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Abstract

In this paper, we symbolically compute a minimally restrictive non-
blocking supervisor for timed discrete event systems (TDESs), in the su-
pervisory control theory context. The method is based on Timed Ex-
tended Finite Automata, which is an augmentation of extended finite
automata (EFAs) by incorporating discrete time in the model. EFAs are
ordinary automaton extended with discrete variables, guard expressions
and updating functions. The main feature of this approach is that it is
not based on ”tick” models that have been commonly used in this area,
leading to better performance in many cases. In addition, to tackle large
problems all computations are based on binary decision diagrams. As a
case study, we effectively computed the minimally restrictive nonblocking
supervisor for a well-known production cell.

1 Introduction

Discrete Event Systems (DESs) are discrete-state, event-driven systems where
their state evolution depends entirely on the occurrence of asynchronous events
over time. DESs have many applications in modeling technological systems
such as automated manufacturing and embedded systems, see [1, 2]. When
designing control functions for DESs, model-based approaches may be used to
conveniently understand the system’s behavior. A well known framework of
such a model-based approach is supervisory control theory (SCT) [3]. Having a
plant (the system to be controlled) and a specification, SCT automatically syn-
thesizes a control function, called supervisor, that restricts the conduct of the
plant to ensure that the system never violates the given specification. Most of
the research in this field has focused on analyzing qualitative properties, such as
safety or liveness specifications, by investigating the logical sequencing of events.
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However, the correct behavior of many real-time systems such as air traffic con-
trol systems and networked multimedia systems depends on the delays between
events. In addition, on pure DESs one cannot perform quantitative analysis such
as time optimization or scheduling. Timed DES (TDES) is a generalization of
DES in which the times that the events occur are also taken into consideration.
In this work we do not consider stochastic properties of the models. The mod-
eling formalism used in this work is an augmentation of a previously proposed
modeling formalism, called extended finite automaton (EFA) [4], where time
has been incorporated in the model. EFAs are ordinary automaton extended
with discrete variables, guard expressions and action functions. The guards
and action functions are attached to the transitions, which admits local design
techniques of systems consisting of different parts. The main features of EFAs
are that they are suitable for the SCT framework and that they usually yield
compact models because of the existence of discrete variables. EFAs have been
used in several research works and successfully applied to a range of examples
such as [5, 6, 7, 8, 9]. The EFA framework has been implemented in Supremica
[10, 11], a verification and supervisory control tool, where powerful algorithms
exist for analysis of DESs [12, 13, 14, 15]. A Timed EFA (TEFA) is equipped
with a finite set of discrete clocks, where the value of each clock is increased
implicitly as time progresses.

There have been many attempts to model TDESs and generalize SCT con-
sidering the real-time aspects. These works can be divided into two categories;
they are either based on continuous time or discrete time. On the continuous
side, several models such as timed automata [16], hybrid automata [17], timed
Petri nets [18, 19], and (max,+) automata [20] have been proposed. Among
these models, timed automata are more popular and have been used in many
research works for modeling TDESs and employing them in the SCT [21, 22, 23]

There exists a lot of work that have analyzed discrete time models with
respect to SCT such as [24, 25, 26, 27, 28, 29, 30, 31]. Here it is assumed that
there exists a global digital clock. In [27], a max-algebra representation is used
to find the optimal behavior of a controlled timed event graph as an extremal
solution to a set of inequalities defined on event occurrence times. In [30], the
timing information is incorporated in the system states in the form of timer
variables, which are updated according to some rules relating event occurrences
and the passage of time. The more common way to model TDESs, described in
[24, 25, 26, 28, 29, 31], is that lower and upper time bounds are associated with
events to restrict their occurrence times. In addition, they use a special event
”tick”, which represents the passage of time, and is generated by the global
clock. In [32], Brandin and Wonham applied SCT to Timed Transition Models
(TTMs) proposed in [26]. The main problem with their approach is that by
introducing the ”tick” event more iterations maybe needed in the fixed point
computations. In addition, it is more likely to get early state space explosion.
In [33, 34, 35] some methods have been proposed to reduce the state space and
in [36] the state space is symbolically represented by Binary Decision Diagrams
(BDDs) [37].

Consequently, there are many models and implementations that are suitable
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for quantitative analysis (such as time optimization), most of them based on
continuous time; and there are many that are suitable for the SCT framework
(qualitative analysis), most of them based on discrete time. Yet no work exists
considering both aspects. In this paper, we attempt to combine the best of
both paradigms. Based on TEFAs, inspired by the ”zone” concept from the
timed automata community [38], we symbolically compute a minimally restric-
tive nonblocking supervisor by using BDDs. The main feature of our approach,
in the context of SCT, compared to most of the other approaches with discrete
time, is the elimination of the ”tick” event in representing time. Instead, we
represent time symbolically as timing constraints, i.e., zones, using BDDs. In
most of the cases, this leads to less number of fixed-point iterations and more
compact BDD representation yielding a more efficient implementation. Further-
more, from a modeling perspective, the advantage of using TEFAs compared to
TTMs is that the time constraints are added as guards on the transitions (as
in timed automata [16]), rather than lower and upper bounds on the events.
This could potentially facilitate the modeling for the users. For instance, if the
constraints are associated to the events, it will be complicated to model the
situation, where the user wants to put different time constraints on an event
that appears on different places on the same model. Usually the consequence is
a larger state space. The mentioned advantages are demonstrated in Section 7.

This paper is organized as follows. Section 3 describes Timed Extended Fi-
nite Automata that is the modeling formalism used to model our problems. In
Section 4, we introduce Timed Transition Systems, which is the corresponding
state transition models for the TEFAs. Section 5 explains the basics of Super-
visor Control Theory. In Section 6, we explain how TEFAs and the synthesis
procedure are symbolically computed by Binary Decision Diagram. As a case
study, a well-known production cell has been modeled and analyzed in Section
7. Finally, Section 8 provides some conclusions and suggestions for future work.

2 Preliminaries

This section provides some preliminaries that are used throughout this paper.

2.1 Extended Finite Automata

An Extended Finite Automaton (EFA), introduced in [4], is an augmentation of
an ordinary finite automaton with discrete variables.

Definition 1 (Extended Finite Automaton).
An extended finite-state automaton E is a 6-tuple

E = (L, DV , Σ,→, L0, DV0 , Lm, Dm),

where

- L is a finite set of locations,
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- DV = DV
1 × . . .×DV

n is the domain of n variables V = {v1, . . . , vn}, where
DV

i ⊆ Z,

- Σ is a nonempty finite set of events,

- →⊆ L × Σ × G ×A× L is the transition relation,

- L0 ⊆ L is the set of initial locations,

- DV0 = DV0
1 × . . . × DV0

n is the set of initial values of the variables,

- Lm ⊆ L is the set of marked locations that are desired to be reached, and

- Dm is the marked valuations of the variables,

where G and A is sets of constraining expressions, called guards, and updating
functions, called actions, respectively.

The guards and actions are associated to the transitions of the automaton. A
transition in an EFA is executed if and only if its corresponding event occurs
and its corresponding guard becomes satisfied, which may follow by updates of
a set of variables.

2.2 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are powerful data structures for represent-
ing Boolean functions. For large systems where the number of states grows
exponentially, BDDs can improve the efficiency of set and Boolean operations
performed on the state sets [39, 13, 40, 12].

Given a set of m Boolean variables B, a Boolean function f : B
m → B (B

is the set of Boolean values, i.e., 0 and 1) can be expressed using Shannon’s
decomposition [41]. This decomposition can be expressed by a directed acyclic
graph, called a BDD, which consists of two types of nodes: decision nodes and
terminal nodes. A terminal node can either be 0-terminal or 1-terminal. Each
decision node is labeled by a Boolean variable and has two edges to its low-child
and high-child, corresponding to assigning 0 and 1 to the variable, respectively.
The size of a BDD, denoted as |B|, refers to the number of decision nodes.

The power of BDDs lies in their simplicity and efficiency to perform binary
operations. The time complexity of a binary operator between two BDDs B1

and B2 is O(|B1| · |B2|). However, the quantification operators have exponential
time complexity. For a more elaborate and verbose exposition of BDDs and the
implementation of different operators, refer to [42, 43].

The corresponding BDD for a finite set W ⊆ U can be represented using its
corresponding characteristic function.

Definition 2 (Characteristic Function). Let W be a finite set so that W ⊆ U ,
where U is the finite universal set. A characteristic function χW : U → B is
defined by:

χW (a) =

{

1 iff a ∈ W
0 iff a 6∈ W

. (1)
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Since the set U is finite, in practice its elements are represented with numbers

in Z|U| or their corresponding binary m-tuples belonging to B
m (m = ⌈log

|U|
2 ⌉).

For binary characteristic functions, an injective function θ : U → B
m is used to

map the elements in U to elements in B
m. In general, χW (a) is constructed as

χW (a) =
∨

w∈W

a ↔ θ(w), (2)

where ↔ on two binary m-tuples b1 and b2 is defined as

b1 ↔ b2 ,
∧

0≤i<m

(b1i ↔ b2i), (3)

where bji denotes the i-th element of bj .
Hence, different set-operations can be carried out on χ using basic Boolean

operators. In addition to functions, the characteristic function can also be
extended to relations.

In a BDD graph, a variable b1 has a lower (higher) order than variable b2

if b1 is closer (further) to the root and is denoted by b1 ≺ b2 (b2 ≺ b1). The
variable ordering will impact the size of the BDD, however, finding an optimal
variable ordering of a BDD is an NP-complete problem [44].

3 Timed Extended Finite Automata

A Timed Extended Finite Automaton (TEFA) is an EFA augmented with a
finite set of digital clocks. A clock in a TEFA is nothing more than a discrete
variable in the sense of EFAs. The time automatically elapses only at locations,
whereas the transitions occur instantaneously with zero delay.

3.1 Syntax and Semantics

In the following, we describe the syntax and semantics of TEFAs.

Definition 3 (Timed Extended Finite Automaton).
A timed extended finite automaton is a 9-tuple

TE = (L, DV , C, Σ,→, L0, DV0 , Lm, Dm),

where

- L is a finite set of locations,

- DV = DV
1 × . . .×DV

n is the domain of n variables V = {v1, . . . , vn}, where
DV

i ⊆ Z,

- C is a finite set of p discrete valued clocks {c1, . . . , cp},

- Σ is a nonempty finite set of events,
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- →⊆ L × Σ × G ×A× 2C × L is the transition relation,

- L0 ⊆ L is the set of initial locations,

- DV0 = DV0
1 × . . . × DV0

n is the set of initial values of the variables,

- Lm ⊆ L is the set of marked locations that are desired to be reached, and

- Dm = DVm ×DCm is the set of pairs of marked valuations of the variables
and clocks.

We assume that all clocks evolve synchronically with the same rate. Potentially,
the clocks in C can have infinite domain because the time will elapse forever,
which causes infinite state space. Based on the following reasoning we can make
the state space to be finite. The relevant values of a clock are those that can
impact the guards evaluations. Hence, for a clock, say ci, values that are larger
than the largest constant in a TEFA, which ci is compared to are irrelevant,
which makes it possible to make the clock domains finite. Assuming µmaxC

i to
be the largest constant in the model (including all guards) which the clock ci is
compared to, the domain of the clock ci is DC

i = {0, 1, . . . , µmaxC
i }. Note that

for ci > x, we have µmaxCi = x + 1. Consequently, the domain of the clocks
DC = DC

1 × . . . × DC
p will be finite. The global variable domain denoted by DV

∪

is the set that contains the values of all variables, defined formally as:

DV
∪ =

|V|
⋃

i=1

DV
i .

The global clock domain denoted by DC
∪ is defined similarly. The largest value in

DV
∪ and DC

∪ is denoted by µmaxV and µmaxC , respectively. If a variable exceeds
its domain, the result is not defined, and it is upon the developer to decide how
to implement such cases. In contrast to variables, it is assumed that if a clock
ci exceeds its maximum value, it will not evolve anymore, keeping its maximum
value until it is reset. For a clock ci, this behavior is modeled by a saturation
function ̺i : DC

i → DC
i :

̺i(µ
C
i ) =

{

µC
i if µC

i ≤ µmaxCi
µmaxCi if µC

i > µmaxCi
,

where µC
i is an evaluation of clock ci. The function ̺ : DC → DC is used to

saturate the current value of all clocks.
The elements G and A are the sets of guards (conditional expressions) and

action functions, respectively. In the TEFA framework, an arithmetic expression
ϕ is formed according to the grammar

ϕ ::= ω | v | c | (ϕ) | ϕ + ϕ | ϕ − ϕ | ϕ ∗ ϕ | ϕ/ϕ | ϕ%ϕ,

where v ∈ V , c ∈ C, and ω ∈ DV
∪ ∪ DC

∪. A variable evaluation for a variable
vi ∈ V is a function µV

i : vi → DV
i , assigning a value to the variable. A clock
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evaluation µC
i : ci → DC

i is defined similarly. The set of evaluations for all
variables and clocks is represented by µV and µC , respectively. To denote the
”current” evaluation of a variable or clock we use the notation η instead.

A guard g ∈ G is a propositional expression formed according to the grammar

g ::= ϕ < ϕ | ϕ ≤ ϕ | ϕ > ϕ | ϕ ≥ ϕ | ϕ == ϕ |

(g) | g ∧ g | g ∨ g | ⊤ | ⊥,

where ⊤ and ⊥ represent boolean logic true and false, respectively. All
nonzero values are considered as ⊤. The semantics of a guard g is specified
by a satisfaction relation |= the pair of variable and clock evaluations (µV , µC)
for which guard g is ⊤. It is written (µV , µC) |= g.

An action a ∈ A is an n-tuple of functions (a1, . . . , an), updating variables.
An action function ai : DV × DC → DV

i is formed as vi := ϕ. For brevity, we
use the following notation:

a(µV , µC) , (a1(µ
V , µC), . . . , an(µV , µC)).

An action function ai that does not update variable vi is denoted by ξ. The
symbol Ξ is used to denote a tuple (ξ, ξ, . . . , ξ), indicating that no variable is
updated. The semantics of an action function can also be represented by a
relation,

SATA(a) , {((µV , µC), µ́V ) | µ́V = a(µV , µC)}. (4)

The fifth element on the transition relations 2C is a set of clocks that will
be reset after executing the transition. For a set of clocks R to be reset, the
clocks’ valuations after the execution of the transition is defined by a function
reset : {R} → DC :

reset(R) = (µC
1 , . . . , µC

p), such that

µC
i =

{

0 if ci ∈ R
ηC

i if ci 6∈ R
.

For d ∈ DC
∪, reset(R) + d is defined as follows:

reset(R) + d , (µC
1 + d, . . . , µC

p + d),

where d is a p-tuple of values d. A partial transition relation is written as
l

σ
→g/a/reset(R) ĺ, where l, ĺ ∈ L, σ ∈ Σ, g ∈ G, a ∈ A, and R ∈ 2C.

For a variable vi, DV0

i consists of the initial values of vi. We assume that if
the set of marked locations, valuations of a variable vi, or a clock ci is empty,
then the entire domain is considered as marked:

Lm = ∅ ⇒ Lm = L,

DVm

i = ∅ ⇒ DVm

i = DV
i ,

DCm

i = ∅ ⇒ DCm

i = DC
i .
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A transition will be executed if an event occurs, and if the guard on the
corresponding transition (the transition that involves that event) is satisfied,
which may follow by a number of updates on the variables and clocks. It is
assumed that the time will elapse at locations and that the transitions are
executed instantaneously. Hence, at each state (l, µV , µC), the set of states
∀d ∈ DC

∪ : {(l, µV , ̺(µC + d))} will eventually be reached (because time cannot
be stopped). Based on this reasoning, we define a new set DC0 , which is the
initial values of the clocks.

DC0 = ∀d ∈ DC
∪ : {̺(d)}.

Definition 4 (Deterministic TEFA).
A TEFA is deterministic if

1. it only consists of a single initial location, i.e. L0 = {l0},

2. each variable only has a single initial value, i.e., DV0 = {(µV0
1 , . . . , µV0

n )},
and

3. at each state, when executing an event, the systems evolves to a single
state.

In this work we assume that all TEFAs are deterministic.

3.2 Full Synchronous Composition

For modeling purposes, it is often easier to have a modular representation,
specially for complex systems. Then, to have a monolithic model of the system
we need to synchronize the components. For a model with a number of TEFAs,
we assume that the variables V and clocks C are all global, i.e., they are shared
between the TEFAs. Hence, the clocks evolve synchronically with the same rate.
The full synchronous composition on TEFAs, can be defined similar to [4].

A notation that will be used frequently in this paper, is the SOS-notation
(Structured Operational Semantics) used for define the transition relations. The
notation

premise

conclusion

should be read as follows. If the proposition above the ”solid line” (premise)
holds, then the proposition under the fraction bar (conclusion) holds as well.

Definition 5 (Full Synchronous Composition).
Consider the following two TEFAs

TEk = (Lk, DV , C, Σk,→k, L0
k, DV0 , Lm

k , Dm),

where k = 1, 2. The Full Synchronous Composition (FSC) of TE1 and TE2,
denoted by TE1‖TE2, is defined as

TE1‖TE2 = (L, DV , C, Σ,→, L0, DV0 , Lm, Dm),

where
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- L = L1 × L2,

- Σ = Σ1 ∪ Σ2,

- the transition relation

→⊆ L1 × L2 × Σ × G ×A× 2C × L1 × L2

is defined based on the following rules:

(a) σ ∈ Σ1 ∩ Σ2,

(l1, g1,a1, R1, ĺ1) ∈→1 ∧

(l2, g2,a2, R2, ĺ2) ∈→2

((l1, l2), σ, g, a, R, (ĺ1, ĺ2)) ∈→
(5)

such that,

(i) g = g1 ∧ g2,

(ii) R = R1 ∪ R2,

(iii) For i = 1, . . . , |V|,

ai =















a1i if a1i = a2i

a1i if a2i = ξ
a2i if a1i = ξ
ηV

i otherwise

, (6)

where aki is the action function belonging to →k, updating the
i-th variable;

(b) σ ∈ Σ1\Σ2,

(l1, σ, g1,a1, R1, ĺ1) ∈→1

((l1, l2), σ, g1,a1, R1, (ĺ1, ĺ2)) ∈→ ∧ l2 = ĺ2
; (7)

(c) σ ∈ Σ2\Σ1,

(l2, σ, g2,a2, R2, ĺ2) ∈→2

((l1, l2), σ, g2,a2, R2, (ĺ1, ĺ2)) ∈→ ∧ l1 = ĺ1
. (8)

- L0 = L0
1 × L0

2, and

- Lm = Lm
1 × Lm

2 × Dm.

Similar to the proof in [45], it can be proved that the FSC operator is both
commutative and associative and can be extended to N TEFAs. Note that, in
the case where the action functions of TE1 and TE2 explicitly try to update
a shared variable to different values, we assume that the variable is not up-
dated. It can indeed be discussed whether such a transition should be executed,
nevertheless, such a situation is usually a consequence of bad modeling.
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Example 1. Consider a simple manufacturing process involving two machines,
M1 and M2, and a buffer B with the capacity size 2 in between. When a part
has been fetched and loaded on M1, it takes at least 3 seconds and at most 6
seconds to process the part before unloading to the buffer. Similarly, once a
part is loaded by M2 from B, at least 2 seconds but no later than 4 seconds are
needed to process the part.

The manufacturing cell can be modeled by two TEFAs as plants, shown in
Fig. 1. Observing that instead of modeling the buffer B as a specification to
prevent overflow or underflow situations from occurring, a variable, referred to
as bv, denoting the number of parts on the buffer, is declared and used in the
guards to disable the occurence of certain transitions. For instance, when the
buffer is full, e.g. vb = 2, the transition labeled by the event unload1 in M1

is not allowed to be taken unload until M2 loads one, which cases the value of
vb decreased by 1. One more point which needs to be elaborated is these two
clocks clock1 and clock2, which are used to express the local time passage when
parts are processed by M1 and M2 respectively. As mentioned earlier, domains
of both clocks are restricted to be finite with the upper bounds equal to the
largest constants. In this case, µmaxC1 = 6 and µmaxC

1 = 4. Moreover, it can be
observed that once M1 or M2 loads a part, the value of the corresponding clock,
e.g. clock1 or clock2 needs to be reset to 0. From the modeling perspective, by
resetting clocks, not only is it convenient to count the processing time at the
working stage, but also it has the possibility to make the state-space smaller.

IDLE1 WORK1 IDLE2 WORK2

load1

load2

unload1
unload2

reset(clock1)

bv < 2 ∧ 3 ≤ clock1 < 6;
bv = bv + 1

bv > 0

bv = bv − 1;
reset(clock2)

2 ≤ clock2 < 4

M1 : M2 :

Figure 1: TEFAs modeling the manufacturing cell of Example 1, where all events
are controllable and the initial locations are also marked.

4 Timed Transition Systems

The semantics of a TEFA can be represented by its corresponding Timed Tran-
sition System (TTS) that is based on the states of the model.

4.1 Syntax and Semantics

In the following, we describe the syntax and semantics of TTSs.
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Definition 6 (Timed Transition System of a TEFA).
Let TE = (L, DV , C, Σ,→, L0, DV0 , Lm, Dm) be an TEFA. Its corresponding
timed transition system, denoted by TTS(TE) = (Q, Σ,֌, Q0, Qm), is a 5-
tuple where

- Q = L × DV × DC , is the finite set of states,

- Σ, is the set of events,

- ֌⊆ Q×Σ×2Q, is the explicit transition relation defined by the following
rule:

(l, σ, g, a, R, ĺ) ∈→ ∧ (µV , µC) |= g

((l, µV , µC), σ, Q́) ∈֌
, (9)

where
Q́ = ∀d ∈ DC

∪ : {(ĺ, a(µV , µC), ̺(reset(R) + d))},

- Q0 = L0 × DV0 × DC0 , is the set of initial states,

- Qm = Lm × Dm, is set of marked states.

Hence, in contrast to ”tick” models [24], after executing each transition we reach
a set of states. This feature is beneficial from different perspectives, specially in
the reachability analysis. In addition, manipulating set of states is more suitable
for symbolic representation, which will be described in more details in Section
6.

The explicit transition relation of a TTS can be recursively extended to
strings (or sequences) of events:

(l, µV , µC)
ε
֌ {(l, µV , ̺(µC + d)) | d ∈ DC

∪},

q
sσ
֌ {q′′ ∈ Q′′ | q

s
֌ Q́ : ∀q́ ∈ Q́ : q́

s
֌ Q′′},

where s ∈ Σ∗, σ ∈ Σ, and ε is a silent event, meaning that we will remain in
the current location and the current valuations of the variables.

Example 2. Based on Definition 6, we explain the corresponding TTS of TEFA
M1 in Example 1. First of all, at the initial location IDLE1, the value of the
local clock clock1 could be any value in {0, 1, . . . , 6}. Hence the initial state set
consists of 7 states. Next, from any initial state, denoted by (IDLE1, clock1,
0) where 0 is the initial value of bv, the transition labeled by the event load1

can be taken. The current location is then moved to WORK1 and the value of
clock1 is reset to 0. As the time evolves, other values of clock1 can be reached
successively and thus clock1 could be any value in {0, 1, . . . , 6} again. Finally, we
observe that there is a guard associating with the second transition labeled by
the event unload1 saying that the transition is enabled if the buffer is available
and the time elapses at least 3 seconds but no later than 6 seconds. Therefore,
as long as the buffer is available, all states with clock1 from 3 to 5 can take the
transition while other states are considered as blocking states, since they cannot
reach the marked states.
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4.2 Timed Full Synchronous Composition

Full synchronous composition can also be defined on TTSs. In this case, it
is important that that the clocks evolve synchronized. In addition, it must
be possible to track the partial transitions, where the variables has not been
updated.

The following notations are used in the definition of timed full synchronous
composition:

ξ-ETi = {((l, µV , µC), σ) | ∀(l, g, a, R, ĺ) ∈→: (µV , µC) |= g ∧ ai = ξ},

R-ETi = {((l, µV , µC), σ) | ∀(l, g, a, R, ĺ) ∈→: (µV , µC) |= g ∧ ci ∈ R}.

We use the notation ξ-ET for a |V|-tuple of ξ-ETis, referred to as ξ-expTrans.
Similarly, R-ET denotes a |C|-tuple of R-ETis.

Definition 7 (Timed Full Synchronous Composition).
For two TEFAs TE1 and TE2, consider their corresponding TTSs

TTS(TEk) = (Qk, Σk,֌k, Q0, Qm),

Qk = Lk × DV × DC ,

Q0 = L0
k × DV0 × DC0 ,

Qm = Lm
k × Dm,

where k = 1, 2. Also let ξ-ETk be their corresponding ξ-expTrans. The Timed
Full Synchronous Composition (TFSC) of TTS(TE1) and TTS(TE2), denoted
by TTS(TE1)‖TTS(TE2), is defined as

TTS(TE1) ‖ TTS(TE2) = (Q, Σ,֌, Q0, Qm),

where

- Q = L1 × L2 × DV × DC ,

- Σ = Σ1 ∪ Σ2,

- the explicit transition relation

֌⊆ Q1 × Q2 × Σ × 2Q1×Q2

is defined based on the following rules:

(a) σ ∈ Σ1 ∩ Σ2,

((l1, µ
V , µC), σ, Q́1) ∈֌1 ∧

((l2, µ
V , µC), σ, Q́2) ∈֌2

((l1, l2), µV , µC), σ, Q́) ∈֌
(10)
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where Q́k = ∀d ∈ DC
∪ : {(ĺk, µ́V

k , ̺(µ́C
k +d))}, µ́V

k and µ́C
k are the values

of the variables and clocks immediately after executing transition
֌k, and

Q́ = ∀d ∈ DC
∪ : {((ĺ1, ĺ2), µ́

V , ̺(µ́C + d))},

µ́V
i =















µ́V
1i if µ́V

1i = µ́V
2i

µ́V
2i if (l1, µ

V , µC), σ) ∈ ξ-ETi
1

µ́V
1i if (l2, µ

V , µC), σ) ∈ ξ-ETi
2

µV
i otherwise

, (11)

µ́C
i =







0 if (l1, µ
V , µC), σ) ∈ R-ETi

1∨
(l2, µ

V , µC), σ) ∈ R-ETi
2

µC
i otherwise

; (12)

(b) σ ∈ Σ1\Σ2,

((l1, µ
V , µC), σ, Q́1) ∈֌1 ∧ l2 = ĺ2

((l1, l2), µV , µC), σ, Q́) ∈֌
, (13)

where Q́ = ∀d ∈ DC
∪ : {((ĺ1, ĺ2), µ́V

1 , ̺(µ́C
1 + d))};

(c) σ ∈ Σ2\Σ1,

((l2, µ
V , µC), σ, Q́2) ∈֌2 ∧ l1 = ĺ1

((l1, l2), µV , µC), σ, Q́) ∈֌
,

where Q́ = ∀d ∈ DC
∪ : {((ĺ1, ĺ2), µ́V

2 , ̺(µ́C
2 + d))},

- Q0 = L0
1 × L0

2 × DV0 × DC0 , and

- Qm = Lm
1 × Lm

2 × Dm.

Proposition 1. The TFSC operator is commutative.

Proposition 2. The TFSC operator is associative.

The above propositions can be proved similar to the proof in [45]. Following
these two properties, it is deduced that TFSC can be extended to any number
of TTSs. The relation between FSC and TFSC is described by the following
lemma.

Lemma 1. For two TEFAs

TEk = (Lk, DV , C, Σk,→k, L0
k, DV0 , Lm

k , Dm),

where k = 1, 2, the following statement holds:

TTS(TE1‖TE2) = TTS(TE1)‖TTS(TE2).
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Proof. We prove the equality from left to right. Let

TE1‖TE2 = (L, DV , C, Σ,→, L0, DV0 , Lm, Dm).

Based on definitions 6 and 5 we have

TTS(TE1‖TE2) = (Q, Σ,֌, Q0, Qm),

where

- Q = L1 × L2 × DV × DC ,

- Σ = Σ1 ∪ Σ2,

- Q0 = L0
1 × L0

2 × DV0 × DC0 ,

- Qm = Lm
1 × Lm

2 × Dm.

Based on definition 7, it can be observed that these four elements are equivalent
to corresponding elements in TTS(TE1)‖TTS(TE2). Now we have to prove the
equivalence of their corresponding explicit transition relations. We can construct
֌ by the rule in (9):

((l1, l2), σ, g,a, R, (ĺ1, ĺ2)) ∈→ ∧ (µV , µC) |= g

(((l1, l2), µV , µC), σ, Q́) ∈֌
. (14)

We divide the construction of֌ to three different cases:

a) σ ∈ Σ1 ∩ Σ2. Based on definition 5, in (14) we have

(i) g = g1 ∧ g2,

(ii) R = R1 ∪ R2,

(iii) Q́ = ∀d ∈ DC
∪ : {(ĺ, a(µV , µC), ̺(reset(R) + d))},

where a(µV , µC) is defined according to (6). a(µV , µC) and reset(R) can
be replaced by their corresponding set-based expressions in (11) and (12).
Hence, the ”conclusion” parts of (10) and (14) are equivalent. Now we
prove that the ”premise” parts are equivalent. Based on (5) and the fact
that

(µV , µC) |= g1 ∧ g2 ≡ (µV , µC) |= g1 ∧ (µV , µC) |= g2,

we can rewrite (14) as

(l1, g1,a1, R1, ĺ1) ∈→1 ∧ (µV , µC) |= g1 ∧

(l2, g2,a2, R2, ĺ2) ∈→2 ∧ (µV , µC) |= g2

((l1, l2), σ, g, a, R, (ĺ1, ĺ2)) ∈→
,

and based on (9), the above equation can be written as

((l1, µ
V , µC), σ, Q́1) ∈֌1 ∧

((l2, µ
V , µC), σ, Q́2) ∈֌2

((l1, l2), µV , µC), σ, Q́) ∈֌
,

14



where
Q́k = ∀d ∈ DC

∪ : {(ĺk, ak(µV , µC), ̺(reset(Rk) + d))}.

Hence, the ”premise” parts of (10) and (14) are also equivalent.

b) σ ∈ Σ1\Σ2. Based on definition 5, we can rewrite (14) as follows,

((l1, l2), σ, g1,a1, R1, (ĺ1, ĺ2)) ∈→ ∧ (µV , µC) |= g1

(((l1, l2), µV , µC), σ, Q́) ∈֌
, (15)

where Q́ = ∀d ∈ DC
∪ : {(ĺ, µ́V

1 , ̺(µ́C
1 + d))}, such that µ́V

k = a1(µV , µC)
and µ́C

1 = reset(R). Hence, the ”conclusion” parts of (13) and (14) are
equivalent. Now we prove that the ”premise” parts are equivalent. Based
on (7), we can rewrite (15) as

(l1, σ, g1,a1, R1, ĺ1) ∈→1 ∧ l2 = ĺ2

(((l1, l2), µV , µC), σ, Q́) ∈֌
,

which proves that the ”premise” parts of (13) and (14) are also equivalent.

c) σ ∈ Σ2\Σ1. This case can be proved similar to part b).

Hence, based on definition 7, the tuple of TTS(TE1‖TE2) is equivalent to
TTS(TE1)‖TTS(TE2).

Since both FSC and TFSC are both commutative associative, the lemma
can be extended to any number of TEFAs.

5 Supervisory Control Theory

Supervisory Control Theory (SCT) [3, 46] is a general theory to automatically
synthesize a control function, referred to as supervisor, based on a given plant
and specification. A specification describes the allowed and inhibited behaviors.
The supervisor restricts the conduct of plant to guarantee that the system never
violates the given specification. However, it is often desired, and also in our
work, that the supervisor restricts the plant as least as possible, referred to as
optimal or minimally restrictive supervisor. This gives the developers several
alternatives to implement the controller and performing further analysis such
as time or energy optimization.

In the context of SCT, the behavior of a system is usually represented by its
language, i.e. the sets of strings that the system may generate. Conventionally,
automata has been used as the modeling formalism to generate the language.
In this work, the problems are modeled by TEFAs, while the SCT analysis is
performed on their corresponding TTS models. So from now on, wherever a
model is mentioned, we mean its corresponding TTS model.

A plant P can be described by the synchronization of a number of sub-plants
P = P1‖P2‖ . . . ‖Pl, and similarly for a specification Sp = Sp1‖Sp2‖ . . . ‖Spm.
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There are different ways of computing a supervisor such as monolithic [3], mod-
ular [47], and compositional [48] synthesis. In our approach we apply monolithic
synthesis, which is performing fixed-point computations on the single composed
automaton S0 = P‖Sp. After the synthesis procedure, some blocking states
may be identified, which are the states from where no marked state can be
reached. In SCT, the events can be divided into two disjoint subsets: con-
trollable events, that can be prevented from executing by the supervisor; and
uncontrollable events, which cannot be influenced by the supervisor [3, 46]. In
addition to the blocking states, the synthesis procedure may also identify some
uncontrollable states, which are states from where the plant executes an un-
controllable event that violates the specification. By removing the blocking or
controllable states from S0, a nonblocking or controllable supervisor is obtained,
respectively. In this paper, we aim to compute a nonblocking supervisor and
leave the controllability issues for future work.

As mentioned earlier, we assume that the systems are deterministic, in the
sense that at each moment, the supervisor knows the current and next state of
the system. Therefore, we only consider deterministic TEFAs. This might seem
to be in conflict with the definition of TTS, where give a state and an event,
the system will be in a set of states. However, based on the following reasoning,
the supervisor will always know the current state. Assume that there exists a
global clock that always evolves and never gets reset. Thus, each state in the
system will also consist of the current value of the global clock. Consequently,
after the execution of any event, the supervisor will always know the next state
of the system.

Following, we provide formal definitions of the nonblocking property.

Definition 8 (Reachable states). The set of reachable states of a TTS are the
states that can be reached from the initial state:

Qreach , {q́ ∈ Q́ | ∃s ∈ Σ∗ : q0
s
֌ Q́}

Definition 9 (Coreachable states). The set of coreachable states of a TTS are
the states that can reach at least one marked state:

Qcoreach , {q | ∃s ∈ Σ∗ : q
s
֌ Q́ ∧ (Q́ ∩ Qm) 6= ∅}

In other words, the coreachable states are the states that can be reached if
starting by a marked stated and executing the transitions in reverse order. In
our work, the computation of coreachable states is based on this paradigm. We
define the explicit backward transition relation, denoted as֋, by the following
rule,

(l, σ, g, a, R, ĺ) ∈→ ∧ ((µV , µC), µ́V) ∈ SATA(a) ∧
(µV , µC) |= g ∧ µ́C = µC

((ĺ, µ́V , µ́C), σ, Q) ∈֋
, (16)

where

Q́ = ∀d ∈ DC
∪ : {(l, µV , ρ(µ́C − d)) | ∀ci ∈ R : µ́C

i = 0},
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and ρ is a |C|-tuple function defined as

ρi(µ
C
i ) =

{

µC
i if µC

i > 0
0 if µC

i ≤ 0
.

Based on the backward transition relation, the set of coreachable states can also
be defined as:

Qcoreach , {q ∈ Q | ∀q́ ∈ Qm : ∃s ∈ Σ∗ : Q
s
֋ q́}.

In the sequel, to avoid any ambiguity, we will refer to ֌ as explicit forward
transition relation.

Definition 10 (Nonblocking states). The nonblocking states of a TTS are the
states that are both reachable and coreachable:

Qnbl , Qreach ∩ Qcoreach.

Definition 11 (Nonblocking TTS). A TTS is nonblocking if all reachable states
are nonblocking, i.e., the following property holds:

Qreach = Qnbl.

A supervisor S is nonblocking with respect to a plant G if G‖S is nonblock-
ing.

The nonblocking states can be synthesized by fixed point computations [12]
on the synchronized model S0. There core operator in performing the fixed point
computations is the IMAGE operator. Given a set of states W ⊆ Q; IMAGE(W,֌)
computes the set of states that can be reached in one transition,

IMAGE(W,֌) , {q́ ∈ Q́| ∃q ∈ W, σ ∈ Σ : q
σ
֌ Q́}, (17)

where ֌ is the transition relation of S0. By this operator the set of reachable
states can be computed. By applying the IMAGE operator on the backward
transition relation, the set of states that can reach states in W can be computed
(used in computing the coreachable states).

6 Symbolic Representations and Computations

When performing fixed point computations for systems of industrially interest-
ing sizes, exploring all states in the composed model explicitly can be compu-
tationally expensive, in terms of both time and memory, due to the state space
explosion problem. We tackle this problem by representing the models and
performing the computations symbolically using BDDs.

In [14, 49], it is shown how EFAs are represented by BDDs and how the
synthesis procedure is performed efficiently using BDDs. In this work, we extend
the framework to TEFAs. As mentioned earlier, all computations are based
on the corresponding transition relations of the TTSs. The main feature of
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TTSs is that from any state and a given event, a set of states can be reached
directly. This is in contrast to ”tick” models [26], where the clocks evolve on
the occurrence of the ”tick” event. Hence, when performing the fixed point
computations on TTSs, less number of iterations is needed compared to the
”tick” models. Another advantages of TTSs is the fact that a set of states (the
target states) usually has a more compact BDD representation compared to a
single state. The combination of using TTSs and implementing them by BDDs
is the main reason behind the effectiveness of our approach.

As mentioned in Section 5, the fixed point computations are performed on
֌S0 and ֋S0 , i.e., the forward and backward explicit transition relations of
S0. However, there are some challenges in constructing the BDD represent-
ing the explicit transition relations of S0. In [49], we shown how EFAs and
their synchronous operator are transformed to BDDs. Nevertheless, this trans-
formation becomes more complicated when clocks are included in the model,
specially when it comes to synchronizing the clocks with the same rate. Fol-
lowing we will discuss these challenges and motivate the solution we used to
construct the corresponding BDD for the explicit transition relations of S0. In
the sequel, as mentioned earlier in Section 2.2, we will represent the BDDs by
their corresponding characteristic functions. For brevity, we only focus on the
forward transition relation; the backward transition relation can be computed
in an analogous manner.

6.1 Discussion

Assume we have a model with a single TEFA and a single clock c1. Lets con-
struct the corresponding characteristic function of the explicit transition repre-
senting a partial transition l

σ
→g/a/reset(R) ĺ; for brevity, we write χ

l
σ
→g/a/reset(R) ĺ

.

Let bΣ be an ⌈log
|Σ|
2 ⌉-tuple of Boolean variables used to represent the events;

bL be an ⌈log
|L|
2 ⌉-tuple of Boolean variables used to represent the locations; bV

i

be an ⌈log
|DV

i |
2 ⌉-tuple of Boolean variables used to represent the valuations of

variable vi. Similarly, let b́L and b́V
i denote Boolean tuples used to represent

the target (updated) locations and valuations of vi after executing a transition,
respectively. In [49], for the case of EFAs, we shown that a partial transition
without clocks is represented by the following characteristic function:

χ
l

σ
→g/a

ĺ
(bV

1 , . . . ,bV
n , b́V

1 , . . . , b́V
n ,bL, b́L,bΣ) =

(

∨

µV |=g ∧ (µV ,µ́V)∈SATA(a)

n
∧

i=1

bV
i ↔ θ(µV

i ) ∧ b́V
i ↔ θ(µ́V

i )
)

∧

bL ↔ θ(l) ∧ b́L ↔ θ(ĺ) ∧ bΣ ↔ θ(σ), (18)

which can be deduced from (2) and (3). The characteristic function of the tran-
sition relation of the TEFA can be computed by disjuncting the corresponding
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characteristic functions of all partial transition relations. Now, lets include a
single clock in the model, include it in the guard, but treat it as an ordinary
variable:

χ
l

σ
→g/a/reset(∅) ĺ

(bV
1 , . . . ,bV

n , b́V
1 , . . . , b́V

n ,

bC
1 , b́C

1 ,bL, b́L,bΣ) =
(

∨

(µV ,µC
1 )|=g ∧ ((µV ,µC

1 ),µ́V)∈SATA(a)

n
∧

i=1

bV
i ↔ θ(µV

i ) ∧ b́V
i ↔ θ(µ́V

i ) ∧

bC
1 ↔θ(µC

1 ) ∧ b́C
1 ↔ θ(µ́C

1 )
)

∧

bL ↔θ(l) ∧ b́L ↔ θ(ĺ) ∧ bΣ ↔ θ(σ). (19)

To implement the time evolution and give the clock its real semantics, based
on (9), the term b́C

1 ↔ θ(µ́C
1 ) should be replaced by χḾ1

(b́C
1 ), where Ḿ1 =

∀d ∈ DC
∪ : {µC

1 + d}. In this case, we assumed that the clock is not reset.
Otherwise, the term χḾ1

(b́C
1 ) should be removed, indicating that the target

valuations of the clock are all values in DC
1 . However, if we follow the above

formula to construct a partial transition relation with multiple clocks, the clocks
will not be synchronized. If we add another clock to the model, then the above
result will be logically conjuncted bC

2 ↔ θ(µC
2 ) ∧ χḾ2

(b́C
2 ). Thus, the term

χḾ1
(b́C

1 ) ∧ χḾ2
(b́C

2 ) will yield states, where the target valuations of the clocks

will be Ḿ1 × Ḿ2, which clearly means that clocks do not evolve synchronously
with the same rate.

Hence, when there exists p > 1 clocks, to get the correct result, the statement
in (19) should be:

p
∧

i=1

bC
i ↔ θ(µC

i ) ∧ χḾ (b́C),

where Ḿ = ∀d ∈ DC
∪ : {̺(µC + d)} and thus

χḾ (b́C) =

|DC
∪|

∨

d=0

p
∧

j=1

b́C
j ↔ θ(̺(µC

j + d)). (20)

Having this in mind, in the next section we show how the corresponding BDD
of the transition relation representing the synchronization of a number of timed
EFAs can be computed.

6.2 BDD Construction of ֌S0

The construction of the BDD representing the synchronization of a number of
EFAs has already been elaborated in [14]. By extending the method in [14], we
construct the BDD representing֌S0 by performing the following steps:
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1. consider the clocks as ordinary variables and construct the BDD of the
explicit transition relation of each TEFA (which is now considered as an
EFA),

2. construct the BDD representing the synchronization of all TEFAs,

3. construct a BDD representing the time evolution,

4. consider the time evolution BDD from step 3 in the BDD from step 2.

The first two steps have been described in [14]. We denote the characteristic
function of the BDD from step 2 by χ 7→S0

. Note that based on (6), if a clock is
not reset on a transition it will keep its old valuation.

In step 3, we implement the time evolution by constructing a BDD that
represents (20) for all clock valuations µC . As mentioned earlier, the main idea
is to for each transition expand the target value of each clock,say µC

i , to all larger
values in its domain, i.e., ∀d ∈ DC

i : {µC
i + d}. We notate the expand operator

by . For instance, if a clock has domain {0, 1, . . . , 10}, then a target value 4 is
expanded to {4, 5, . . . , 10} and denoted as 4 {4, 5, . . . , 10}. The main issue is
to make all the clocks expand their values synchronously. Moreover, we use the
expand operator to replace the target value by a set of values. The replacement
occurs in step 4 and to do this on the BDD level, in addition to b́C , we introduce
a set of temporary Boolean variables b̂C .

Before continuing, as an example, we apply steps 3 and 4 to the BDD rep-
resenting (19). We first compute the BDD representing time evolution for all
values in DC1 :

∨

µC1∈DC
1

(

b́C
1 ↔ θ(µ́C

1 ) ∧

|DC
1 |−µC

1
∨

d=0

b̂C
1 ↔ θ(µ́C

1 + d)
)

. (21)

Next, we compute (21) ∧ (19) yielding:

(

∨

(µV ,µC
1 )|=g ∧ ((µV ,µC

1 ),µ́V)∈SATA(a)

n
∧

i=1

bV
i ↔ θ(µV

i ) ∧ b́V
i ↔ θ(µ́V

i ) ∧

bC
1 ↔θ(µC

1 ) ∧ b́C
1 ↔ θ(µC

1 ) ∧

|DC
1 |−µC

1
∨

d=0

b̂C
1 ↔ θ(µC

1 + d)
)

∧

bL ↔θ(l) ∧ b́L ↔ θ(ĺ) ∧ bΣ ↔ θ(σ). (22)

Let B be the BDD representing (22). The final step is to quantify away the
Boolean variables in b́C

1 and then replace the variables in b̂C
1 by b́C

1 ,

replace
(

∃b́C : B , (b̂C , b́C)
)

,
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which represents the following characteristic function

(

∨

(µV ,µC
1 )|=g ∧ ((µV ,µC

1 ),µ́V)∈SATA(a)

n
∧

i=1

bV
i ↔ θ(µV

i ) ∧ b́V
i ↔ θ(µ́V

i ) ∧

bC
1 ↔θ(µC

1 ) ∧

|DC
1 |−µC

1
∨

d=0

b́C
1 ↔ θ(µC

1 + d)
)

∧

bL ↔θ(l) ∧ b́L ↔ θ(ĺ) ∧ bΣ ↔ θ(σ).

Hence, each value µC
1 represented by b́C

1 has been replaced by {µC
1 , µC

1+1, . . . , |DC
1 |}.

Algorithm 1 shows the construction of the BDD representing the time evo-
lution (expand operator) having the following characteristic function:

χtimeEvolution(b́
C
1 , . . . , b́C

n, b̂C
1 , . . . , b̂C

n) =

∨

µC∈DC

(

|C|
∧

i=1

b́C
i ↔ θ(µC

i ) ∧

|DC
∪|

∨

d=0

|C|
∧

j=1

b̂C
j ↔ θ(̺(µC

j + d))
)

. (23)

Before digging into the algorithm, it is worth to describe the principle behind
implementing the saturation function ̺, which is especially an issue when there
exist multiple clocks. The basic idea is to let the values of the clocks grow even
when they exceed the domains of the clocks. In other words, we enlarge the do-
mains of the clocks. Then, in the next step, all values outside of the domain will
be replace by the largest value. For instance, assume there exist two clocks each
with domain {0, 1, 2} and let (0, 1) be a tuple which we want to expand. Without
enlarging the domain the result is (0, 1) {(0, 1), (1, 2)}, however, changing the
domain to {0, 1, 2, 3} the result would be (0, 1) {(0, 1), (1, 2), (2, 3)}. Finally,
value 3 will be replaced by 2, i.e., the largest value in the old domain, yielding
(0, 1)  {(0, 1), (1, 2), (2, 2)}, which will be the result of the ̺ function. This
implementation could be done in other ways to but the main reason that we
want to enlarge the domain is to always have unique values in the tuples, which
is necessary for the correctness of the algorithm. Note that the increase of the
domain will be applied to the temporary Boolean variables b̂C

j . To ensure that
the values always increase when we want to expand a tuple of multiple clocks,
we let b̂C

j include ⌈log(2 · |DC
j |)⌉ Boolean variables.

In the algorithm, B(0) and B(1) denote the 0 and 1 terminals, respectively;
bC

k represents a number of Boolean variables used to represent DC
k ; bC represents

a number of Boolean variables used to represent DC ; and B(i,bC
k) corresponds to

the BDD representing value i by using bC
k . In our implementation, we represent

integers and the arithmetic operations by BDD bit-vectors [50]. The notation
−→
B(i,bC

k) is the BDD bit-vector representing value i, where each bit is a BDD

using bC
k .

−→
B(·,bC

k) is the BDD bit-vector for all values that can be represented by
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bC
k . For a more detailed description on how arithmetic operations are performed

on BDD bit-vectors refer to [50].
Lines 2-7 constructs the time evolution when there is only a single clock in

the model. In this case,

χtimeEvolution(b́
C
1 , . . . , b́C

n, b̂C
1 , . . . , b̂C

n) =

∨

µC
1∈DC

1

(

b́C
1 ↔ θ(µC

1 ) ∧

|DC
1 |

∨

d=0

b̂C
1 ↔ θ(̺(µC

1 + d))
)

. (24)

This represents the set

{ 0 {0, . . . , 2 · |DC
1 |},

1 {1, . . . , 2 · |DC
1 |},

. . . ,

|DC
1 | {2 · |DC

1 |} }, (25)

Lines 8-19 synchronize the clocks without considering the saturation function ̺.
The basic idea is to synchronize each clock in the model with the first clock c1

and conjunct it with the BDD that has been computed so far for the previous
clocks. In line 16, BdiffG represents all valuation pairs larger than i and j for
clocks c1 and ck, respectively, where the difference is i − j. BijTarg ∧ BdiffG

will then represent

(i, j) {(i, j), (i + 1, j + 1), . . . , (i + ω, j + ω)}, (26)

where ω = min
(

(2 · |DC
1 |− i), (2 · |DC

k |− j)
)

. Such a BDD will be constructed for
all is and js in DC

1 and DC
k , respectively, and will be disjuncted together, stored

in Bfrwd. Then, Bfrwd will be conjuncted with BfrwdEvol that represents the
time evolution for the clocks that have been computed so far. In lines 20-24 the
saturation function ̺ is implemented. As mentioned earlier, for each clock ck

all values that are larger than |DC
k | will be replaced by |DC

k |.

Lemma 2. Algorithm 1 returns the corresponding BDD for χtimeEvolution.

Proof. Without loss of generality, we perform the proof based on the symbol
introduced earlier, rather than using the characteristic functions.
When |C| = 1, χtimeEvolution will be equal to (24). In this case, only lines 1-7
will be executed and it is straightforward to see that Bfrwd represents (25).
For |C| ≥ 1, we divide the algorithm into two parts: lines 8-19 and lines 20-24
(saturation implementation), and prove the correctness of each part separately.
For lines 8-19, we prove that BfrwdEvol represents

{µC  (µC , µC + 1, . . . , µC + ω) | µC ∈ DC : ω =
|C|

min
p=1

(2 · |DC
p | − µC

p)}. (27)

We prove this by induction.
For the basic case, where k = 2, from (26) it can be directly deduced that at
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Input: C and DC

Output: BfrwdEvol

BfrwdEvol ← B(1);1

if |C| = 1 then2

Bfrwd ← B(0);3

for i← 0 to |DC
1 | do4

Bgeq ←
(−→
B(·, b̂C

1 ) ≥
−→
B(i, b̂C

1 )
)

;
5

Bfrwd ←
(

Bfrwd ∨
(

B(i, b́C
1 ) ∧ Bgeq

)

)

;
6

end

BfrwdEvol ← Bfrwd;7

else

for k ← 2 to |C| do8

Bfrwd ← B(0);9

for i← 0 to |DC
1 | do10

for j ← 0 to |DC

k | do11

if i ≥ j then12

Bdiff ←
(

(−→
B(·, b̂C

1 )−
−→
B(·, b̂C

k)
)

↔
(−→
B(i, b̂C

1 )−
−→
B(j, b̂C

k)
)

)

;
13

else

Bdiff ←
(

(−→
B(·, b̂C

k)−
−→
B(·, b̂C

1 )
)

↔
(−→
B(j, b̂C

k)−
−→
B(i, b̂C

1 )
)

)

;
14

end

Bgeq ←
(−→
B(·, b̂C

1 ) ≥
−→
B(i, b̂C

1 ) ∧
−→
B(·, b̂C

k) ≥
−→
B(j, b̂C

k)
)

;
15

BdiffG ←
(

Bdiff ∧ Bgeq

)

;
16

BijTarg ←
(

B(i, b́C
1 ) ∧B(j, b́C

k)
)

;
17

Bfrwd ←
(

Bfrwd ∨ (BijTarg ∧ BdiffG)
)

;
18

end

end

BfrwdEvol ← (BfrwdEvol ∧ Bfrwd);19

end

for k ← 1 to |C| do20

B1 ←
(

BfrwdEvol ∧ (
−→
B(·, b̂C

k) ≥
−→
B(|DC

k |, b̂
C

k)) ∧B(|DC

k |, b̆
C

k)
)

;
21

B1 ← replace
(

(∃b̂C : B1) , (b̆C, b̂C)
)

22

B2 ←
(

BfrwdEvol ∧ (
−→
B(·, b̂C

k) <
−→
B(|DC

k |, b̂
C

k))
)

;
23

BfrwdEvol ← B1 ∨ B2;24

end

end

Algorithm 1: BDD construction of time evolution.
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the end of the iterations, Bfrwd will represent (27). Since the loop in line 8
only iterates once, BfrwdEvol = B(1) when line 19 is reached, which means that
BfrwdEvol = Bfrwd. Hence, BfrwdEvol represents (27) and the basic step is
proved.
Now for the inductive step, let assume that BfrwdEvol represents (27) for the
k = κ first clocks, denoted by

{µC
1,...,κ  (µC

1,...,κ, µC
1,...,κ+1, . . . , µC

1,...,κ + ω) |

µC
1,...,κ ∈ DC

1,...,κ : ω =
κ

min
p=1

(2 · |DC
p | − µC

p)}, (28)

where µC
1,...,κ is a κ-tuple and DC

1,...,κ is the domain for the κ first clocks. We
prove that this also holds for k = κ + 1. In iteration κ + 1, Bfrwd represents
the time evolution between clock 1 and clock κ + 1. Based on (26), the BDD
represents

{µC
1,κ+1  (µC

1,κ+1, µ
C
1,κ+1 + 1, . . . , µC

1,κ+1 + ω′) |

µC
1,κ+1 ∈ DC

1,κ+1 : ω′ = min(2 · |DC
1 | − µC

1 , 2 · |DC
κ+1| − µC

κ+1)}. (29)

Now, lets compute BfrwdEvol in line 19, which is obtained by conjuncting the
corresponding BDDs for (28) and (29). We perform the conjunction on their cor-
responding characteristic functions. From (23), we have that the corresponding
characteristic function for (28) is,

∨

µC
1,...,κ∈DC

1,...,κ

(

b́C
1 ↔ θ(µC

1 ) ∧
κ
∧

i=2

b́C
i ↔ θ(µC

i ) ∧

ω
∨

d=0

(

b̂C
1 ↔ θ(µC

1 + d) ∧
κ
∧

j=2

b̂C
j ↔ θ(µC

j + d)
)

)

. (30)

and for (29), we have

∨

µC
1,κ+1∈DC

1,κ+1

(

(b́C
1 ↔ θ(µC

1 )) ∧ (b́C
κ+1 ↔ θ(µC

κ+1)) ∧

ω′

∨

d=0

(

(b̂C
1 ↔ θ(µC

1 + d)) ∧ (b̂C
κ+1 ↔ θ(µC

κ+1 + d))
)

)

. (31)

By conjuncting (30) and (31) we get

∨

µC
1,...,κ+1∈DC

1,...,κ+1

(

b́C
1 ↔ θ(µC

1 ) ∧
κ+1
∧

i=2

b́C
i ↔ θ(µC

i ) ∧

min(ω,ω′)
∨

d=0

(

b̂C
1 ↔ θ(µC

1 + d) ∧
κ+1
∧

j=2

b̂C
j ↔ θ(µC

j + d)
)

)

,
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which represents

{µC
1,...,κ+1  (µC

1,...,κ+1,µ
C
1,...,κ+1 + 1, . . . , µC

1,...,κ+1 + ω) |

µC
1,...,κ+1 ∈ DC

1,...,κ+1 : ω =
κ+1

min
p=1

(2 · |DC
p | − µC

p )},

and thus the inductive step is proved.
Finally, in lines 20-24 of the algorithm (as stated earlier), for each clock ck in
BfrwdEvol the values that are larger than |DC

k will be replaced by |DC
k , which will

yield a BDD representing (23), i.e., χtimeEvolution. The correctness of these lines
is straightforward. Hence, the correctness of the entire algorithm is proved.

Proposition 3. The time complexity of Algorithm 1 is O(|C| · |DC
∪|

2 ·K), where
K is the time complexity of performing the BDD operations in the loops, which
is proportional to the sizes of the BDDs.

Proof. The algorithm consists of three sequential parts, lines 2-7, lines 8-19 and
lines 20-24. Since the time complexity of lines 8-19 is larger than the other two
parts, it can be deduced that the time complexity of the entire algorithm is equal
to the time complexity of lines 8-19, which is equal to O(|C| · |DC

∪|
2 · K).

The following theorem relates to step 4 of constructing B֌S0
that was de-

scribed earlier.

Theorem 1. The BDD representing ֌S0 is constructed as follows:

B֌S0
= replace

(

∃b́C : (B 7→S0
∧BtimeEvolution) , (b̂C , b́C)

)

.

Proof. Based on the proof of correctness for B 7→S0
in [49] and Lemma 2, the

correctness of the theorem can be directly deduced.

The BDD for֋S0 can be computed in an analogous manner.

7 Case Study: A Production Cell

In this section, the symbolic approach discussed from Section 6 is applied to
a benchmark example: the production cell example in [51]. The benchmark
example is of interest to formal method researchers as it is complicated but still
manageable. In the context of supervisory control, it has been investigated in
[52] based on the State Tree Structure (STS) methodology and then extended
to the timed STS in [31].

The production cell, shown in Fig. 2, consists of six interconnected parts:
feed belt, elevating rotary table, robot, press, deposit belt and traveling crane.
One notable feature is that the robot has two arms to maximize the capacity of
the press, namely to make it possible for the press to be forging while arm1 is
picking up another metal blank. More exposition can be found in [52]. The main
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Figure 2: The Production Cell

object is to prevent collisions among certain parts at the same time guarantee
nonblocking.

Due to the complexity of the example and the page limitation, we only focus
on the modeling of one component: the elevating rotary table. In addition,
there are six specifications expressed as logic formulas to prevent the system
from reaching collision or overflow states. Since there is no time constraint
involved in those specifications, we forgo the discussion about them and let
readers refer to [52].

The table can move vertically and horizontally. Its task is to lift blanks
to the top position and rotates by 50 degrees so that arm1 of the robot can
pick them up. Subsequently, it needs to come back the bottom position with
0 degree to acquire another blank from the feed belt. In our work, we model
the table as two modular TEFAs, Ta H, shown in Fig. 3 and Ta V, modeling
the horizontal and vertical movement respectively. The complete behavior of
the table can be obtained by the synchronous product Ta H ‖ Ta V. As a
comparison, Fig. 4 shows the corresponding ”tick” model. From the modeling
perspective, it can be observed that the TEFA model that embeds the time
information as guards and actions to the transitions, gives a more compact and
comprehensible representation.

Ta SH

!Ta 0

Ta L

A1 mOn

Ta SH

!Ta 50

Ta R

!FB S1Off

Ta H clockH ≥ 2

clockH ≥ 2

clockH ≥ 1

clockH ≥ 1

reset(clockH)

reset(clockH)

reset(clockH)

reset(clockH)

Figure 3: TEFA modeling the horizontal movement of the elevating rotary table.
The description of the alphabet can be found in [52].

The symbolic approach proposed in this paper has been implemented and
integrated in the supervisory control tool Supremica [10] which uses JavaBDD
[53] as the BDD package. The experiment is carried out on a standard personal
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Figure 4: The corresponding ”tick” model of Ta H.

computer (Intel Dual Core CPU @ 1.83GHz and 1.5GB RAM) running Ubuntu
10.10. The result is shown in Table 1.

Table 1: Non-blocking Supervisory Synthesis

State-space Reachable States Supervisor Iterations BDD nodes Computation Time
1012 3.6 × 107 3.7 × 106 100 16102 2.7sec

8 Conclusions and Future Works

In this paper, we presented a method to efficiently compute a minimally restric-
tive nonblocking supervisor for a timed discrete event system. The systems are
modeled by timed extended finite automata, ordinary automata extended with
variables and clocks, and the supervisor synthesis is performed on their corre-
sponding state transition models called timed transition systems. In order to be
able to handle large systems, we perform all computations symbolically on the
TTSs’ corresponding binary decision diagrams. We also proved the correctness
the entire procedure. As a case study, we applied our method to a classical
production cell and computed its nonblocking supervisor

There are some possible directions for future work that we are currently
working on. From an SCT perspective, we still does not handle controllability.
From a modeling point of view, we desire to be able to model invariants, i.e.,
deadlines that must be satisfied, by TEFAs. Finally, we also desire to develop
efficient algorithms for quantitative analysis such as time optimization, beside
the qualitative analysis (supervisor synthesis). The interesting point about op-
timization on TEFAs is the existence of uncontrollable events that may lead to
several optimal solutions.
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and P. Falkman, “Relations identification and visualization for sequence
planning and automation design,” in 2010 IEEE International Conference
on Automation Science and Engineering, Aug. 2010, pp. 841–848.

[8] M. R. Shoaei, B. Lennartson, and S. Miremadi, “Automatic generation of
controllers for collision-free flexible manufacturing systems,” in 6th IEEE
International Conference on Automation Science and Engineering. IEEE,
Aug. 2010, pp. 368–373.

[9] P. Magnusson, N. Sundström, K. Bengtsson, B. Lennartson, P. Falkman,
and M. Fabian, “Planning transport sequences for flexible manufacturing
systems,” in Preprints of the 18th IFAC World Congress, Milano, Italy,
2011, pp. 9494–9499.
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