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Ultrawideband (UWB) technology has many advantages compared to its narrowband counterpart in many applications. We
present a new compact low-cost UWB radar for indoor and through-wall scenario. The focus of the paper is on the development
of the signal processing algorithms for ranging and tracking, taking into account the particular properties of the UWB CMOS
transceiver and the radiation characteristics of the antennas. Theoretical analysis for the algorithms and their evaluations by
measurements are presented in the paper. The ranging resolution of this UWB radar has achieved 1-2 mm RMS accuracy for a
moving target in indoor environment over a short range, and Kalman tracking algorithm functions well for the through-wall
detection.

1. Introduction

Due to its quite unique properties, ultrawideband (UWB)
technology finds many applications in different areas, such
as UWB sensor network for precise ranging and geolocation,
UWB radar and imaging systems with superior penetration
and high resolution, and super sensitive UWB radio astron-
omy [1–3].

From the radar perspective, UWB systems exhibit several
distinct advantages over the narrowband counterparts [4,
5]: (1) higher ranging resolution with higher penetration
ability through lossy materials simultaneously; (2) enhanced
target recognition; (3) better penetration ability to passive
interference (i.e., rain, fog, and clutter); (4) very low cost,
particularly, the Novelda UWB radar system used in this
paper.

We present a new compact and low-cost UWB radar
system for ranging and tracking of moving objects in indoor
and through-wall environments. The UWB radar consists
of a commercially available Novelda R2A UWB CMOS chip
transceiver [6] and the recently developed UWB 2–15-GHz
self-grounded-Bow-Tie (SGBT) antennas [7, 8]; see Figure 1.
The particular properties of the Novelda transceiver and the
radiation characteristics of the antenna have been taken into

account for the development of the ranging and tracking
algorithms.

The ranging resolution of this UWB radar by applying
the algorithm has achieved an accuracy of 1-2 mm RMS error
for a moving target in indoor environments over a short
range, and the Kalman filter tracking algorithm functions
well for a through-wall detection.

In this paper, the system is briefed in Section 2. The self-
grounded Bow-Tie antenna is described in Section 2.2. The
system signal is modeled in Section 3. Algorithms of adaptive
clutter mapping are presented in Section 4. Afterwards, the
algorithms for ranging are described in detail in Section 5.
An important issue, calibration of the system, is discussed
in Section 6. A Kalman tracking algorithm based on the
pulse-spectrum ranging is briefed in Section 7. Then, the
evaluation of the algorithms by measurements is illustrated
in Section 8.

2. The Radar System

2.1. Overview of the System. The UWB radar system con-
sists of two SGBT antennas and one Novelda transceiver;
see Figure 1. Pulses are transmitted via one antenna
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Figure 1: The compact UWB radar system for indoor and through-
wall ranging and tracking.
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Figure 2: Presentation of the operating principle of the compact
UWB radar system.

(Tx antenna), reflected by targets, and then received by the
second antenna (Rx antenna), as depicted in Figure 2.

For memory efficiency, each measurement by the Nov-
elda transceiver is taken within a fixed time frame (referred to
as the measurement frame, or simply the frame), with an off-
set time delay predefined by user. Each measurement has 128
samples. The time interval (or step) between two consecutive
samples is 27.8 ps, corresponding to the sample resolution of
4.167 mm in the wave propagation direction. The duration of
one frame is then 127×27.8 ps = 3.53 ns in time and 529 mm
in space accordingly.

The received signals can be amplified by user-defined
values in the transceiver. The signal sample data are then sent
to the microcontroller for data processing.

2.2. The Self-Grounded Bow-Tie Antenna. The self-grounded
Bow-Tie (SGBT) antenna, shown in Figure 1, is a new type of
UWB antenna, developed recently at Chalmers University of
Technology [7, 8]. Several other types of UWB antennas have
been also developed at Chalmers for different applications
[9–12].

The SGBT antenna is chosen for this UWB radar system
due to the following characteristics: (1) very good time

response; (2) compact size and low profile; (3) UWB con-
stant directional radiation beam; (4) good UWB reflection
coefficient; (5) better penetration ability than other UWB
antennas [8, 13]. Antipodal Vivaldi antennas were used in the
previous work [14]. With the use of the SGBT antenna, the
performance of the UWB radar system has been improved,
due to its good time response and UWB constant directional
radiation beam.

The size of the SGBT antenna is 54× 58× 24 mm3, with
the operating frequency band covering 2–15 GHz. The details
of the measured and simulated performance of the antenna
can be found in [7, 8].

The comparison between the self-grounded Bow-Tie
antenna and a Vivaldi antenna with a size of 135 × 145 ×
2 mm3 on the penetration ability through a concrete wall
was presented in [8], which indicated that the system using
the self-grounded Bow-Tie antenna has 6 dB higher signal
level that is using the Vivaldi antenna. The antipodal Vivaldi
antennas used in [14] have even lower penetration ability
than the aforementioned Vivaldi antenna.

The measured time-domain response of the UWB radar
system is shown in Figure 3, when the two antennas are
separated by a distance of 250 mm in the face-to-face
configuration in an anechoic chamber. From the figure, two
time-response measures, the width of the pulse full-width
at half-maximum (FWHM) τFWHM and the duration of the
ringing τr=0.22, can be obtained as τFWHM = 134 ps and
τr=0.22 = 260 ps, which states a fast time pulse response of
the radar system. Please refer to [15] for the definitions of
τFWHM and τr=0.22.

Note that in the antenna setup of the system, it is
required that the target should be a certain distance away
from the antennas for this radar system to have an accurate
ranging, because then the target pulse can be distinguished
clearly from the direct-coupling pulse between the antennas.
Since the pulse used in this work has a width of about
0.5 ns (Figure 3), which corresponds to 150 mm, the distance
between the target and the antennas should be larger than
150 mm. With enough margin, it is set in this work that
the minimum distance between the target and the antennas
should be larger than both the distance between the two
antennas and 200 mm for an accurate ranging result.

3. Signal Model

Figure 4 shows the signal model used in this work, where the
received signal r consists of the clutter re (unwanted reflected
signal from a static indoor environment, such as a wall), the
target signal rt that is reflected from moving targets, and
the noise e. Note that the definitions of the clutter and the
target can be different in different applications. The noise
e is defined as the channel noise, modeled by a zero-mean
random variable. Here, we assume that there is no jamming,
namely, no other sources of signals within the field of the
radar system.

In the Novelda transceiver, each measurement consists of
128 samples. The received signal r and its subcomponents re,
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Figure 3: Measured time-domain impulse response of the UWB radar system when the two antennas are separated by 250 mm in the
face-to-face configuration.
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Figure 4: Signal system model, where the received signal r is con-
structed of three additive parts: the clutter re, the target signal rt ,
and the noise e.

rt, and e are therefore expressed by 128-dimensional vectors
as

r = re + rt + e, (1)

where

r = [r(1), r(2), . . . , r(128)]T , (2)

with T transposition, and the same for re, rt, and e.
Let vectors ri−(n−1), ri−(n−2), . . . , ri−1, ri denote the mea-

surements at time ti−(n−1), ti−(n−2), . . . , ti−1, ti, and denote a
measurement matrix Xi at time ti by the present and past n
measurements as

Xi =
[

ri−(n−1), ri−(n−2), . . . , ri−1, ri
]
. (3)

From (1), the measurement matrix Xi can be written as

Xi = Xi
e + Xi

t + Ei, (4)

where Xi
e, Xi

t , and Ei are referred to as the clutter matrix, the
target matrix, and the noise matrix, respectively.

4. Adaptive Clutter Mapping

The Novelda transceiver has a particular property: the
received signal at each measurement may be rescaled and
shifted by a bias. This means that even in a static environ-
ment, the clutter map may change with the measurement.
Without losing generality, each clutter measurement rie can
be modeled by a rescaling factor αi and a shifted bias ci as

rie = αirc + ci, (5)

where rc represents the clutter vector, bias vector ci =
[ 1

...
1

]
ci,

and ci is a constant. Therefore,

Xi
e =

[
αi−(n−1)rc + ci−(n−1), . . . ,αirc + ci

]

=
[
αi−(n−1)rc, . . . ,αirc

]
+
[

ci−(n−1), . . . , ci
]

= Ri
c + Ci,

(6)

where

Ri
c =

[
αi−(n−1), . . . ,αi

]
rc,

Ci =
[

ci−(n−1), . . . , ci
]
.

(7)

The maximum rank of the clutter matrix Xi
e is 2 by the

assumption that there are only two independent vectors
[αi−(n−1), . . . ,αi] and [ci−(n−1), . . . , ci].

Due to the property of (6), the method of singular value
decomposition (SVD) [16] is used for the clutter mapping,
referred to as the SVD clutter mapping.
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Suppose that Xi is an m×n matrix with a rank of L. Then,
it can be factorized as

Xi = UΣiVH = U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σi1 0 · · · · · · · · · 0
...

. . . 0 · · · · · · 0

0 · · · . . . 0 · · · 0
0 0 · · · σiL · · · 0
0 · · · · · · · · · 0 0
...

...
...

...
...

...
0 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

VH , (8)

where U is an m × m unitary matrix, Σi is an m × n matrix
with diagonal entries of nonnegative-real numbers, and V is
an n× n unitary matrix. The nonzero entries σil , l = 1, . . . ,L,
the singular values of matrix Xi, are sorted in the descending
order. Thus, Xi can be expressed by a summation of L one-
rank matrices:

Xi =
L∑

l=1

ulσ
i
l v

H
l , (9)

where ul, vH
l , and σil are the left eigenvector, the right

eigenvector, and the singular value of Xi, respectively.
According to (6), the two strongest singular values

represent the clutter map, that is,

r̂ie =
2∑

l=1

ulσ
i
l

(
vi
l

)H
, (10)

where r̂ie is defined as in (5) for the ith measurement ri.
Therefore, the clutter map can be removed from the mea-
surement ri, and the reflection of the target can be estimated
accordingly:

r̂it = ri − r̂ie. (11)

An example of the clutter mapping is shown in Figure 5:
100 consecutive measurements (n = 100) of a moving
metal plate (225 × 500 mm2). The overlapping part of all
measurements represents the clutter map r̂ie, and the pulses
different from the clutter map indicate the echoes from the
target rit. It is observed from the figure that although the
clutter is static, the clutter map has a certain variation (a thick
belt of the overlapped curve). This is due to the rescaling
factor αi and the shifted bias ci of the Novelda transceiver,
as described in (5).

The choice of the number of measurements n in the
measurement matrix Xi for the clutter mapping depends on
the applications. If n is large, the clutter map is more related
to the static environment with a higher computational
complexity. If n is small, any object that appears to be static
for a short time or moves slowly will be considered as a part
of the clutter, with a shorter computation time.

As a reference, the direct mean method is also used for
the clutter mapping (referred to as the direct-mean method)
for each measurement, which is defined as

r̂ie =
1
n

i∑

k=i−(n−1)

rk, (12)
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Figure 5: 100 consecutive measurements of a moving metal plate
(225 × 500 mm2) in the presence of clutter. The overlapping part
represents the clutter map r̂ie, and the pulses different from the
overlapping part indicate the target signals rit .

that is, in the direct-mean method, the clutter map r̂ie is
obtained by averaging the measurements rk, k = i−n+ 1, i−
n + 2, . . . , i, over the n measurements. It is obvious that this
method assumes that the rescaling and the bias shifting and
the reflection from a moving target are zero-mean random
variables, which is not always true in reality.

5. Ranging

Three ranging techniques have been investigated. The first
two are sample based, which means that the ranging is
obtained by finding the sample index of the pulse front in
the received target signal. The last one is a fractional-sample
method, in order to get a higher ranging resolution.

5.1. Pulse Signature Matching. The received pulse signature
rs is defined first in this method.

In order to maintain the robustness over a range of
objects, the pulse signature is obtained by (1) averaging
target pulse signals over 20 different targets, measured in
anechoic chamber; (2) using a rectangular window (referred
to as the pulse signature window) to select the main lobes of
the averaged pulse signal ravg as the pulse signature.

Referring to Figure 6, we define

rs(m) =

⎧⎪⎪⎨
⎪⎪⎩

0, m < 0,

ravg(nst + m), 0 ≤ m ≤ Nw,

0, m > Nw,

(13)

where nst and Nw are the starting sample index and the
sample width of the pulse signature window in the averaged
signal, respectively.
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Figure 6: The pulse signature is defined by the main lobes (inside
the pulse signature window) of the averaged target signals over 20
different targets measured in anechoic chamber. The same window
sliding through the target signal sequence is used for STFT in pulse-
spectrum signature matching.

Then, the cross-correlation Xcorr(k) between the target
signal rt and the pulse signature rs with different time delay
k is calculated by

Xcorr(k) =
∣∣∣∣∣∣

128∑

m=1

rt(m)rs(m− k)

∣∣∣∣∣∣, 1 ≤ k ≤ 128−Nw.

(14)

The peak value of Xcorr(k) appears obviously at such a time
delay k that the pulse front of the pulse signature coincides
with the pulse front of the target signal. Therefore, the sample
index of the target pulse front ĵ, referred to as the target
index, is estimated by

ĵ = arg max
k∈(1,128−Nw)

Xcorr(k). (15)

In a traditional radar problem, this classic approach is
referred to as matched filter [17, 18]. It has its advantage
of simplicity. However, the similarity between the target
signal pulse and the pulse signature plays an important role
for the accuracy of this method. In far-field applications,
the distance between the radar system and the target is
much larger than that of the pulse duration. Namely, the
time it takes for the reflected signal coming back to the
receiver is much longer than the signal duration itself, and
thus the changing of the pulse shape can be ignored in
this case [19]. However, in short-range indoor applications,
the shape difference between the target signal and the
pulse signature will cause measurement errors. In addition,
multiple reflections between the target and the clutter may
happen and lead to complicated scenario. For example, the
ringing part can be very similar to the main portion of the
pulse, in both the shape and the amplitude. A big ranging
error may arise in such cases.

5.2. Pulse-Spectrum Signature Matching. The UWB signal
spans a large spectrum, and it has been observed in this work
that the spectrum of the Novelda transceiver together with
the SGBT antennas within a main bandwidth (such as 2–
4 GHz in this work) does not severely vary with different
scenarios. In other words, the changes of the spectrum with
respect to different targets and environments appear mainly
in a few frequencies, while the change of the pulse shape
in time domain can be significant. It is then natural to take
advantage of this spectrum-stable property, instead of using
only time-domain analysis. A joint time-frequency domain
ranging method, the pulse-spectrum signature matching, is
therefore introduced, as follows.

(1) The Short-Time Fourier Transform (STFT) [20, 21], is
applied in the first step to the target signal as

Rt(k,ω) =
Nw−1∑

m=0

rt(m + k)W(m)e− jωm, (16)

where rt(m) is the sample of the target signal, W(m) is the
sample of a window function W , angular frequency ω =
0, 2π(1/Nw), . . . , 2π((Nw − 1)/Nw), and j, imaginary unit. In
this work, a rectangular window function (referred to as the
STFT window), with the same width of Nw as that of the
pulse signature window, is used; see Figure 6.

Within each window, the short-time Fourier transform
in (16) can be rewritten by the multiplication of the target
signal rt with an Nw-point discrete Fourier transform (DFT)
matrix W [22, 23] defined as

W = 1√
Nw

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
1 e− j(2π/Nw) · · · e− j(2(Nw−1)π/Nw)

1 e− j(4π/Nw) · · · e− j(4(Nw−1)π/Nw)

1 e− j(6π/Nw) · · · e− j(6(Nw−1)π/Nw)

...
...

...
1 e− j(2(Nw−1)π/Nw) · · · e− j(2(Nw−1)2π/Nw)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

In general, we can define the STFT window function by

W′ = diag
(
β
)

W, (18)

where β = (β1,β2, . . . ,βNw ) is a coefficient vector whose entry
gives a weight to each frequency component, which can also
be referred to as the spectrum signature window, shown in
Figure 7. In this work, we set βi = 1 for all the frequencies in
the band of 2–4 GHz, and βi = 0 for the frequencies out of
the band.

(2) The Spectrum Signature is defined in the second step.
Applying the same STFT window as the pulse signature
window (the same width and sample index location) to the
pulse signature rs, the spectrum of the pulse signature can
be obtained by W′rs, shown in Figure 7. Here by using W′,
we use only the main part of the whole spectrum inside the
spectrum signature window as the spectrum signature, for
simplicity and robustness of the algorithm, such as the band
from 2 to 4 GHz.
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(3) The Spectrum Signature Matching is then introduced.
The cross-correlation Xcorr f (k) is calculated, similar to the
pulse signature matching method, by

Xcorr f (k) =
∣∣∣[W′rt(k : k + Nw)]∗ · (W′rs)

∣∣∣ , (19)

with k ∈ (1, 128−Nw), and the superscript∗ conjugation. A
clearly high correlation can be found between the spectrum
signature and the spectrum of the target signal when the
STFT window is located at such a position that the main
lobes of the target signal are inside it, while for the other
positions, the correlation is low. The target index ĵ can
therefore be estimated by

ĵ = arg max
k∈(1,128−Nw)

Xcorr f (k). (20)

(4) The Pulse and the Spectrum Signature Matchings are
combined in the final step, in order to achieve a more
accurate and robust ranging algorithm. A linear combination
of the pulse and the spectrum signature matchings is applied
as

Xcom corr(k) = (1− γ
)
X ′corr(k) + γX ′corr f (k), (21)

with k ∈ (1, 128 − Nw), where the normalized cross-
correlations in time and frequency domains are defined by

X ′corr(k) = Xcorr(k)
max(Xcorr(k))

,

X ′corr f (k) = Xcorr f (k)

max
(
Xcorr f (k)

) ,
(22)

where max(x) is the maximum value of the vector x.
The final estimated target index ĵ (therefore the ranging)

is found by

ĵ = arg max
k∈(1,128−Nw)

Xcom corr(k). (23)

The empirical constant γ = 0.7 is determined by cross-
validation.

5.3. Subsample Delay Estimation. The above-discussed rang-
ing approaches are sample based. The best achievable
ranging resolution is therefore half the sample resolution:
4.167/2 = 2.08 mm (refer to Section 2). In order to obtain
a better ranging resolution, the fractional sample shift has to
be determined. An estimation of subsample delay based on
the Fourier transform is introduced as follows.

Suppose that the target sample index ĵ has been obtained
by the pulse-spectrum method, and actually the target pulse
front of rt is located at sample ĵ + ĵτ , where | ĵτ| < 1 is a
fractional sample delay around ĵ. Then, we locate the pulse
signature rs at sample ĵ and let rtmain = rt( ĵ : ĵ + Nw − 1)
be the main portion of the received pulse. Since rtmain and rs
have a slight difference in both shape and phase, applying
the Fourier transform, we get the following relation for the
transformed signals Rt(ω) and Rs(ω) [24]:

Rt(ω)
Rs(ω)

= C(ω)e− jωτ , (24)

where τ is the time delay between rtmain and rs, and C(ω)
results from the shape difference.

However, since the main portion of the signal does not
change significantly and therefore the pulse signature rs is
assumed to be identical in shape compared to rtmain , namely,
we have

rtmain (t) ≈ rs(t − τ), (25)

and thus,

Rt(ω)
Rs(ω)

≈ e− jωτ . (26)

By retrieving the angle, we have

∠Rt(ω)
Rs(ω)

≈ −ωτ. (27)

The above expression is valid for all frequency points
within the bandwidth defined by the spectrum signature
window, that is,

ω ∈ [ωl,ωl+1, . . . ,ωh] = 2π
[
fl, fl+1, . . . , fh

]
, (28)

where fl and fh are the frequency points of the low and
the high ends of the bandwidth, respectively. For example,
fl = 2 GHz and fh = 4 GHz in this work, shown in Figure 7.
Therefore, the slight time shift τ can be retrieved from the
above linear relation by least squares estimation.
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6. Adaptive Calibration by Direct Coupling

Adaptive calibration is a necessity for this UWB radar system
due to the following. (1) The heating of the radar device due
to a long time continuous usage may cause different time
delays of the transmitted pulses. (2) The cables connecting
the transceiver to the antennas may have different conditions,
such as the length and the bending shape, which also
cause different time delays. An adaptive calibration by using
the direct coupling between the two antennas is therefore
introduced.

The estimated distance dit between the target and the
antenna center at the ith measurement can be expressed by

dit =
Δτ

(
ĵ it − ĵ iat

)

2
, (29)

where Δτ is the ranging resolution between two consecutive
samples, ĵ it is the target index, and ĵ iat is the antenna-center
pulse sample index (the pulse sample index when the pulse
front is passing the Tx antenna center). Here, Δτ and ĵ it are
known, but ĵ iat is unknown.

Now, we utilize the direct coupling between the two
antennas to eliminate the unknown parameter ĵ iat.

Assume that the distance between the two antennas dant is
smaller than that between the antennas and the target. Since
dant is fixed and known, and the direct coupling is the first
received pulse, dant can be expressed by

dant = Δτ

(
ĵ iar − ĵ iat

)
, (30)

where ĵ iar is the sample index of the first received pulse
determined by using the ranging methods discussed in the
previous section. Therefore, from (29) and (30), we have

dit =
Δτ

(
ĵ it − ĵ iar

)
+ dant

2
. (31)

7. Tracking

A Kalman filter [25] tracking algorithm is applied in this
work, and the pulse-spectrum signature matching with the
subsample delay estimation is used as the measurements in
the tracking algorithm.

7.1. One-Dimensional Tracking. The state xk is constructed
of the position pk and the velocity ṗk as

xk =
[
pk, ṗk

]T
. (32)

The measurement zk is obtained by using the ranging
method presented in Section 5. Then the state xk is adaptively
corrected in real time by the Kalman filter update.

7.2. Two-Dimensional Tracking. For two-dimensional space,
a pair of the UWB radar systems are set up orthogonally,

U
W

B
 r

ad
ar

Y

UWB radar X

y

x(0, 0)

Target (x, y)

(0
,d

y
)

ry

rx

(dx , 0)

Figure 8: Setup for 2-dimensional tracking.

as shown in Figure 8, for the two-dimensional tracking. The
coordinate (x, y) of the target position can be calculated by

x = dx − rx cos(θx),

y = dy − ry cos
(
θy
)

,
(33)

where rx and ry are the ranging values measured by UWB
radars X and Y, with their positions at (dx, 0) and (0,dy),
respectively, and

θx = arccos

(
d2 + r2

x − r2
y

2drx

)
+ arccos

(
dx
d

)
,

θy = arccos

(
d2 + r2

y − r2
x

2dry

)
+ arccos

(
dy
d

)
,

d2 = d2
x + d2

y.

(34)

By extending the Kalman filter to the two-dimensional
case, the state and the observation vectors are defined as

x′k =
[
xk, ẋk, yk, ẏk

]T ,

z′k =
[
zxk, zyk

]T
,

(35)

where zxk and zyk are the observation values of x and y coor-
dinates, respectively, calculated based on the measurements
rx and ry by (33).

More details about Kalman filter equations and update
can be found in [25, 26].

8. Measurement Evaluations

All algorithms developed for clutter mapping, ranging, and
tracking are evaluated by the measurements.

8.1. Clutter Mapping. Both the SVD and the direct-mean
methods have been evaluated in an indoor environment with
and without moving targets.

Without moving targets, the measurement consists of
only the clutter and noise: ri0 = rie + ei, and we assume that
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Figure 9: RMSE values for evaluation of the SVD and the direct-
mean method without moving target.

the noise level is much lower than that of the clutter. Keep in
mind that in spite of the static clutter, the received signal ri0
varies a bit due to the rescaling factor and the shifted bias.

The evaluation is carried out in terms of the root-mean-
square error (RMSE) between the clutter map r̂ie (Section 4)
and the real measurement ri0, which can be expressed by

RMSEClutter =
√√√√ 1
n

n∑

i=1

∣∣∣r̂ie − ri0
∣∣∣2
. (36)

Figure 9 shows the RMSEClutter values. From the figure, it
can be observed that the SVD clutter mapping gives smaller
RMSE values than the direct-mean method does, stating the
superiority of the SVD clutter mapping.

With the presence of moving targets in the clutter, the
evaluation becomes complicated since both the clutter map
and the target signal vary. An off-line emulating method is
therefore introduced for the evaluation of this case as follows.

A moving target is measured in the anechoic chamber
at our lab as rit, where it is assumed no clutter. Then, the
measured data rit is added to the previous measurements of
the clutter without moving targets ri0 = rie + ei to emulate the
scenario of the target in the clutter by

ri = rit + rie + ei. (37)

The emulated measurements are shown in Figure 10,
where n = 100 in the measurement matrix X. The RMSE of
the clutter map r̂ie (by both the SVD and direct-mean clutter
mappings) with respect to the clutter ri0 is defined in the same
way as (36). The data are shown in Figure 11, illustrating
again the superiority of the SVD clutter mapping.

8.2. Ranging. The off-line emulating method is used for the
evaluation of our ranging algorithms, since we do not have
any other means to obtain the accurate ranging values of a
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Figure 10: Emulated measurement matrix by adding the measure-
ments of a moving target in anechoic chamber to the measurements
of a clutter without moving targets.
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Figure 11: RMSE values for evaluation of the SVD and the direct-
mean clutter mappings with a moving target.

moving object than manually measuring a static object by a
ruler.

A clutter, an indoor environment without moving tar-
gets, is measured first. The measurement matrix X0 can be
expressed by

X0 = [r−99, r−98, . . . , r−1, r0], (38)

where we use n = 100 measurements for X0, and the
superscript i ≤ 0 represents the clutter without targets. Using
the SVD clutter mapping, the clutter map r̂0

e can be obtained.
Then, a metal ball with a diameter of 20 mm is placed

into the environment at 50 different locations statically. At
each location, one measurement is performed, referred to as
ri, i = 1, 2, . . . , 50.
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Figure 12: Evaluation of the ranging algorithms with the clutter
map removal.
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Figure 13: Evaluation of the ranging algorithms without the clutter
map removal.
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Figure 14: The setup for the evaluation of the one-dimensional
tracking algorithm through a concrete corridor wall.
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Figure 15: The estimated position by the Kalman filter tracking
algorithm for the one-dimensional see-through-wall evaluation.

The emulating measurement matrix Xi for the “moving”
metal ball is created off line by

Xi =
[

r−99+i, r−98+i, . . . , r−1+i, ri
]

, (39)

where i = 1, 2, . . . , 50. For each Xi, the adaptive clutter map
r̂ie can be obtained, and the target signal r̂it is acquired by the
clutter map removal shown in (11). The ranging algorithms
are then applied to the target signal r̂it to have the ranging
values for these 50 locations.

Figure 12 shows the ranging results over the 50 locations.
As a comparison, the ranging without the clutter map
removal is presented in Figure 13. Table 1 summarizes the
RMSEs for the different ranging algorithms over the 50
locations. The true ranging values of the target are measured
by a ruler with 1 mm resolution.

The ranging evaluation starts from 250 mm, which is
longer than the distance of 200 mm between the Tx and the
Rx antennas, as explained in Section 2.2.

From Figure 12 and Table 1, it can be observed that
the pulse-spectrum signature matching together with the
subsample delay estimation gives the best result, achieving
a resolution of 1.4 mm, while the pulse signature matching
provides much less accurate ranging. Furthermore, it can be
concluded that the clutter map removal is very critical for the
ranging accuracy.

The pulse-spectrum signature matching is a fast algo-
rithm, since it involves only linear transformations (STFT)
and calculations of cross-correlation. This makes the algo-
rithm a very useful one in real-time applications, such as
tracking.

8.3. Tracking. It is difficult for us to evaluate the tracking
algorithm quantitatively, since the off-line method is not
valid for real-time applications, and we do not have other
means to get the accurate values of the position and the
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Table 1: Comparison of the ranging techniques in terms of RMSE
between the real and estimated position for each measurement i.

Algorithm
Without clutter

map removal
With clutter map

removal

Pulse signature matching 75.4 (mm) 48.1 (mm)

Pulse-spectrum signature
matching

7.2 (mm) 2.6 (mm)

Pulse-spectrum signature
matching + subsample
delay estimation

5.0 (mm) 1.4 (mm)
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Figure 16: The estimated velocity by the Kalman filter tracking
algorithm for the one-dimensional see-through-wall evaluation.

velocity of a moving target. The qualitative evaluation is
accordingly applied.

Figure 14 shows the setup for one-dimensional tracking
evaluation, by using the UWB radar as a see-through-wall
radar. The Tx and the Rx SGBT antennas are located on one
side of a 515 mm thick concrete corridor wall. The target,
a 213 mm-in-diameter metal cookie jar, is moved back and
forth manually behind and orthogonally to the wall.

Figures 15 and 16 show the estimated positions and
velocities by using the tracking algorithm. It can be seen that
the Kalman filter algorithm gives a very reasonable result: the
moving target has slightly different period and amplitude of
the back and forth “oscillation” of both the position and the
velocity, which agrees well with the movement by a human
hand.

It should be noted that if the target is not moving orthog-
onally to the wall, the one-dimensional tracking algorithm
with one radar device can only discriminate the distance
between the target and the antennas, but not the positions.

The two-dimensional tracking algorithm is evaluated
also qualitatively. Figure 17 (left) shows the setup: two UWB
radars are located orthogonally, and a metal object is moved
manually. The graphic user interface implemented in Matlab
shows the target with a red dot. We have observed that the red
dot follows the movement of the target very well. An image

Figure 17: An orthogonal measurement setup for two-dimensional
tracking (left) and the graphical user interface implemented in
Matlab (right), where the red dot indicates the location of the target.

printed from the screen is shown in Figure 17 (right) for the
illustration purpose.

9. Conclusion

A compact UWB radar system for indoor and through-
wall ranging and tracking of moving objects has been built
up by using the compact self-grounded Bow-Tie antennas
and the low-cost Novelda transceiver. Robust and accurate
algorithms for ranging and tracking have been developed.
The evaluation by measurements shows that the ranging
resolution of this UWB system has achieved to 1.4 mm RMS
accuracy, and a fast and real-time tracking solution for
through wall is obtained.

The main contribution of this UWB radar system is
that the system itself has commercially low-cost, compact
size. Equipped with the ranging algorithms, it provides
a very high time domain resolution. Furthermore, the
penetration ability together with the high resolution and the
compact system size gives possibilities for many applications.
However, the trade-off here is that due to the small size of the
system, the dynamic range is relatively low, and therefore, it
can only be used for short-range applications.
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