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Spintronics-based mesoscopic heat engine
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We consider a nanowire suspended between two spin-polarized leads and subjected to a nonuniform magnetic
field. We show that a temperature drop between the leads can significantly affect the nanowire dynamics.
In particular, it is demonstrated that, under certain conditions, the stationary distribution of the mechanical
subsystem has a Boltzmann form with an effective temperature, which is lower than the temperature of the “cold”
lead; this seems rather counterintuitive. We also find that a change in the direction of the temperature gradient
can result in the generation of mechanical vibrations rather than the heating of the mechanical subsystem.
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I. INTRODUCTION

Nanomechanical resonators are devices, which are being
employed not only to develop new technological applications,
such as ultrasensitive sensors,1–4 but also to shed light on
fundamental questions, such as the transition from the clas-
sical to the quantum-mechanical description of macroscopic
objects.5 Investigation of a system where a mechanical degree
of freedom controls the properties of a mesoscopic junction
between two bulk leads is an important line of research in
nanomechanics.6–8 In such structures, the mechanical part may
be considered as a nanoengine whose operation is controlled
by the states of two bulk thermodynamic reservoirs. It is
well known that a macroscopic mechanical system may be
driven into cyclic motion if it is coupled to reservoirs held at
different temperatures. A Stirling engine, operating by cyclic
compression and expansion of air or other gas and placed
between hot and cold spaces, is one example.

By decreasing the size of the heat engine to the nanoscale
level, quantum mesoscopic effects come into play and de-
termine the behavior of both the working substance and the
mechanical subsystem. This opens new possibilities for the
operation of a heat engine, for instance, reduction or even
suppression of the mechanical fluctuations—effective cooling
of the mechanical subsystem. Recently, it was shown that
suppression, leading to ground-state cooling, may be achieved
if reservoirs, presented by normal or superconducting metal
leads, are held at different electrochemical potentials.9–12

It was also demonstrated that a temperature drop between
reservoirs can also generate this effect if one assumes a very
special “three-particle” interaction inside a junction.13,14 In
this paper, we investigate heating, pumping, and cooling of
a mechanical mode in a realistic nanojunction where only a
“two-particle” interaction between the mechanical degree of
freedom and the working subsystem exists. We show that a
temperature drop between linked leads can generate cooling
or excitation, depending on its direction, of the mechanical
subsystem.

To be specific, we consider a carbon nanotube suspended
between La1−xSrxMnO3 ferromagnets of opposite polariza-
tions (a structure recently realized experimentally15) and
subject to a nonuniform magnetic field B [cf. Fig. 1(b)]. The
field can be generated, for example, by a magnetic STM tip in
the form of a wedge, which is in proximity to the nanotube [cf.

Fig. 1(a)]. If the nanotube is not too long (length L � 1 μm),
it can be considered as a quantum dot coupled to the electrodes
through tunnel junctions. We assume that inside the nanotube
there is only one doubly degenerate, with respect to spin,
and spatially quantized electronic level, which participates in
electron exchange with the ferromagnetic leads.

If the nanotube is straight and is positioned below the STM
sharp end, as shown in Fig. 1(b), the applied magnetic field
is directed toward the nanotube (z direction) and Zeeman
splits the degenerate electronic level of the nanotube. A
two-level system (TLS) is, thus, formed in the latter with levels
σz =↑ , ↓ and energies ε↑,↓, respectively. Deflection of the
suspended part of the nanotube in the x direction generates
interlevel transitions (spin flip) in the TLS. Consequently,
the nonuniform magnetic field induces coupling between
mechanical and electronic subsystems. In what follows, we
will refer to this mechanism of interaction between mechanical
and electronic subsystems as spin-mechanical coupling. The
latter can also be achieved in a different setup by spin-orbit
coupling.16

We assume that the left and right leads are completely
polarized along the z direction (i.e., the density of states are
ν

↑(↓)
R(L) = 0 and ν

↓(↑)
R(L) ≡ νR(L) > 0), and the energy difference

between levels of the TLS is � ≡ ε↑ − ε↓ > 0. If there is no
spin-mechanical coupling and the intrinsic relaxation time τ of
the TLS is larger than the dwell time of an electron in the nan-
otube, then the occupation number of the spin up (down) state
inside the nanotube is n↑(↓) � fF [(ε↑(↓) − εFL(R))/TL(R)] ≡
fL(R), where fF is the Fermi-distribution function, εFL(R) and
TL(R) are the Fermi energy and temperature of the left (right)
lead, respectively.

The spin-mechanical coupling generates spin-flip transi-
tions between the energy levels of the TLS. These transitions
are inevitably accompanied by absorption or emission of
mechanical quanta. The cooling (pumping) process of the
mechanical subsystem is the result of an electron transition
from the lower (upper) energy level to the upper (lower)
energy level of the TLS. In order to effectively cool (pump) the
mechanical mode, it is required that n↑ � n↓ (n↑ � n↓). This
can be realized by applying a bias voltage or by subjecting the
leads to different temperatures. Below, we consider cooling
and pumping of the mechanical subsystem generated only by
a temperature gradient between the leads.
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FIG. 1. (Color online) (a) A nanotube suspended between two
spin-polarized leads and in proximity to a magnetic scanning
tunneling microscopic (STM) tip with magnetization M. The leads
have opposite polarizations along the z direction. (b) Nonuniform
magnetic field B created by the magnetic tip. The nanotube (circles)
deflection u is in the x direction. (c) A doubly spin-degenerate
electronic level exists in the nanotube at energy ε0. The applied
magnetic field splits this level into two levels σz = ↑ , ↓ separated
by an energy � ∝ BzμB. The leads are held at different temperatures
TL,R with a zero-bias voltage.

II. MODEL

To perform a quantitative analysis of the system described
above, we consider the Hamiltonian,

H = Hnw + Hl + Ht, (1)

Hnw = h̄ωb̂†b̂ +
∑

σ=↑,↓
εσ n̂σ + gû(d̂†

↑d̂↓ + d̂
†
↓d̂↑), (2)

Hl =
∑

k

εL(k)â†
k,↑,Lâk,↑,L + εR(k)â†

k,↓,Râk,↓,R, (3)

Ht =
∑

k

tLâ
†
k,↑,Ld̂↑ + tRâ

†
k,↓,Rd̂↓ + H.c., (4)

where âk,σ,L(R)(â
†
k,σ,L(R)) and d̂σ (d̂†

σ ) are the annihilation
(creation) operators for electrons in the left (right) leads and
in the nanotube, respectively, and n̂σ = d̂†

σ d̂σ .
The first term in Eq. (2) describes the nanotube mechanical

degrees of freedom, which we restrict to the fundamental
flexural mode. This mode is described as a simple harmonic
oscillator with vibrational frequency ω and b̂(b̂†) as the
annihilation (creation) operator for an elementary excitation
(vibron). The second term in Eq. (2) describes the TLS with
energy levels εσ = ε0 ± �/2, where � is the Zeeman-splitting
energy proportional to the z component of the applied magnetic
field Bz and ε0 is the zero-field energy, which is measured
relative to the lead Fermi energy. The last term in Eq. (2)
describes the spin-mechanical coupling. It is proportional
to the oscillator displacement û = (b̂† + b̂)/

√
2 and to the

spin-flip operator. The coupling parameter g is equal to
CμBx0∂xBx(0), where μB is the Bohr magneton, x0 is the

zero-point vibrational amplitude, ∂xBx(0) is the field gradient
along the x direction, and C is a numerical factor ∼A/L,
where L is the nanowire length and A is the length of the STM
wedge. This factor accounts for the electronic state inside
the nanotube being extended over the whole length of the
nanotube, whereas, the magnetic field is concentrated only in
the region below the STM. The field gradient ∂xBx(0), induced
by a Fe-based magnetic tip 7.5-nm thick with magnetization
M = 1.75 × 106 A/m at a distance 7.5 nm, is on the order
of 35 mT × nm−1. For this value of field gradient and for
a nanotube with vibrational frequency ω = 2π × 100 MHz,
mass 1 ag, and A/L = 0.1, g is on the order of 2π × 106 Hz.
The interaction term between the mechanical and the electronic
subsystems can be formally derived in a way similar to the one
given in Ref. 17. The term Hl in Eq. (3) describes the left and
right leads. The term Ht in Eq. (4) describes the tunneling of
electrons from the nanowire to the leads and vice versa, and
tL(R) are tunneling amplitudes.18

To analyze the performance of the system, we start from the
Liouville-von Neumann equation for the total density operator

̂ and then eliminate the lead electronic degrees of freedom.19

If the temperatures of the leads are much greater than h̄ω/kB,
the Fermi distributions fL,R(ε) are smooth functions within
the energy interval h̄ω. As a result, one gets the following
Lindblad master equation (5) for the reduced density matrix
ρ = TrR+L
̂. The latter describes the mechanical degree of
freedom and the electronic state of the TLS of the nanotube,

∂tρ = − i

h̄
[Hnw,ρ] + LL[ρ] + LR[ρ], (5)

where

Lα[ρ] = 
α[(1 − fα)d̂σα
ρd̂†

σα
+ fα(d̂†

σα
ρd̂σα

ρ)

− (1/2 − fα){n̂σk
,ρ}]. (6)

Here, α = (L,R), σL(R) =↑ (↓), and 
α = 2π |tα|2να/h̄ are
the tunneling rates, να is the density of states, and {Â,B̂}
denotes an anticommutator. The collision integrals Lα[ρ]
describe the decoherence in the electronic subsystem induced
by the bulk electronic reservoirs.

If the resonant condition � = h̄ω is fulfilled and ω �
g/h̄, 
L, the rotating-wave approximation can be used to
obtain the following rate equations:

Ṗm(n) = g̃[P i
↑↓(n) − P i

↑↓(n + 1)],

Ṗ↑(n) = −g̃P i
↑↓(n + 1) − 
RfRP↑(n) + 
LfLP0(n)

−
L(1 − fL)P↑(n) + 
R(1 − fR)P2(n),

Ṗ↓(n) = g̃P i
↑↓(n) + 
RfRP0(n) − 
LfLP↓(n)

(7)
+
L(1 − fL)P2(n) − 
R(1 − fR)P↓(n),

Ṗ2(n) = −
L(1 − fL)P2(n) − 
R(1 − fR)P2(n)

+
LfLP↓(n) + 
RfRP↑(n),

2Ṗ i
↑↓(n) = g̃n[P↑(n − 1) − P↓(n)] − (
L + 
R)P i

↑↓(n),

where g̃ = g
√

2/h̄. Here, Pσ (n), P0(n), and P2(n)
are the joint probabilities to find a vibrational mode in a Fock
state with n vibronic quanta and one electron on the nanotube
with spin σ , empty nanotube, and two electrons on the
nanotube, respectively. Therefore, the total probability to find n
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FIG. 2. (Color online) Effective temperature T eff of the vi-
brational mode as a function of the ratio � = TR/TL. For � >

1, T eff < min{TL,TR}, for �∗ < � < 1, T eff > max{TL,TR}, and
for � < �∗, no stationary distribution exits unless additional
dissipation mechanisms are included. Inset: Vibron stationary
distribution on a logarithmic scale when the mechanical sub-
system interacts only with ferromagnetic leads (curve 1), only
with a bosonic bath at temperature Tb and coupling param-
eter γ (curve 2), and both the fermionic and bosonic baths
(curve 3). We use ω/2π = 100 MHz, TL = 0.02 K, � = 10, Tb =
(TL + TR)/2, ε0 = kBTR/2, 
L = √

2g/h̄, 
R = 1.62g/h̄, and γ =
0.002g/h̄.

vibronic quanta is Pm(n) ≡ P0(n) + P↑(n) + P↓(n) + P2(n).
The off-diagonal elements of the density matrix
P i

↑↓(n) = Im〈0|d̂↑b(n−1)ρ(b̂†)nd̂†
↓|0〉/(n − 1)! describe

the quantum entanglement between the electronic and the
mechanical subsystems generated by the correlation between
the spin flip of an electron and a change in the number of
vibronic quanta.

III. EFFECTIVE TEMPERATURE OF THE
MECHANICAL SUBSYSTEM

Equation (7) always has a stationary solution where P st
m (n)

has a Boltzmann form

P st
m (n) = Z−1 exp(−h̄ωn/kBT eff), (8)

where Z = [1 − exp(−h̄ω/kBT eff)]−1 and the effective tem-
perature is given by

T eff = TL

h̄ω

ε0

[
1 − �−1 + h̄ω

2ε0
(1 + �−1)

]−1

, (9)

where � = TR/TL. This solution has physical meaning only
if T eff > 0. Negative effective temperature indicates that there
is a permanent energy pump into the mechanical subsystem.
In this case, in order to achieve a stationary regime, one has to
introduce additional external sources of dissipation.

From Eq. (9), one can see that, for ε↓ > 0 and TR >

TL, the vibrational mode is effectively cooled to a final
temperature, which is smaller than the temperature of the cold
lead (T eff < min{TL,TR} = TL)—cooling regime. From this
equation also follows that, in the interval 1 > � > �∗ ≡ (1 −
h̄ω/2ε0)/(1 + h̄ω/2ε0), the effective temperature is greater
than the temperature of the hot lead (T eff > max{TL,TR} =
TL)—heating regime [cf. Fig. 2].

Note that when a temperature difference is used to
reduce mechanical fluctuations of the nanotube, the mini-
mum effective temperature of the mechanical subsystem is

FIG. 3. (Color online) Vibron stationary distribution Pm(n) when
� < �∗. We include a bosonic bath with temperature Tb and coupling
parameter γ . The stationary distribution exhibits a peak at nmax, which
increases as γ gets smaller. We use nbγh̄/g � 1 (curve 1), nbγh̄/g =
0.021 (curve 2), and nbγh̄/g = 0.01 (curve 3). Inset: The width of the
distribution Pm(n) scales inversely with Tb. Tb(A) = 1.5 K, Tb(B) =
0.3 K, Tb(C) = 0.06 K, and nbγh̄/g = 0.01 for all curves A–C.

always greater than T eff
min = 2TL/(1 + 2ε0/h̄ω), approaching

this value as � → ∞. As a result, the average vibron number
〈n〉 = ∑

n nPm(n) ∼ exp(−ε0/kBTL) is finite but exponen-
tially small. This is a consequence of the finite temperature
of the cold lead, which leads to infrequent pumping processes
and does not allow for achieving absolute ground-state cooling.

From Eq. (7) with TL and TR such that T eff < 0 (� < �∗),
it follows that d〈n〉/dt > 0, and the average number of vibrons
increases with time. However, in a real physical situation, the
mechanical subsystem is also coupled to the phononic thermal
baths of the leads. To account for the dissipation due to this
coupling, to the left side of Eq. (5), we add a Lindblad operator
γLγ .20 Here, the temperature of the phononic bath is Tb ∼
(TL + TR)/2, and γ = ω/Q is the coupling parameter charac-
terized by the resonator quality factor Q, which can be very
large, Q � 105, at low temperatures.21 We properly modify the
system of equations (7) and solve it numerically. The resulting
shape of P st.

m (n) is depicted in Fig. 3. From this figure, one can
see that, at small n, the probabilities P st.

m (n) increase with n.
This is because, for small n < 
/g and γ < g, the pumping
rate (∝gn) is larger than the dissipation rate (∝γ n). Then, the
pumping rate eventually saturates to 
 � min 
L(R) at n =
ns ∼ 
/g, whereas, the dissipation rate governed by the in-
teraction with phonon reservoirs continues to increase linearly
with n and finally overcomes the pumping rate. As a result, the
distribution function reaches a maximum at n = nmax ∼ 
/γ

and then exponentially decays for larger n � nmax.

IV. MECHANICAL GROUND-STATE COOLING

We discuss the conditions for ground-state cooling of the
mechanical subsystem; i.e., a stationary regime with a final
vibron number 〈n〉 � 1. Thus far, we have considered the
situation of completely polarized leads. However, in order to
analyze the conditions for ground-state cooling, it is necessary
to estimate the effect of partial spin polarization in the leads.
To quantify the degree of polarizability of the right lead, we
introduce a parameter ηL(R) = 1 − ν

↓(↑)
L(R)/ν

↑(↓)
L(R) and find that,

for a symmetric case (
R = 
L), 1 − ηR � 1, TL � TR , and
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ε0 ∼ TRkB � h̄ω, the average number of vibrons is

〈n〉 ≈ 〈n〉η=0 + (1 − fR)(1 − ηR) + O[(1 − ηR)2]. (10)

Hence, for a 90% spin-polarized right lead, the average vibron
number is increased only by ≈0.1.

A necessary condition to achieve ground-state cooling
comes from Eq. (9), which suggests that, in order to achieve
the minimum effective temperature, one needs TR � TL and
ε0 � h̄ω. The sufficient condition comes from the requirement
that the cooling rate κ should be larger than the damping
rate γ due to a bosonic bath. The largest cooling rate for
a given temperature gradient is achieved when 
L � g/h̄ �

R(1 − fR). Thus, the conditions for ground-state cooling
of the mechanical mode in the presence of a bosonic bath
are TR � TL, ε0 � h̄ω, and Q � h̄ωnb/gfR , where nb =
[exp(h̄ω/kBTb) − 1]−1 (Tb is the temperature of the bosonic
bath). From the last inequality, it follows that the best cooling
regime is achieved when kBTR ≈ ε0. Our analysis shows that,
for a nanotube with frequency ω = 2π × 100 MHz (h̄ω/kB ≈
6 mK), realistic coupling parameter g ≈ 2π × 106 Hz (see
above), and quality factor Q = 105, the average vibronic
number can be reduced to 〈n〉 = 0.44 for TR = 200 mK and
TL = 20 mK.

V. CONCLUSIONS

In conclusion, we have studied heating, pumping, and
cooling of the mechanical vibrations of a nanotube suspended

between two highly polarized magnetic leads. We have shown
that spin-mechanical coupling between the mechanical and the
electronic subsystems generated by a nonuniform magnetic
field may result in suppression or generation of mechanical
vibrations when the leads are held at different temperatures. In
particular, it was demonstrated that, under certain conditions,
the stationary distribution of the mechanical subsystem has
a Boltzmann form with an effective temperature, which is
smaller than the temperature of the cold lead. This counterin-
tuitive result is a consequence of the Fermionic nature of the
baths coupled to the mechanical subsystem and, in the case of
fully spin-polarized leads, coupling of one level of the TLS to
only one lead. Notice that coupling to bosonic baths results in
an effective temperature of the vibrational mode equal to the
mean value of the baths’ temperature. Also, changing direction
of the temperature gradient results in generation of mechanical
vibrations rather than heating of the mechanical subsystem.
Finally, for partial spin polarization in the leads, ground-
state cooling of the mechanical vibration can be achieved at
realistic physical parameters if the leads have �50% spin
polarization.
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