km link, the ML-based estimator
requires 512 symbols to obtain good estimates, while the
CMA-based estimator requires around 1024 symbols to attain
similar performance. For the 300 km link, both estimators can
cope with shorter observation durations, but the ML-based
estimator exhibits significantly better performance.
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Figure 4. Standard deviation of the estimation error ofη for different
observation durations,N , expressed in symbols. The SNR is 9.8 dB.

Finally, we investigate the impact of DGD on both esti-
mators. We again consider a fixed SNR of 9.8 dB, and set
L = 300 km and N = 512. The standard deviation of the
estimation error is shown in Fig. 5. We observe that the
ML-based estimator suffers only from a minor degradation
with increased DGD, and that the performance is symmetric
around TDGD = T/2. The largest degradations occur for
TDGD ≈ 0.3T and TDGD ≈ 0.7T , due to the fact that the
setS best compensates for the effect of the DGD in the cases
TDGD ≈ 0 andTDGD ≈ T/2. As discussed above, the accuracy
of the CD estimation can, if necessary, be further improved by
expanding the setS, defined in (30). The CMA-based method
incurs a degradation with increasing DGD and this effect turns
out to be mainly due to outliers in the CD estimates.

V. CONCLUSIONS

We have presented a novel blind CD estimation method
derived from the ML criterion. The algorithm is able to
accurately estimate the accumulated CD without knowledge of
the data, propagation delay, polarization state, or differential
group delay. Using numerical simulations, we have compared
with a CMA-based alternative and found that the ML-based
algorithm exhibits better estimation accuracy and reduced
sensitivity to DGD at a lower computational complexity. The
derivation of the estimator has also shown the close connection
between dispersion estimation and clock recovery.
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