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Maximum Likelihood-Based Blind Dispersion
Estimation for Coherent Optical Communication

Henk Wymeerschiviember, |IEEE, and Pontus Johannisson

Abstract—Starting from the maximum likelihood criterion, we ~ assumes that the sampling rate is two samples per symbol.
derive a novel blind chromatic dispersion (CD) estimation nethod ~ Another CD estimation method, based on the autocorrelation
in the presence of unknown data, propagation delay, polariation of the signal spectrum was proposed in [5]-[8]. Furthermore

state, and differential group delay. By using CD estimation - . . .
electronic dispersion compensation (EDC) can be carried qu CD €stimation based on delay-tap sampling [9], mean signal

without prior knowledge about the amount of accumulated CD. Power and eigenvalue spread [10] has been investigated. All
This adds flexibility to the EDC, which may prove valuable in these algorithms are blind, i.e., they operate without amyrp
reconfigurable optical networks. Using numerical simulatons, knowledge of the data. This is attractive since the algorith
we compare the suggested algorithm with a well-known CD 516 aasy to integrate into the receiver and they have zew spe

estimation algorithm based on the constant modulus algoritm. e . ; o
We find that the proposed algorithm has better estimation tral efficiency penalty. The alternative to a blind algomitfis

performance and lower computational complexity. Furthermore, 10 use data-aided estimation [11], [12], at a cost of peciaity
the impact of differential group delay is small. The derivaion inserting training sequences. While these approachesttead

of the algorithm also shows the close connection between CDpractical methods, they are generally derived in an ad-hoc
estimation, clock recovery, and polarization effects.

manner.
Index Terms—Optical fiber communication, coherent optical
communication, optical fiber dispersion. In this paper, we describe a novel blind CD estimation
algorithm with a rigorous mathematical underpinning: titar
I. INTRODUCTION from the maximum likelihood (ML) criterion, we are able

OHERENT ontical . " te f to estimate the CD in the presence of unknown data, timing
optical TECEIVErs must compensate 1ot Vallser gifferential group delay (DGD), and polarizatiaats.
ous channel impairments. For performance and flexibili

. . . he estimator operates in the frequency domain and is easy to
reasons, many of the receiver tasks are carried out in [

) . - . . ?egrate with existing frequency domain EDC. We evaluate
electrical domain through digital signal processing (D) the method by numerical simulations in terms of the estima-

tion error variance and compare with a well-known method
Yfom [3]. Our results indicate that the ML-based estimator
achieves lower error variance at a smaller computationstl co

recovery gnd interpole}tion;.(iii) polarization demuléglng We also find that the performance penalty from DGD is
and adaptive equalization; (iv) frequency offset comptosa .very limited for any amount of DGD and can, if necessary,

and_ phase_ synchro_mzatmn; (v) data c_ietecuon and _decod_| 8 reduced further at a marginal increase in computational
While CD is a static effect, characterized by the d'Spers'%mplexity

parameter and the fiber length, the receiver must have access
to this parameter in order to perform EDC. In a flexible system A

\t/.vhereththe S|gnalt p?th througljht tgeCBeMork mtat))/ clr:ange W'ﬁ%nsmission impairments, there are even more physical phe
Ime, thé amount of accumu'ate may NOt b€ KNOWN. ,nmena that can be studied in this context. Examples of this

Seve(rjaloapproaches fpr CI:D eSt'mC:It'on fhave already be% the Kerr nonlinearity and even more general polarinatio
reported. One way is to implemeaptical performance mon- effects, such as polarization-dependent loss and poleniea

ltoring. Itr_1 [Z]t, Ijh? res;?]ua]!_ISD and other_ CTE””%' pe;ramete ode dispersion. However, such an investigation is outside
were estimated from the Titer response in the adaplive equ ope of this work and we leave this for a later study.
izer. This method can monitor the system, but the value for

the EDC is somewhat limited since CD estimation in this way Notation: E

i feedback f | h i i +{-} denotes the expectation operator with re-
relies on feedback trom a at_er (t, € egualzer) to an ear 'E[Sect to the random variahte the probability density function
(the EDC) DSP block. CD estimation without performing th

Bf x is written p(x); vectors are denoted by bold letters;

equakljlzangn w?hs dlscutssetd md[gll. Tr:e S_l:r?geséel\;lealgf”trt{Eantities in the frequency domain are generally denoted by
was based on the constant modulus algorithm (CMA) [4] an@ i) jetters;|x|| denotes vector norm, i.elx| = v/xUx;

Henk Wymeersch is with the Communication Systems Group,apep the identity matrix is denoted bl R(x) extracts the _real part
ment of Signals and Systems, Chalmers University of Teduyl SE- 0Of the complex numbeg; for any real-valued functiorf(-),
41296 Gothenburg, Sweden. Pontus Johannisson is with tiorits arg max, max, f(z,y) returns the value of corresponding

Laboratory, Department of Microtechnology and Nanosa@en€halmers . . .
University of Technology, SE-41296 Gothenburg, SwedenaiEnfhenkw, to the gIObaI maximum Off(')- the component In ther

pontus.johannisson}@chalmers.se. polarization of a vector-signalt(t) will be written asy®(t).

amounts of accumulated chromatic dispersion (CD); (iicklo

Ithough we include many of the most important signal



[I. PROBLEM STATEMENT r(t)

We consider a coherent optical communication system UsSypatched y(t) Eurther
ing polarization multiplexing. The transmitted signal cae filter > EDC > Dsp
written as - i

s(t) = app(t — kT 1 K
®) k;m kp(t = kT), & Y5
FT —{Eq. (31
whereay, = [af,a}]|" is the complex2 x 1 symbol vector for

.SymbOI slotk, p(t) is a unit-energy transmit pulse, aﬂdT Figure 1. Block diagram of the proposed CD estimator. Theriniag signal
is the symbol rate. We assume that the data symbols h@V@itered, Fourier transformed (FT), and given to the eatom which is
the following propertiesE{a;} = 0, E{akaf} = 0, Vk,l, stated later as (31). The estimated value is used in the EQIGhen“further
andE{akaF} = E.6uI, whereE, is the energy per symbol E)SP includes, e.g., adaptive equalization, phase synctation, and data
. ’ . tecti

These assumptions hold for alll-ary quadrature amplitude erection.
modulation formats and/-ary phase-shift keying modulation
forman forM > 2. N(_)table_exceptions include on—off keying 1. PROPOSEDCD ESTIMATOR
and binary phase-shift keying. A The ML Criterion

The phase and polarization state of the received S|gnal _ ) o
are unknown, as is the differential group delay (DGD) alon ML estimators are W|del_y used in estimation prqblems, as
an unknown axis. We model these effects through the Joﬁ%§y have a number of desirable asymptotic properties, asich

matrix consistency and efficiency. According to the ML criteriamg t
o Tooo 0 optimal estimate of an unknown parametem the presence
T(f)=VD(f)U=V ( 0 ejwaDGD) U, (2) ofarandom nuisance parametefrom an observatiom is
whereU and V are general unknown unitary Jones matrices x = argmax p(r[x) = arg m}E}X/P(Ta z|x)dz
that can change the polarization to any possible statdpagd
is the total difference in propagation times along the slow a = arg max/p(]r|x, z)p(z|x)dz. @)
fast axes, respectively. The received electrical signal lba *
expressed in the frequency domain as In our case, we make the following associations: [n, 7, T},
jonfr z — a. For a more general description of ML estimation, see
R(f)=H(f)e T(f)S(f) + N(f) [14, Section 12.2].
= X(f) +N(/), 3

where H(f) is the transfer function of the CD; is an B. CD Estimation

unknown propagation delag(f) is the Fourier transform of  Using the fact that the noise is AWGN and suppressing the

the transmitted signal, anN(f) is complex additive white infinite limits to make the notation compact, we obtain
Gaussian noise (AWGN) with power spectral dengiy/2

per each of the four real dimensions. The CD all-pass filter |sp(]r|n,7 T,a)  exp {__ / () — x(@)| dt}
described by
2 gt —ow |- [IRG) =X ar]. @
H(f) = exp <—j = / D(z)dz) . @
0 where we used Parseval’'s theorem to write the likelihood in

where)\ is the carrier wavelengtlz,is the speed of lightD(z) the Fourier doma_in, and denoted a vector rgpresentation of
is the dispersion parameter, aiidis the total system length. r(t) by r. Expanding the vector norm we obtain

Using the expression for the group delay [13, p. 39] 9 u
el L) e | 2% [ REX(ar|. @

AT = DLAM, (5)
where we have removed the additive terms that do not depend
onn. We Taylor expand to second order accordingsp(z) ~

AT A/\/ D(2)dz = T2/ D(x ©6) 1+ x + 2%/2 to obtain
C

2
where we used the symbol rate to find a representativep(rmT’Tva) “1+M%/RH(f)X(f)df
bandwidthA\ for the channel. The transfer function (4) can 9 2
then be writtent (f) = exp(jwnTQfg).. In the casen| > 1, + 52 [%/RH(f)X(f)df} . (10)
we can directly interpretn| as the signal pulse broadening 0
measured in symbol slots. Our goal is to set up a structuteshould be noticed that the Taylor expansion will yield
of the form shown in Fig. 1, where we estimajebased on suboptimal results at a high signal-to-noise ratio (SNRje T
r(t), the observed time-domain counterpartRf/), without first (constant) term in (10) can be dropped, as it will notetf
knowledge ofr, T, or ay. the ML estimate.

we introduce

Ui



1) Expectation over the Data: We now take the expectationestimates of;, 7, and T are found by solving the optimization
of (10) with respect to the data symbeis. For the second problem
term in (10), we have

2 2
Ea{ —R [ RUXdf s = —m/RHlEa X}tdf, (11 _ :
{No / f} No (Xpdf, (1) 3) Removal of the Dependency on 7: It is clear that a direct

in which optimization of (18) calls for joint estimation of, =, and
o ‘ T, which may be impossible due to the high computational
Ea{X} =Y ™I TR, {a}e 72714 P(f). (12) complexity. To avoid this, we rewrite (16) as

. _p(xln, 7, T) o (19)
As discussed abovéE,, {a;} = 0 and the second term in . ‘
(10) is therefore zero. Using the relati@®(z) = z + z* //ZH fin, T)Z(v;n, T)el> ™01 N " 2k = qud f,
and neglecting the irrelevant positive multiplicativetfac the

[77’ T, T] = arg Inaxp(r|77, 7, T) (18)
n,7,T

third term in (10) can be written as and use
2 2 0o 0o
R x|+ | [ xR S TN LS s (£ kD) (20)
k=—o0 k=—o00
+ 2/RH(f)X(f)df/XH(“)R(”)d“' 13) o perform the integration over. We then obtain

Using (3) to substitut&(f) and taking the expectation with  p(r|n, 7, T)

respect toay, the first term of (13) will contain terms of P °

the formE,{a,a/ }. Similarly, the second term will contain Ze /Z (fin,T)Z(f + k/T5n, T)df.  (21)
terms of the formE,{ajal'}. These two terms are both zero k

due to the assumptions about the constellation made abdwramining this sum, we find that the term corresponding to
Finally, the third term in (13) will contain terms of the formk = 0 is the total signal energy, which is not affected by

Ea{aka}{} = Esi 1. In summary, we find that the choice ofn, 7, or T. Consequently, we can drop this
term. Furthermore, we find that the complex conjugate of term
p(xln, 7. T) =Y p(xn, 7, T, a)p(a) k is equal to the term-Fk, allowing us to reformulate the
a summation as

o RE(AHT(HTH(w)R()P(f)P*(v

%// (FYT(FYTH ()R (o) P(F) P* (1) Seln T

—j2m T imnT? f? _jor v —janT?v? .
% e J2 (kT+ )feJ nT=f 2 (kT+T) e J nT dfd’U, (14) %ZeJQWTk/T/ZH(f;n,T)Z(f+k/T;77,T)df- (22)

where we have dropped additive constants and positive mul-  ¥=!

tiplicative factors. Observe that (14) does not depend @n thn this infinite sum, terms corresponding o> 1 will be
data. small, as the spectra®(f;n, T) and Z(f + k/T;n, T) will
2) Interpretation of the Likelihood Function: We introduce only have a small overlap. Hence, retaining only the term

T2 A2 corresponding td = 1, we obtain
Z(fin,T) = /™I PH (TR, (15)

T = 23
with the corresponding time domain signgl; n, T), which (7, 7, T} (23)
we interpret as the received signal after a matched filteth(wi arg maX% [ j2nT /T / ZH(fin, TVZ(f +1/T;n, T)df] '
frequency respons&*(f)), polarization demultiplexing and n,7T

DGD correction, and EDC with a candidate value forWe This formulation allows us to decompose the optimization to
can then write

[, T] = argmax

JRt 1/T;n,T)df’ (24)

p(rln, 7, T) (16)

and

T - .
F=——u| | ZR(f;9, TVZ(f +1/T;7,T)d ] 25
e T St ) 2 |2 s @)

where Zx denotes the phase of the complex variableThe
Hence, the likelihood funcnon (14) has a direct and vemgstimater in (25) corresponds to the well-known Oerder and
intuitive interpretation:n, 7, and T should be chosen such Meyr estimator [15]. This highlights the close connecti@n b
that, when using these values to do EDC, compensation for tween CD estimation, clock recovery, and polarizationaffe
the polarization and DGD effects, and sampling at times Note that whenn, 7, and T have been estimated, then the
kT + 7, then the sum of the symbol power over all symbols EDC and the interpolation can be carried out in the most
and both polarizations is maximized. In words, this can be convenient order. This offers a potential re-ordering ctreer
loosely described as “maximizing the eye opening”. The Mbomponents.

or



4) Final CD Edtimator: We choose to formulate the finala given value ofy, the four integrals can be calculated first,
result (24) in terms of the received signal after matchexhd the results are used to form a linear combination with the
filtering only. Thus, we introduc& (f) = P*(f)R(f), see elements of the matridI.

Fig. 1. The estimator becomes We notice that the final result (31) bears resemblance to the
estimator suggested in [6], which was not derived directiyf

,  the ML criterion. However, some differences exist, e.9.[]

Eq. (1)] is for a scalar field and no explicit algorithm is give

for a polarization-multiplexed signal; (ii) while DGD and/®

where are mentioned in [6], no detailed method for handling DGD is

given; (iii) The spectral shift ist1/7" in [6], while it is 1/T

/YH(f)MY(f +1/T)e72mTf qf
(26)

7) = arg max max
n M

HpyH H
M = VD(/)UU'D(f + 1/T)V". 27) in (31); (iv) two different cost functions are suggested 6 [
SinceUU! =1, we find while the ML approach results in one single algorithm.
ed™Toep/T 0 -
M=V ( 0 eﬂ'ﬂTDGD/T> v (28) ¢ Practical Considerations

which does not depend ofiand shows explicitly that (26) is N @ DSP implementation, we would sample the uncom-
periodic inThap with periodT. It is now possible to estimate Pensated matched filter outpytt) asynchronously at a rate
both 7 and M, but the aim here is only to estimaie To 1/Zs during an observation window g¥ symbols (0rNobs =
minimize the computational complexity of the CD estimation¥ Z/Ts samples), and apply a fast Fourier transform to obtain
we should therefore test only a minimal set of matricgs, & VectorY with frequency resolutionf = 1/(NT). Then we
selected in such a way as to achieve sufficiently high acgzureﬂiqd that
in the estimation of). In the absence of DGD, we haixd = 1. Nops—1 _
If Toep # 0, thenM depends offpgp andV but we notice 7 = arg max max Z YIMY, ye 92mTRS| - (32)
that M is unitary. Using [16, Eqg. (4.4)] it can therefore be k=0
written on the form As a side-effect, we notice that the objective function (32)
) o now periodic with periodV. This implies that the priori un-

Lcos(p/2) = ji - &sin(p/2), (29) certainty inn must not exceed. In the discrete domain, (32)
wherey andr are the rotation angle and normalized axis, rexlso places a restriction on the sampling rate at the receive
spectively, andr is the Pauli spin vector. This shows that evergssuming the bandwidth &f (/) is approximatelyj— B, + B],
matrix M can be written as a linear combination of the identitthen to avoid aliasing, the sampling ratg7’s should satisfy
and the Pauli spin matrices, i.e., the $&to1,02,03}. We 1/T, > 2B+1/T. Finally, we mention that the complexity of
suggest to choos§ as this set of matrices. However, sincéhe estimator (32) scales &¥obs(log(Nobs) + Neval), Where
M can be multiplied byj without affecting the estimate (26), Neva IS the number of values of for which the objective
we can select an equally well performing set as function is evaluated.

1 0 0 1
S= {<0 11) ’ <il 0>} (30) IV. NUMERICAL SIMULATIONS

To motivate this set intuitively, we first notice that singe A Smulation Setup

is periodic inTpep with period T, we expect that the case In order to evaluate the suggested algorithm numerically,

Toep = T'/2 would be a worst case. By using (29) to construgre use Monte Carlo simulations, and average our results over

V matrices corresponding tar/2 rotations, wheren is an 1000 runs. We consider a 28 Gbaud system using polarization-

arbitrary integer, around any of the three axes in Stokesespamultiplexed quadrature phase-shift keying transmissisingi

we find that all these cases are handled exactly by thesseRZ pulses with 50% duty cycle. The polarization mixing

for Toep = 7'/2. This shows that the sef includes more matricesU and V, and delayr are drawn uniformly from

cases than what is immediately obvious. The final estimatdhg set of2 x 2 unitary matrices, and0, 1077, respectively.

to be used where indicated in Fig. 1, becomes To allow a fair evaluation with a benchmark algorithm (see
below), the received signal is sampled without knowledge of

/YH(f)MY(f +1/T)e 72™TIqf|. 7 at two samples per symbol, and then upsampled in DSP to

(31) four samples per symbol to fulfill the sampling rate require-

ment in Section IlI-C. We assum®(z) = 17 ps/(nmkm),

As described in Section IV-C, this selection of the et A\ = 1550 nm, andL € {300 km, 3000 km}, corresponding to

leads to a small performance penalty for any amount of DGBn accumulated dispersion of 5100 ps/nm and 51000 ps/nm,

However, the penalty can, if necessary, be made arbitranyspectively (equivalently; € {—32.04, —320.43}). Note that

small by increasing the number of matrices in the&SefThe for N = 512, the ambiguity period of the ML-based estimator

increase of the computational complexity is marginal asiga 81491 ps/nm. The optimization problem (31) is first solved

larger number ofM matrices is included, which is seen byby a coarse search over the inter{@l10000] ps/nm forL =

writing (31) in terms of [(Y(f))* Y (f + 1/T)e~32™TIdf 300 km, and over[50000,60000] ps/nm for L = 3000 km,

for a,b € {x,y} and the matrix elements d&¥I. Then, for each time with a resolution of 200 ps/nm. The shape of the cost

) = arg max max
1 & 7 MEeS
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Figure 2. Standard deviation of the estimation erromdbr the 300 km Figure 3. Standard deviation of the estimation erromdbr the 3000 km
link and an observation duration of 512 symbols. link and an observation duration of 512 symbols.

function is similar to what has been found for other estiprati Which is to be minimized with respect tp This method has
methods; a narrow peak at the true value and smaller pe&keomputational complexity that scales/¥gaNobs1og(Nobs),
elsewhere. (See, e.g., [7, Fig. 4].) A fine search is thavhich is substantially higher than what was found above for
performed using théni nsear ch function in MATLAB. The the proposed method. The reason for this is that EDC is chrrie
SNR at the receiver is varied from 0 dB to 21 dB. The DGDPUut for each candidate value and the cost function is then
parameteflpgp is varied between 0 ps arifl = 35.72 ps. evaluated in the time domain.

B. Benchmark Algorithm C. Results and Discussion

We compare the proposed ML-based method with a com—We first evaluate th_e performance of the two. estimators
peting estimator also operating at two samples per symb roggh Monte C_arlo simulations over 1000 runs, in a case of
As described in the introduction, many algorithms have bedf9ligible DGD, i.e.Toep = 0 andM = L The performance
suggested and it is not easy to select a benchmark algoritf{]ﬂrm used is the standard d_e\_/|_at|on of the estimation error
We choose to use the CMA-based algorithm from [3]. (Noticé ~ n. We recall from the definition of; that the estimation
that this is not the CMA commonly used for polarizatiorﬁe"or is directly relate(_j to the residual symbol brogdemng
demultiplexing.) The reasons for this selection includatthafter, EDC’ ex_pressed n sy_mbol slots, Hence’ we aim for a
this algorithm has good performance (see [7]) and is de@xtribnegl'g'ble res_|dL_1aI proadenlng by demanding that the error
in detail for a polarization-multiplexed signal. We firstrno standard deviation is below 1. The results for the 300 km

malize the energy per symbol and polarization to one. TheEH?d 30_00 kT link a\rls shgwn in I:]igs.hz T\;‘E k:;’ regpecti;]/egl,
for every candidate value af, we apply matched filtering assumingV = 512. We observe that the -based metho

and EDC. This leads to sampleg (1) and = (1) for significantly outperforms the CMA-based method in both

ially at low SNR values. For the 3000 km link
the odd samples, and’ (7)) and z/ . .{n) for the even cases, especia : o ’
samplesj — 1,...,N. Let Pz (n) be the average energythe ML-based method obtains a standard deviation below 1 for

of the odd samples in the polarization, and similarly we an SNR below 5 dB, while the_CMA-based method required
introduce PYyy(n), Prer(17), and Plier(17). DenotingQ* (i) = an SNR above 10 dB to obtain the same performance. For

P o)/ Piin) and Q¥() = Per(n)/PLyy(n), e compute low SNR, the performance is mainly dominated by outliers.

- Both estimators exhibit a flooring phenomenon where the
R and RZ, and similarly RY and R% as X o .
) ever(7) ( Y Fagd) ever(17)) performance improves only slowly with increasing SNR. In

[Ro R:] Q%(n) >¢& this parameter regime, the performance is limited by the
[Roaa(n) Revedn)] = 4 [Ro Ro] €71 < Q7(n) <& (33) observation length Instead of the SHR. |

[R.R. Q7(n) <& A different view is provided by Fig. 4, showing _the per-

e ’ formance at a fixed SNR of 9.8 dB, corresponding to an

where R,, Ry, R., and¢ are optimized empirically. We use uncoded bit error rate dfdo—3, as a function of the observation

the values from [3], i.e.R, = 0.6, R, = 1.5, R, = 2, and duration N. For the 3000 km link, the ML-based estimator
& = 1.25. Finally the cost function is requires 512 symbols to obtain good estimates, while the
N_1 CMA-based estimator requires around 1024 symbols to attain

J(n) = Z Z Z 122 (n)]* = RE(n)], (34) similar performance. For the 300 km link, both estimatons ca
0  se Y= ' cope with shorter observation durations, but the ML-based

{oddevert {z,y} estimator exhibits significantly better performance.
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standard deviation of error

Figure 4. Standard deviation of the estimation errornofor different
observation durationslV, expressed in symbols. The SNR is 9.8 dB.

Finally, we investigate the impact of DGD on both esti-y
mators. We again consider a fixed SNR of 9.8 dB, and set
L = 300 km and N = 512. The standard deviation of the
estimation error is shown in Fig. 5. We observe that th
ML-based estimator suffers only from a minor degradation
with increased DGD, and that the performance is symmetrig]
around Tpgp T/2. The largest degradations occur for
Tocp ~ 0.3T and Tpgp ~ 0.7T, due to the fact that the 5]
setS best compensates for the effect of the DGD in the cases
Toep ~ 0 andTpep ~ T'/2. As discussed above, the accuracy
of the CD estimation can, if necessary, be further improwed b
expanding the sef, defined in (30). The CMA-based method
incurs a degradation with increasing DGD and this effeatgur [7]
out to be mainly due to outliers in the CD estimates.

(8]
V. CONCLUSIONS
We have presented a novel blind CD estimation method
derived from the ML criterion. The algorithm is able to [g]
accurately estimate the accumulated CD without knowledge o
the data, propagation delay, polarization state, or difféal
group delay. Using numerical simulations, we have compargg,
with a CMA-based alternative and found that the ML-based
algorithm exhibits better estimation accuracy and reduced
sensitivity to DGD at a lower computational complexity. The, ;
derivation of the estimator has also shown the close coimmect
between dispersion estimation and clock recovery.
[12]
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