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Abstract: In this paper we study a subset of hybrid systems and present a generalized method
for their optimization. We outline Hybrid Cost Automata (HCA), an extension to Hybrid
Automata, where discrete and continuous cost expressions are added. The class of hybrid systems
with known spatial paths is defined in the context of HCA. This type of system is common in
industry where for example AGVs transport goods from one location to another, or manipulators
move between joint coordinates. The optimization is performed using Dynamic Programming as
a preprocessing step, whereafter Mixed Integer Nonlinear Programming is used for scheduling.
A case study of a four robot cell is presented with energy consumption used as a minimization

criterion.
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1. INTRODUCTION

Much work has been put into analysis and optimization of
general hybrid systems, see for example Johansson and
Rantzer [1998], Hedlund and Rantzer [1999] or for an
extensive summary, Barton and Lee [2002]. In this paper
we present a slightly more specialized method geared to-
wards a subset of hybrid systems, those with known paths
and time invariant cost functions. In manufacturing, many
systems are comprised of robots and other moving devices.
These devices most often move between waypoints and the
paths between these can be assumed to be known, or more
trivial to compute. First, we outline a useful extension for
Hybrid Automata (HA), Hybrid Cost Automata (HCA),
where continuous and discrete cost expressions have been
added. Based on the HCA we define the class of hybrid
systems with known paths. We present an optimization
method that efficiently solves instances of this problem
class, exploiting its special structure. The continuous time
dynamics are abstracted using local cost functions and the
resulting problem is that of scheduling discrete transitions
based on nonlinear cost functions.

One particularly important design driver for manufactur-
ing systems is energy efficiency. This type of criteria will
result in nonlinear but most often convex cost functions,
much like the general problem of hybrid systems with
known paths considered in this paper. In the energy mini-
mization case, optimization of mechatronic devices is well
investigated in Saidur [2010], Visinka [2002], Yang et al.
[2009], Hirzinger et al. [2002]. Energy optimal trajectories
for robot applications is a big research field itself, see e.g.
Diken [1994], Park [1996] and Sergaki et al. [2002]. From
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a system design perspective, a selection and matching of
efficient design solutions for pre-defined operations is stud-
ied in Maimon et al. [1991], Roos et al. [2006], Izumi et al.
[2009]. The optimization of the scheduling supervisor of
the overall system is a promising area. Two approaches are
presented in Kobetski and Fabian [2008], where idle time
between the operations is used to reduce velocities and
accelerations, without concern to the energy consumption.
In Vergnano et al. [2010], a method based on the reduction
of velocities and accelerations with concern to energy was
presented. Based on a dynamic scaling of trajectories,
we presented an optimization method in Wigstrom and
Lennartson [2011] Wigstrom et al. [2012], which serves as
the foundation for the generalization in this paper.

HA can be used to model hybrid systems. They do however
lack a formal definition of costs, both in the continuous
and discrete sense. Similar as Timed Automata have been
extended with linear costs into Priced Timed Automata
Behrmann et al. [2001], we suggest an extension of HA
into HCA. Observe that, HCA can be regarded as a
generalization of Priced Time Automata in the same
way as HA can be regarded as a a generalization of
Timed Automata. Normally, cost expressions are included
into the continuous state equations, e.g. Barton and Lee
[2002]. Using HCA allows system dynamics to be modeled
seperate from costs expressions in a self-contained way,
clarifying the underlying system structure. Note that what
differentiates continuous and discrete costs from states
and modes (discrete states), are that the two former
influence neither dynamics, transitions, guard conditions
nor invariant conditions.

Our optimization method can be divided into two parts.
First, for each mode (discrete state) in the system, enumer-
ate all the combinations of initial and final states. These
combinations are assumed to have a known path as well
as some other properties presented in the next section.
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Dynamic programming can be applied as in Wigstrom
et al. [2012] to generate the local optimal cost for each
path combination as a function of time. This will abstract
the continuous time dynamics, i.e. flatten the HCA into a
Timed Automata with nonlinear costs. The second part of
the optimization, is scheduling the discrete transitions of
the flattened system. The resulting scheduling problem is
solved using Mixed Integer Nonlinear Programming as in
Wigstrom et al. [2012] to generate the optimal schedule.

Note that, if the local cost functions are non-convex,
they should be convexified before step two, e.g. divided
into convex intervals. Also, the optimization formulation
scales well for larger problems as the complexity for
adding local costs increases linearly in the first step. The
exponential complexity of the second step has so far been
shown to constitute the smaller part of the computation
time for our case study example. For a larger problem
instance, partitioning might be necessary for a tractable
formulation.

The paper is structured as follows. Section 2 will give an
outline of Hybrid Cost Automata and explain what condi-
tions are necessary for the optimization method. Section 3
contains the first part of the optimization method, the tra-
jectory planning problem formulation and its optimization
model. Section 4 briefly covers a Mixed Integer Nonlinear
Programming scheduling model. Section 5 presents the
results from a four robot test case and finally in Section 6
conclusions are drawn along with a short discussion.

2. HYBRID SYSTEMS

A hybrid system is a dynamical system, which behavior
is described by both discrete and continuous dynamics.
One modeling framework for hybrid systems is the Hybrid
Automata (HA) Alur et al. [1992] Cassandras and Lafor-
tune [2006], a generalized finite-state machine. In addition
to the usual discrete transitions, there are also continuous
states with dynamics that can vary for each mode (dis-
crete state). The continuous states can also influence the
discrete transitions. Amongst other things, HA are used
for model checking, simulation and optimization. With
respect to optimization, we argue that the HA framework
is somewhat lacking. In this paper, we outline an extension
of the HA with cost function expressions into Hybrid Cost
Automata (HCA).

HCA include both continuous as well as discrete instan-
taneous costs. With this modeling formalism a hybrid
system, including dynamics and relevant optimization cri-
teria or constraint parameters can be expressed on a self
contained form. The following subsections will provide
a definition of HCA and also show how under certain
conditions, the criteria of HCA can be optimized using
our method.

Note that what distinguishes cost functions from continu-
ous states is that the former influence neither state transi-
tions, guard conditions nor invariant conditions. Also, the
HCA does not infer how optimization should be performed
or how criteria should be weighted. It is, and should only
be considered as a model of a hybrid system and its costs.
An optimization model should only include a relevant
subset of the information contained in the HAC.
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2.1 Hybrid Cost Automata

If the HA is augmented with continuous and discrete cost
criteria, the resulting HCA can be defined by the follow-
ing tuple (notations based on Cassandras and Lafortune
[2006])

GHCA:<Q7X7E7U705Daf7¢7
9,67 Inuguard, P, QO7$0>

&
where Q = {q1, ..., ¢gm } is a set of discrete states or modes,
X is a continuous state space, X C R"= F is a set of
events, U is a set of admissible input signals, U C R"«,
C' is a set of continuous costs, C C R", D is a set of
incrementally updated costs, D C R™4 | f is a vector field,
f:QxXxU — X, ¢is adiscrete state transition function
P:QxXXE — (@, gisavector field, g : Q x X xU — C,
¢ is a set of discrete costs, § : Q Xx X x E = D, Inv is a
set defining an invariant condition, Inv C @ x X, guard
is a set defining a guard condition, guard C @ x @ x X,
p is a reset function, p: Q X Q@ X X x E — X, qq is the
initial discrete state and g is the initial continuous state.

The vector field f describing the dynamics of X takes the
form

(2)

for times t # t; and ¢ : k = {1,2..} are the time instances
when transitions occur. In the same way, for t # t , g
describes the evolution of the continuous cost vector ¢ as

T = f(qaxau)a

(3)

At each discrete transition, the reset condition p updates
the continuous state vector as

ézQ(Q?'r?u)?

o(t)) = pla(t)), alte), x(te), e(tx)) (4)

where tj is an arbitrary time when a discrete transition
occurs. The discrete mode is updated as

q(t) = dlq(te), z(t), e(tr))

In much the same way, the discrete cost evolves as

(5)

d(ty) = d(te) + d(q(tr), (te), e(tr)) (6)

where d(t,) = d(t;_,), as dj, has not been updated since
d(t{_,). This also holds for ¢(t) and g(t;_,).

Because ¢ in (3) is independent of ¢, we can apply integra-
tion to form the following expression for the vector cost c.
t

c:/QWJWMa

0

(7)

We can also rewrite (6) as

k

d(ty) = d(alti)

=1

7x(ti)a e(ti))a
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the sum of the discrete cost over all transitions. How
the two set of criteria, (7) and (8), are ultimately used
is application specific. In general, the final optimization
problem can be posed as

min  J(c,d)
subject to  h(c,d) =0
p(c,d) <0 (9)

where J(c, d) is an objective function, h(c, d) is an equality
constraint and p(c, d) an inequality constraint. The objec-
tive function is of course implicitly subject to the HCA’s
dynamics. Observe that ¢, d, p and h are generally vectors.

The HCA formulation is similar to that of Priced Timed
Automata (PTA) Behrmann et al. [2001], an extension of
Timed Automata. PTA have added linear costs on modes
and discrete costs on transitions, utilizing the existing
clock framework of time automata. Linear costs in our
case would imply ¢ = g(q), where g(q) is constant in each
mode g. Just as HA can be thought of as a generalization of
Timed Automata including general state equation models
(2), HCA generalizes the linear costs from PTA into
continuous state and discrete mode dependent nonlinear
costs.

2.2 Optimization under special conditions

When scheduling industrial manufacturing systems, the
paths of moving systems are most often known. For
example, an AGV is to move from one position to another
via a number of adjacent nodes. The path between each
pair of nodes is most often trivial to define. The paths of
industrial robots are not quite as simple, but a multitude
of algorithms exists that can generate a path. Some
background on path planning can be found in Sciavicco
et al. [2000].

We have developed a two stage method for optimizing this
type of common industrial system. First, the continuous
dynamics of each possible path in each mode is locally
optimized as to yield the optimal cost as a function of time.
By performing this step, J in (9) is locally optimized and
the continuous time dynamics are abstracted. The result-
ing problem is in essence a TA with nonlinear costs. This
abstraction is possible due to the special characteristics
of the problem. The second stage consists of scheduling
the discrete transitions, subject to h and p in (9). The
constraints in (9) are thus only considered on a global
level. The local optimization in stage one can of course
still be constrained by Inwv, the invariant conditions.

The following conditions need to be fulfilled for the method
to be applicable. The continuous states should consist
of only coordinates (position, angle, etc.) and their time
derivatives. The paths of these coordinates should be
known, the speed and acceleration are however not neces-
sary. Also, for each mode, the possible initial values of the
continuous states should be a well defined discrete set. In
terms of HCA| this means that all transitions leading into
a mode must either have an equality guard condition or
the continuous states must be reset. It is also assumed that
there exists an input w such that any invariant conditions
are upheld.
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In the next section, we show how a trajectory planning
method can, for a given path, generate the optimal cost
(and trajectories) as a function of time. If the given paths
from the initial state in every mode to any outgoing
transitions are subjected to this optimization method,
then the optimal continuous state evolution in every mode
is known. After this first optimization step, we flatten the
HCA into a Timed Automaton with nonlinear costs.

3. TRAJECTORY PLANNING

A trajectory planning problem can be described as gen-
erating the set of control inputs that will move an object
along a predefined geometric path without violating any
dynamic or kinematic constraints. Trajectory planning has
been an area of research since the early 1970s Kahn and
Roth [1971], an excellent overview of the last three decades
can be found in Gasparetto and Zanotto [2008].

This paper uses dynamic programming as in Wigstrom
et al. [2012] in order to solve the trajectory planning
problem for a range of execution times simultaneously.
The grid required is as small as two dimensions and yields
an optimal trajectory with discontinuous acceleration. If
the grid is of high enough resolution and the size of the
acceleration discontinuities are constrained, taking jerk
into further consideration should not be necessary. Also
note that since the optimization is based on a single scaling
parameter, the dimensionality will be unchanged for the
number of spatial dimensions as well as more intricate
cost expressions. By numerical means, the solution has
been shown to converge as grid resolution is increased,
cf. Wigstrém et al. [2012].

3.1 Problem formulation

Solving a trajectory planning problem entails finding the
control signal required to move a manipulator or other
moving device along a predefined geometric path, while
upholding its dynamical constraints. Note that there are
no mode transitions during each individual trajectory
traversal. Also, the optimal control signal u* is given im-
plicitly by the optimal trajectory. As such, the vector field
g (3), describing the cost ¢ can be written as a function of
the position, speed and acceleration vectors.

¢=g(w,i,%) (10)
Let the geometric path be defined by a function z,(7),
a parameterized curve dependent on one single variable
7(t). The time optimal trajectory can be used to define z,
and its derivatives. This implies that 7 is the time scale
for the time optimal trajectory, =,. For example, defining
7 = t would result in the time optimal trajectory. The
relationship between x and x, can therefore be expressed
as

0<7 <7y, (11)
where 7(t) is a monotonically increasing function with a
starting value of 0 and final value 7¢, where 74 in our
case corresponds to the time optimal execution time. If
7(ty) = 74, then t; is the new final execution time of the
dynamically scaled trajectory. The derivatives of x, with
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respect to 7 are the same as those of the time optimal
trajectory with respect to time. Differentiating (11) with
regard to time yields expressions for speed and acceleration
which are needed for computing the cost function and
upholding constraints,

() = 2220 (12)
B(t) = dngT)% d ;7:57) 72 (13)

Further, combining (12) and (13) with (10) results in an
new expression for g as a function of 7 and z,(7),

dz, d*z,

Prdr ) dr?”

¢=g(x T, Ty T) (14)
The optimization procedure is also subject to the invariant
conditions and set definitions in (1), e.g. limits on acceler-
ation and speed. This can be implemented using a barrier
function, or if the original trajectory is assumed to be time
optimal, by adding the constraint 7 < 1.

Since x,(7) and 7(0) are known we can now express the
local cost function ¢, the integral over (14), as

/ g(#(0), ) dt
0

c(ty) = (15)

With this, the vector of local costs for a trajectory c(ty),
is a functional of 7 and 7(0). Since the total local cost for
each trajectory J(ts) (based on (9)) is an arbitrary func-
tion of (15), minimizing J is also a matter of finding these,
while minimizing the cost and satisfying the constraints.

3.2 Optimization model

As mentioned, solving the trajectory planning problem
entails finding the 7 that minimizes a given cost function.
Define the second derivative of 7 as

7(t) = u(t), (16)
where wu(t) is a control input. Also, introduce a time-
varying sampling time hj that affects the time updates
as

tet1 =tk + hi (17)
and let the input variable be piecewise constant during the
sampling intervals, i.e.

u(t) = u(ty), te <t <tpyr, (18)
The decision to use a piece-wise constant 7 is an abstrac-
tion that will restrict the dimensionality of the problem
to two. Even though it will introduce small discontinuities
in the acceleration through (13), these minor artifacts can
be considered marginal. One could instead choose to define
the third derivative of 7 as constant, and instead achieve
only discontinuous jerk, but at the cost of dimensionality
and complexity. Discretization of (16), with a sampling
period hj and constant control input as in (17) and (18),
gives the discrete state space model
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1 hg
01

Tk
Vg

Tk+1

Vg+1 (19)

2
] = [ [ [ e
where v = 7 and for simplicity, we introduce 7411 =
T(tk+1), T = T(tk) and vg41 = V(tk+1)7 Vi = V(tk). The
minimization of (15), including this discrete time model
of the time function 7(¢) can be solved with dynamic
programming, but for computational reasons discussed
later, it is convenient to reformulate the problem. Since 7
is monotonically increasing it is possible, instead of taking
steps along the t-axis in each iteration, to take steps along

the T-axis and let (17) act as a discrete state equation.
Define

hivi + hiu(tk)/Q = Ay, (20)
where Ajg can be regarded as a user defined sampling
period or gridding of 7. If (20) is inserted into (19), then
in every step k, 7 will be updated as

(21)

Equation (20) can also be manipulated into an expression
for the control signal, u(ty) = 2(Ay — hgvg)/hi. Inserting
this expression for u(¢x) into the bottom equation of (19)
gives a new state equation for v. Regarding the sampling
time, hy as the new control signal and letting (17) act as
a state space equation lead us to the reformulated discrete

state space model
J ]+ [aalind

)=

The relation between (21) and (17) can be seen as a map-
ping of 7 onto ¢. From here, dynamic programming can be
applied to solve the discrete time optimal control problem.
For the implementation, see Wigstrom and Lennartson
[2011]. A detailed account of the theory behind dynamic
programming applied to discrete optimal control problems
can be found in for example Lewis and Syrmos [1995] or
Naidu [2003].

Tht1l = Tk + Ap

10
0 -1

ty
Vi

hy

tet1

22
Vit (22)

4. SCHEDULING

The ’local cost J’ for a trajectory is defined as the
contribution of that trajectory to the ’total cost J” in (9).
Applying the presented Dynamic Programming algorithm
to a path will yeild an optimal local cost J*(ty) as a
function of the execution time ¢;. If the algorithm is
applied to all combinations of initial and final states in
each mode, the locally optimal continuous state evolution
for all paths will be known. This removes the continuous
time dynamics from the HCA and flattens it into a Timed
Automaton with nonlinear costs.

We would like to schedule the discrete transitions resulting
from this flattened HCA. If the system consists of several
HCA, this step can be thought of as synchronization,
where besides scheduling, forbidden states are identified
and removed by mutual exclusion. The constraints govern-
ing the scheduling problem can be expressed with linear
constraints consisting of real and binary variables. For a
thorough account on mixed integer constraint modeling,
see for example Pochet and Wolsey [2006] or Williams
[1999].
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In short, the possible trajectories of all HCAs are enumer-
ated. The decision variables for the problem are the real
valued starting and stopping times for these trajectories
as well as binary variables representing mutual exclusion.
Mutual exclusion stems from for example the synchroniza-
tion of two or more HCA that utilize the same resources.

Note that in practice, each instance of the Dynamic
Programming algorithm will generate a sampled data
set of the optimal local cost J*(t;). This data set is
then approximated as a polynomial. The polynomials are
checked for convexity and that the relative error related to
the original data is within appropriate bounds. The cost
function for the scheduling problem can now be formed
using the polynomials. These polynomials make it easy to
specify an analytical gradient and hessian for the solver. As
such, the problem class is that of a convex Mixed Integer
Nonlinear Linear Program (MINLP).

The MINLP master problem can be divided into a num-
ber of subproblems, one for each possible schedule of
the discrete transitions. These are enumerated and each
subproblem is treated as a linearly constrained problem
with a nonlinear cost function. Not all of these choices
are feasible, depending on the final time specified for the
model. After checking for feasibility, the valid subprob-
lems are solved using MATLAB’s optimization toolbox.
The algorithm employed uses an interior point method
combined with a barrier function for the constraints. The
interior point method is described in Byrd et al. [2000],
Byrd et al. [1997] and Waltz et al. [2006]. There are of
course more efficient approaches to the master problem
than explicit enumeration. However, as the primary focus
of this paper is that of optimization of hybrid systems, im-
plementing advanced scheduling techniques has not been
our concern. Also, as mentioned, the exponential complex-
ity of the scheduling problem has so far been shown to
constitute the smaller part of the computation time even
for problems of industrial size. There are of course many
modern techniques for solving convex MINLP including
among others: Branch-and-Bound, Outer-Approximation,
LP/NLP-based branch and bound Fernandes et al. [2009],
Leyffer et al. [2009].

4.1 Constraint modeling

Let the global starting and finishing time for the j:th
trajectory executed by the i:th HCA be denoted ¢;; and

t{j. A sequence of two trajectories is simply expressed by
defining the finishing time of the preceding trajectory as
smaller than the starting time of the following trajectory,

t5; >t +e, (23)

where [ and m is the HCA and trajectory index of the first
trajectory, ¢ and j that of the second and € a significantly
small positive constant. It is also required to limit the
minimum execution time of trajectories. If a trajectory j
in an HCA 4 has a minimum execution time of Tp ;;, then
the execution time can be constrained by

tl, >t + To (24)

Shared resources can be expressed in the following way.
If two trajectories, ij and Im, each belonging to different
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local HCAs, share the same resource, then define oy
as a boolean variable representing trajectory ¢j being
performed after Im. Also 0yy,; is a boolean variable rep-
resenting the negation of the previous statement, i.e. tra-
jectory Im is performed after ij. The resulting constraints
for this example are

5>t — M1~ 040m)

M(]-_Ulmz)
=1

Oijim + Olm,ij (25)
In other words, a boolean variable or expression is used
to negate constraints when false. As such, the constant M
needs to be sufficiently large for this negation to be valid.
The same principle can be used for one HCA having an
alternative order of execution for its trajectories.

For constraining the cycle time, an additional variable is
added. This variable is constrained to be larger than the
stopping time of the last trajectory for each HCA. Adding
an upper bound for the new variable will now constrain
the complete cycle time. With the scheduling problem
described by these mixed integer linear constraints and the
cost function by the convex polynomials, the optimization
model can now be solved using any standard MINLP
solver.

5. CASE STUDY

For the case study, an example with four six-joint in-
dustrial robots is considered. The joint torques of the
manipulators can be expressed by a Lagrange formulation,
see Sciavicco et al. [2000], pp. 131-140. The torque, T;
acting on the i:th joint can be expressed as

T; = Jiji! + Cijpd? #* + Fiji? + G, (26)
where J is the inertia matrix, C the tensor of centrifugal
and Coriolis coefficients, F' the viscous friction matrix,
G the gravitational vector and z° the angular position
of joint i. Note that J, C' and G are all functions of
z. Considering the trajectory execution times relevant to
this paper, as in Park [1996] and Ohm [(2006, Feb. 3],
the energy consumption of an AC permanently excited
synchronous motor can be expressed by the following
simplified voltage and current models

Vi(t) = Rili(t) + Kv,i Kr(t)

Li(t) =Ti(t)/(K1,:KR.:) (27)

where I;(t) and V;(t) are the equivalent DC current and
voltage of the ¢:th rotor, R; is the stator resistance, Ky ; is
the electrical (back emf) constant, K ; is the transmission
gear ratio and Kt is the equivalent torque constant. With
(27), we can define g in (3), as the power of each motor.

R;
)
Ki Ky,

Ky )
=T (t
Kri (t)x

T (1) + () (28)

With ¢ defined as above, the continuous cost vector ¢ in
(7) becomes a vector expressing the energy consumption
of each individual joint
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¢ = / gi(t)dt = / V() L(t)dt (29)
0 0

For our case study, the objective function for the syn-
chronized system is the energy consumption of all robots.
This implies that the minimization criteria for each local
trajectory should be the energy consumption of each robot
moving along each specific trajectory. In other words, the
"local cost’ for each trajectory, the cost function that is
minimized using Dynamic Programming, is the sum over
the energy consumption of each robot joint. The global
criteria is the sum over each ’'local cost’.

The four robots work together on a single work piece
located in between the robots. Each robot has in the range
of 4-12 modes and 1-2 transitions from each mode. The cell
includes three common zones in which only one robot can
work at a time. The robot cell was modeled with ABB
RobotStudio [2011, Nov. 1] from where path/trajectory
information for each operation was extracted. All opti-
mization was run on a Windows 7 64bit system with a
2.66 [Ghz] Intel Core2 Quad CPU and 4 [GB] of RAM.
The final time feasibility check for each subproblem, which
also generates a starting point, took < 0.1 [s] in 98% of
the cases. Most subproblems were solved in less than 10[s].
It should be noted that for a few instances the initial
barrier function weighting had to be varied in order for
MATLAB to produce an optimal solution. In total, the
scheduling took around 5 [min]. As for the trajectory
planning problem, a total of 40 instances were solved, each
instance taking close to 40 [s]. All the operations scaled
resulted in convex functions. This was to be expected as
regenerative breaking was not considered.

In Fig. 1, the total energy consumption for all four robots
is shown, running an energy optimal schedule. The dashed
line shows the result of trajectories based on a minimum
time policy, i.e. minimum energy scheduling is performed
but trajectories are set to time optimal execution. The
solid curve represents our method, dynamic scaling of tra-
jectories. As a reference, the dotted curve is the resulting
energy cost of using linear scaling Vergnano et al. [2010],
i.e. the parameter 7 is a constant. While upholding a

5
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Energy cost [J]

110 140 170
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Fig. 1. Overall minimum energy consumption for the case
study as a function of cycle time. The dashed line
shows scheduling where no scaling is allowed, the
dotted and solid curves represent scheduling based on
linearly and dynamically scaled operations.
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time optimal cycle time, linear scaling reduces the energy
usage by 11%, and dynamic scaling a total of 18%. If
the cycle time is allowed to be extended by 10% (10[s]),
linear scaling will reduce energy cost by 18%, and dynamic
scaling as much as 28%.

6. DISCUSSION AND CONCLUSION

In this paper, we presented an optimization method which
can be applied to hybrid systems with known paths. We
also presented the outline for an extension of Hybrid
Automata into Hybrid Cost Automata. This is proposed
by adding expressions for continuous and discrete time
costs. The optimization method uses a preprocessing step
consisting of dynamic programming in which the trajec-
tory planning problem is solved for multiple execution
times. This first step actually flattens the Hybrid Cost
Automata into a Timed Automata with nonlinear costs.
Optimizing the system is then a matter of scheduling the
discrete transitions. This is solved using Mixed Integer
Nonlinear Programming. The results from the case study
are promising and show how for example energy usage
can be significantly lowered. The class of moving systems
considered in this paper are common in industry and as
such, the method presented is directly applicable to many
problems of industrial size.
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