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Abstract

Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and
developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in
humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through
the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as
biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems
biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with
two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell
agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this
study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and
networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To
our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory
adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal
adjuvants for vaccination against STIs.
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Introduction

Although the vast majority of human pathogens invade the

body and/or establish infections in the mucosal tissues, only a

handful of mucosal vaccines are currently licensed for human use.

Sexually transmitted infections (STIs) are a major public health

concern in both industrialized and developing countries. Despite

numerous efforts, the human papillomavirus vaccines GardasilH
and CervarixH, given by intramuscular injection, represent the

only human vaccines licensed to prevent an STI. Previous

attempts to develop vaccines for systemic immunization against

other sexually transmitted pathogens in humans have failed [1,2].

This failure has prompted a great interest in developing vaccines

and immunomodulators for delivery via mucosal routes, including

the female genital tract, to confer protective mucosal immunity to

sexually transmitted pathogens. While sexually transmitted

pathogens generate pathogen-specific immune responses, local

administration of non-replicating antigens into the vagina

engenders little to no protective mucosal immune response [3,4].

To overcome this hurdle, immunologic adjuvants with the ability

to mount mucosal immune responses with co-administered

vaccine antigens to confer immunity in the female genital tract

are desirable. However, no mucosal adjuvants are currently

available for human use [5,6]. We have previously shown that the

Toll-like receptor 9 (TLR9) agonist CpG ODN and the invariant

natural killer T (NKT) cell agonist a-galactosylceramide (a-

GalCer) can function as potent vaginal adjuvants when adminis-

tered together with herpes simplex virus type 2 (HSV-2)

glycoprotein D, giving rise to comparable protective immunity

against genital HSV-2 infection and disease in mice [7,8]. Rational

design of effective and safe mucosal adjuvants for human use

requires a thorough understanding of the mode of action of

promising candidate adjuvants in addition to identification of

biomarkers that predict their potency.

Previous efforts to comprehend the effect of immunologic

adjuvants on genome-wide gene expression were performed in

isolated immune cells stimulated with CpG ODN in vitro [9,10] or

muscles and spleens isolated from mice after intramuscular or

intra-peritoneal injection with CpG ODN, alum or MF59 [11,12].

Using real time RT-PCR, we have recently shown that CpG
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ODN and a-GalCer induce the gene expression of several

cytokines and chemokines in the murine female genital tract

[13]. However, there is a dearth of information on the impact of

mucosal administration of promising experimental adjuvants on

global gene expression in the female genital tract.

To address this issue, we employed a genome-wide transcript

microarray analysis combined with a systems biology approach.

This approach involved an integrated analysis of transcriptome

data to comprehend the molecular correlates of adjuvant efficacy

in the murine female genital tract after treatment with two classes

of experimental mucosal adjuvants, CpG ODN and a-GalCer.

This approach offers the unique advantage of monitoring the

structure and dynamics of multifaceted cell-to-cell interactions in

vivo.

We were able to show that vaginal administration of CpG ODN

generated a rapid induction in the expression of a large number of

genes in the murine vagina between 4 h and 48 h after adjuvant

delivery. a-GalCer, however, created a delayed and transient gene

expression induction. The expression of 343 genes was commonly

up-regulated in the vagina after vaginal delivery of CpG ODN or

a-GalCer. Integrated bio-functionality analyses identified different

pathways involved in innate immune responses by the two

adjuvants. However, ‘‘inflammatory response’’ was found as the

main bio-function induced by both CpG ODN and a-GalCer, and

IFN-c was identified as the main interactor of the bio-function

‘‘inflammatory response’’ shared by both adjuvants. In addition,

analyses of the kinetics of the gene expression revealed highly

interconnected genes that may play important roles in adjuvant

efficacy.

This study showed that 2 classes of candidate vaginal adjuvants,

CpG ODN and a-GalCer, share molecular signatures that may

contribute to their adjuvant efficacy in the female genital tract. To

our knowledge, this is the first report that identifies genome-wide

molecular correlates for adjuvant efficacy in the mammalian

female genital tract.

Materials and Methods

Animal experiments
The study was approved by the Ethical Committee for Animal

Experimentation in Gothenburg, Swedish Animal Welfare

Authority (djurskyddsmyndigheten) with permit number 267-09.

Eight-week-old female C57Bl/6 mice (Charles River, Germany)

were used for this study. The mice were kept under specific

pathogen-free conditions in IVC cages with unlimited access to

food and water and under constant humidity, temperature and a

12-h dark/light cycle at the Experimental Biomedicine Animal

Facility, Sahlgrenska Academy, at the University of Gothenburg.

Isoflourane (Baxter Medical AB) was used to anesthetize the mice.

To synchronize estrus cycles, all mice were injected subcutane-

ously with 3 mg of Depo-Provera (DP, Pfizer), a long-lasting

progestin, in 150 ml of sterile phosphate-buffered saline (PBS).

CpG ODN 1826 (TCC ATG ACG TTC CTG ACG TT,

hereafter CpG ODN), a 20-mer containing two copies of optimal

mouse CpG ODN motifs with complete phosphorothioate

backbones, was purchased from Operon Biotechnologies GMBH,

Germany and reconstituted in PBS. a-GalCer (Alexis Biochem-

icals) was stored in chloroform methanol 2:1 (vol/vol) and after

evaporation, reconstituted in PBS/Tween 0.5% prior to use. Six

days after DP treatment, mice were intravaginally (i.vag.)

administered with a single dose of either CpG ODN (30 mg) or

a-GalCer (5 mg) in 19 ml. These reagent doses were previously

shown to function as potent vaginal adjuvants. Together with

HSV-2 gD antigen, they induced comparable levels of protective

immunity in the mouse vagina against genital herpes infection

[7,8]. Control groups were given the same volume of the PBS or

PBS/Tween 0.5% reagent diluents i.vag. Whole mouse vaginas

(cut right below the cervix) were aseptically removed at different

time points after vaginal administration of the adjuvants and

subjected to microarray analysis, cytokine assessment of the tissue

extract or flow cytometric analysis, as explained below.

Genome wide expression microarray
Whole mouse vaginas were collected in RNAlaterTM (QIAGEN

GmbH, Hilden, Germany) at 4 h, 24 h and 48 h after vaginal

administration. Total RNA was extracted using the RNeasy mini

kit (QIAGEN) following the manufacturer’s protocol with an extra

DNase elimination step during the last wash using the RNase-Free

DNase kit (Qiagen). RNA quality was assessed with an Agilent

2100 BioAnalyzer (Agilent Technologies, Paolo Alto, CA) and

visualized on a 2% agarose gel. Only good quality RNA samples

were used for further processing. Two hundred nanograms of each

sample were prepared and hybridized to Affymetrix Mouse Gene

1.0 ST arrays according to Affymetrix’s recommended protocol

(GeneChipH Whole Transcript (WT) Sense Target Labeling

Assay, 701880 Rev. 5). Hybridization and analysis were performed

according to the manufacturer’s instructions at the SCIBLU

Genomics core facility (Swegene Centre for Integrative Biology at

Lund University, Sweden).

Data acquisition and analysis of transcriptome data
We first evaluated the intrinsic variability in the transcriptome

data. Briefly, raw intensity files (CEL) were normalized and

processed together, and both Probe Logarithmic Intensity Error

(PLIER) with iterative algorithm [14] and quantile normalization

[15] were chosen to identify the expression signal. The intrinsic

variability of the data was evaluated by singular value decompo-

sition (SVD), and first three left Eigen arrays were illustrated in a

pseudo-three dimensional plot (the third dimension is represented

by the dot size). Significant differences in gene expression between

CpG ODN and PBS and between a-GalCer and PBS/Tween

0.5% at each given time point after treatments, i.e., 4 h, 24 h and

48 h, were evaluated using Student’s t-test. The calculated p-

values were transformed into Q-values by correcting for multiple

testing using methods described by Benjamini and Hochberg [16].

To identify cellular processes and adaptations in response to the

treatments, statistical Q-values were mapped in the context of

Gene Ontology (GO) biological networks and pathways [17–18]

using a reporter algorithm [19,20]. Q-values, log 2 fold changes,

the pathway and GO networks including their associated gene

members used for the integration analysis is provided in Table S1.

P-values#0.001 from the reporter algorithm were used in

hierarchical clustering to determine the pattern of responses, and

the results are illustrated as a heat map of significance values. Gene

co-expression analyses for each treatment were performed on

groups of genes with Q-values of#0.01 for at least one time point.

Co-expression modules were identified by weighted gene co-

expression network analysis (WGCNA) [21]. The results are

shown as a heat map of topological overlap matrices that indicate

co-expression modules. Functional enrichment of each identified

module was further evaluated by modular enrichment analysis

[22]. All analyses were performed using R suite (http://www.R-

project.org) and Cytoscape software [23].

Accession codes
All data are MIAME compliant and were deposited in the

MIAME compliant database National Center for Biotechnology

Information Gene Expression Omnibus (GEO; http://www.ncbi.
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nlm.nih.gov/geo/) and are available through the GEO with

accession number GSE27149.

Gene network analysis
The immune gene network was analyzed with Ingenuity

Pathway Analysis (IPA; IngenuityH Systems Inc., Redwood City,

CA, USA, www.ingenuity.com). IPA maps each gene within a

global molecular network developed from information contained

in the Ingenuity Pathways Knowledge Base. Gene networks are

generated algorithmically based on their connectivity in terms of

expression, activation, transcription, and/or inhibition. An IPA

‘‘network’’ is defined as a graphical representation of the

molecular relationships between genes, represented as nodes,

and biological relationships, represented as connecting lines

between nodes. All connections are supported by published data

stored in the Ingenuity Pathways Knowledge Base and/or

PubMed for mice. IPA ranks all genes based on their connectivity,

using a generalization of the node degree concept, which measures

the number of other genes to which a gene is connected. IPA-

based analysis has been successfully employed to elucidate

relationships and connections between differentially expressed

genes. For example, IPA elucidated the mechanisms of action of

CpG ODN in mouse spleens in addition to the mechanism of

action of the human yellow fever vaccine [11,24].

Assessment of cytokine proteins in the mouse vagina
Vaginas were collected at 4 h and 8 h after vaginal adminis-

tration of adjuvants. Tissue samples were placed immediately in

PBS containing 1.5 mM Pefabloc SC (Charles River Laboratories

Endosafe), 0.1 mg/ml soybean trypsin inhibitor (Sigma), 0.05 M

EDTA and 1% BSA and frozen at 270uC after weighing. Tissue

samples were thawed and permeabilized overnight at 4uC in PBS

with 2% (w/v) saponin (Sigma Aldrich). Samples were centrifuged

for 10 min at 12,000 rpm, and supernatants were collected.

Vaginal extracts were analyzed for IL-1b using a cytokine ELISA

kit (Duoset, R&D kit) according to the manufacturer’s recom-

mendations. TNF-a, IFN-c, IL-10 and IL-6 protein levels were

analyzed using a mouse inflammation CBA kit (BD Biosciences) on

a BD FACSCalibur, according to the manufacturer’s instructions

for BD CBA software. During data acquisition, a gate was set

around polystyrene beads. Data were analyzed using BD CBA

software, and standard curves were made using 4-parameter

logistic curve fitting, from which cytokine concentrations were

calculated. GraphPad Prism 4 software (GraphPad Software,

USA) was used for statistical analysis of protein expression. Results

are shown as the mean+standard error of mean (SEM). Statistical

significance of the variance between multiple groups was

calculated with one-way ANOVAs followed by Tukey’s multiple

comparison test with a 95% confidence interval (*: p#0.05,

**: p#0.01). Data shown are pooled from two separate

experiments.

Flow cytometry analysis of mouse vaginal cells
Local cell recruitment following vaginal administration of CpG

ODN or a-GalCer was examined by flow cytometry. Mouse

vaginas were aseptically removed at 12 h, 48 h and 72 h following

local administration of CpG ODN, a-GalCer or control diluents.

Vaginas (4 mice per group) were pooled in PBS, cut into small

pieces and incubated at 37uC on a magnetic stirrer for 30 min in

an EDTA/DTT solution containing 1 mM EDTA (Merck

KGaA), 1 mM DTT (Sigma-Aldrich), 10 mM HEPES (Sigma-

Aldrich), 1 mg/ml gentamicin sulfate (Sigma-Aldrich), and 5%

FCS (Sigma-Aldrich) in HBSS (Gibco Invitrogen Life Technolo-

gies). Tissues were then filtered through a 250-mm filter and

further disrupted for 2 h on a magnetic stirrer at 37uC in a

Liberase/DNase solution containing 0.6 mg/ml liberase (Roche),

0.1 mg/ml DNase I (Sigma-Aldrich), and 11 mM HEPES (Sigma-

Aldrich) in Iscoves modified medium (Sigma-Aldrich). The

remaining tissues were mashed and filtered through a 70-mm cell

strainer (BD Bioscience) to remove epithelial cells. After this step,

the cell suspensions were washed and counted.

Vaginal single cell suspensions of 100,000 cells/well were used.

Following blocking with CD16/32 for 20 min, vaginal cells were

stained for 20 min at 4uC with the following monoclonal

antibodies: goat a-mouse Gr1-PE (RB6-8C5), MHC-II-FITC

(M5/114.15.2), CD11c-PE (N418) and Cd11b-APC (M1/70)

(eBioscience). Samples were run on a BD FACSCalibur using

Cellquest Pro software (BD Bioscience). Analysis was performed

with FlowJo 7.5 (Tree Star, Inc.). Gates were set using live

leukocytes identified by forward, side scatter (FSC and SSC

respectively) and negative 7AAD (eBioscience) staining.

Results

Experimental design
We devised an experiment to analyze genome-wide transcrip-

tional alterations in mouse vaginas in response to vaginal

administration of the experimental CpG ODN or a-GalCer

adjuvants. Our previous studies showed that these adjuvants are

equally potent in the female mouse genital tract [7,8]. Four

animals from each group were treated i.vag. with a single dose of

either adjuvant or reagent diluents, which were PBS for the CpG

ODN group and PBS/Tween 0.5% for the a-GalCer group.

Then, the vaginas were excised and processed for RNA extraction

at 4 h, 24 h and 48 h post-treatment. Individual RNA samples

were then subjected to a whole mouse genome microarray

expression analysis. Normalized microarray expression data were

evaluated based on responses to the treatments by pair-wise

comparisons between treated and control mice. This evaluation

was done at each time point to avoid time difference effects.

Integrated analyses were employed to identify the signature

processes and pathways with respect to the individual adjuvant

and for comparisons between the two adjuvants.

Primary analysis of transcriptome data
We first performed an SVD of the transcriptome data to assess

the quality of our microarray experiments. Consistent alterations

in gene expression were noted among similarly treated mice when

compared to their respective controls in two independent

experiments. The largest separation of the data at each time

point after treatment was observed for the CpG ODN group when

compared to the a-GalCer group (Fig. 1A). A time-dependent

pattern in the spread of the data was observed for the CpG ODN

group, but only a minor difference in terms of time could be

detected among animals given a-GalCer. Intra-group as well as

inter-group data from the two differently treated control groups

(PBS and PBS/Tween) showed little variation (Figure S1).

A cut-off Q-value of less than 3 on a log scale (Q#0.001) was set

for analysis. As depicted in Figure 1B-C, CpG ODN induced rapid

alteration in the expression of 2,073 genes 4 h after administra-

tion. Alterations in gene expression peaked at 24 h, with 2,690

genes showing differential expression after CpG ODN adminis-

tration, but at 48 h, only 1,366 genes were differentially expressed.

A vast proportion of the significantly altered genes were altered at

multiple time points, with the most shared genes observed at 4 h

and 24 h. The kinetics of alterations in gene expression following

a-GalCer administration showed similar patterns, although the

overall response was weaker. Four hours after a-GalCer

Molecular Signatures of Vaginal Adjuvants
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administration, 179 genes showed significantly altered expression,

followed by 345 genes at 24 h and only 205 genes at 48 h. Several

genes with significant change in expression following a-GalCer

treatment were common between the different time points, with

the most common genes (117) observed at 24 h and 48 h.

Identification of top biological process engaged in
response to adjuvants

To identify the main biological processes targeted by CpG

ODN and a-GalCer, gene annotations were retrieved to identify

GO terms. The level of significance of each GO term was

evaluated using a reporter algorithm [19,20] to map the GO terms

(expressed as Q-values of transcriptome data). Hierarchical

clustering based on significant Q-values of GO terms belonging

to biological processes was performed to cluster response patterns

induced by the two adjuvants (Fig. 2A and Figure S2).

Clustering GO terms for up-regulated genes allowed us to

identify distinct regions with commonly and differentially

expressed GO terms for the two adjuvants, as summarized in

Fig. 2A and Figure S6. Two GO term regions showed high levels

of significance for both CpG ODN and a-GalCer and were chosen

for further analysis (Fig. 2A). GO terms from these common

regions were grouped into broader terms for biological processes

(Fig. 2B and Figure S6). Approximately half of the commonly up-

regulated GO terms were grouped into either ‘‘immune response’’

or ‘‘immune cell activation’’ (Fig. 2B). The majority of genes

within the highly significant GO term groups were up-regulated by

both adjuvants for at least one time point. Common significantly

up-regulated GO terms related to the immune system included

‘‘inflammatory response,’’ ‘‘cytokine production involved in

inflammatory response,’’ ‘‘cytokine-mediated signaling pathway,’’

‘‘response to cytokines stimulus,’’ and ‘‘chemotaxis’’ in addition to

several GO terms related to ’’immune response’’ and ‘‘antigen

processing and presentation’’. In addition, two regions containing

GO terms significantly up-regulated at 4 h and 48 h were

exclusively in the CpG ODN group (Figure S6A–B). At 4 h, the

largest sorted GO term group up-regulated solely in the CpG

ODN group was ‘‘cell signaling,’’ which contains ‘‘cell surface

pattern recognition receptor signaling pathways’’ (Figure S6B).

Importantly, several GO terms up-regulated at 48 h in the CpG

ODN group included negative regulation of ‘‘toll-like receptor

signaling pathway,’’ ‘‘innate immune response,’’ ‘‘chronic inflam-

matory response to antigenic stimulus’’ and ‘‘humoral immune

response’’ (Figure S6A). Two selected regions were identified for a-

GalCer (Figure S6C-D). At 4 h, the majority of GO terms

exclusive to the a-GalCer group belonged to metabolic processes,

while at 24 h, GO terms under ‘‘immune response’’ and ‘‘immune

cell activation’’ were up-regulated (Figure S6C). Several GO terms

exclusively up-regulated at 48 h after a-GalCer treatment involved

T cell responses such as ‘‘T cell co-stimulation,’’ ‘‘positive

regulation of CD4-positive, alpha beta T cell differentiation,’’

and ‘‘regulation of T cell receptor signaling pathway’’ (Figure

S6D).

The majority of the significant GO terms in down-modulated

genes were exclusive to the CpG ODN treated group and included

‘‘metabolic and cell cycle events,’’ ‘‘response to interferon

gamma,’’ ‘‘negative regulation of inflammatory response to

antigenic stimulus’’ and ‘‘positive regulation of myeloid cell

differentiation.’’ a-GalCer induced down-regulation of several

genes in the ‘‘metabolic processes and cell cycle events’’ GO term

group (Figure S2A).

Molecular pathway analysis
To understand the biological role of the differentially regulated

genes, pathway analysis was performed. A number of pathways

involved in innate immune response were identified among genes

up-regulated by both adjuvants (Fig. 3). These pathways included

‘‘innate immune signaling,’’ ‘‘TLR cascades,’’ and ‘‘interleukin-

Figure 1. Transcriptome primary data analysis of mouse vagina following vaginal delivery of adjuvants. Gene expression in the vagina
following CpG ODN (upper panel in red) or a-GalCer (lower panel in blue) delivery was monitored over time by microarray. Four biological replicates
were independently analyzed for each time-point. A Following normalization, the quality of the data in terms of consistency was assessed by singular
value decomposition. CpG ODN-treated mice (red) were compared to PBS controls (orange), and a-GalCer-treated mice (blue) were compared to PBS/
Tween controls (turquoise). Time points are characterized by plot symbols: circle = 4 h, square = 24 h and triangle = 48 h. The figure shows two
dimensions, and a third dimension is illustrated by the size of the plot symbol. B Circular mapping plots showing alterations in gene expression over
time following adjuvant delivery on a chromosomal arrangement of transcripts based on Q-values on a log10 scale. C Venn diagram illustrating the
number of genes that are significantly (Q#0.001) differentially or commonly expressed by the adjuvants when compared to the respective controls at
different time points.
doi:10.1371/journal.pone.0020448.g001
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Figure 2. Biological processes analysis of significantly modulated genes identified in the mouse vagina in response to vaginal
delivery of adjuvants. Up-regulated genes in the vagina at 4 h, 24 h and 48 h following local CpG ODN or a-GalCer administration were annotated
with GO terms for biological processes. GO terms were selected for mapping if they were significant in either of the two adjuvant treated groups for
at least one time point. A Color mapping and clustering of GO terms based on Q-values revealed distinct regions for exclusive and shared significantly
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and chemokine signaling.’’ Interestingly, several pathways in-

volved in activation of classic and alternative complement

pathways were modulated by a-GalCer. Only the ‘‘initial

triggering of complement’’ term was identified in the CpG

ODN group. Another intriguing finding was the activation of

platelet associated pathways in the mouse vagina at 48 h after

adjuvant treatment. Pathways for ‘‘platelet activation’’ and

‘‘platelet aggregation’’ were triggered in the mouse vagina 48 h

after CpG ODN and a-GalCer administration. The majority of

the pathways identified from down-modulated genes were

involved in cell cycle events for both adjuvants and protein

metabolism and lipid metabolism for CpG ODN and a-GalCer,

respectively (Figure S3).

Gene co-expression module analysis
Several studies across a range of experimental conditions

support the notion that coordinated behavior in gene expression

indicates the presence of functional relationships between genes.

Further, several studies confirmed the versatility of co-expression

analysis for inferring gene functions, although co-expression does

not necessarily represent a regulatory relationship [25]. To

pinpoint correlation patterns among significantly altered tran-

scripts in the mouse vagina in response to adjuvants, we examined

co-expression of significantly altered gene transcripts (Q#0.01)

over time. Thus, a network construction program in which the

highest inter-connected genes are clustered into forming modules

was employed [21], and the results are summarized in Figure 4.

Two significant gene co-expression modules containing approxi-

mately 3,600 genes were identified for the CpG ODN group

(Fig. 4A). One significant gene co-expression module (Fig. 4B)

containing approximately 700 genes was identified for the a-

GalCer group. Functional terms were identified for genes within

each module and graphically displayed as integrated networks. In

the CpG ODN modules, the most connected functional groups

include ‘‘regulation of cytokine production,’’ ‘‘regulation of

neutrophil differentiation and chemotaxis,’’ ‘‘platelet activation

triggers,’’ ‘‘regulation of lymphocyte proliferation,’’ ‘‘MHC class I

peptide loading complex’’ and ‘‘proteasome.’’ In the a-GalCer

module, the major connected functional groups were ‘‘regulation

of innate immune response,’’ ‘‘antigen processing and presentation

of endogenous peptide antigen’’ and ‘‘proteasome activator

complex.’’ In addition, a number of smaller independent networks

of functional groups were observed in the a-GalCer module

(Fig. 4B).

IPA revealed ‘‘inflammatory response’’ as the top
biological function of both adjuvants

IPA was used to characterize the pattern of molecular

interactions of significantly up-regulated transcripts (Q#0.01) in

the mouse vagina in response to adjuvants. ‘‘Inflammatory

response’’ was identified as the top biological function at all

studied time points following administration of either CpG ODN

or a-GalCer. Networks illustrating the relationships between

significantly up-regulated genes involved in the inflammatory

response for each time point were generated and are illustrated in

Figure S4. Complicated networks of approximately 200 signifi-

cantly up-regulated genes involved in inflammatory response were

seen in the CpG ODN group at each time point studied. a-GalCer

generated a network of less than 50 genes, with relatively few

relationships at each time point. To acquire an overall picture of

the inter-related network of transcripts involved in inflammation,

genes whose expression was significantly up-regulated in at least

one of the three time points following adjuvant administration

were considered for network analysis, and the results are

summarized in Figure 5. A total of 345 gene transcripts were

assigned to ‘‘inflammatory response.’’ Of these genes, 336 genes

were targeted by CpG ODN, and 83 genes were targeted by a-

GalCer. Approximately one-third of these molecules were

localized to the cytoplasm, while another third were membrane/

receptor bound (Fig. 5). The remaining genes were divided

between the nucleus and extracellular regions, and the majority of

genes were identified as transcriptional regulators or cytokine/

chemokines. Within the inflammatory networks, significantly up-

regulated transcripts with the most interactions with other

significantly up-regulated transcripts, hereafter termed the main

interactors, were identified for the 2 adjuvants. Interestingly, IFN-

c, a critical cytokine gene involved in concerted innate and

adaptive immune responses, was identified as the main interactor

transcript for both adjuvants. Protein expression of IFN-c in the

mouse vagina was confirmed 8 h after vaginal administration of

either CpG ODN or a-GalCer (Fig. 5B). In addition, Tnf, Il-6, Il-

1b, Il-10 and MyD88 were shown to serve as major interactors

exclusively for CpG ODN. Protein expression levels of TNF-a, IL-

1b and IL-6 were only significantly up-regulated in the CpG

ODN-treated group when compared to the control group.

However, no significant increase in IL-10 protein levels could be

detected in any of the adjuvant-treated groups in comparison with

their respective control groups (Fig. 5B). These results indicate that

the two adjuvants can trigger up-regulation of genes involved in

‘‘inflammatory response.’’ This effect occurs, to a more limited

extent, in response to a-GalCer, but Ifng serves as the main

interactor of the inflammatory response network shared by both

adjuvants.

Discussion

This study strived to pinpoint signature molecules, pathways,

and processes involved in innate immune responses in the mouse

vagina following local administration of experimental mucosal

adjuvants. CpG ODN and a-GalCer were selected for this study

based on our previous findings that these adjuvants, when

delivered i.vag. together with a HSV-2 gD protein, elicited

comparable levels of protective immunity in the female genital

tract against genital herpes [7,8]. Complex vaginal tissues were

used for analysis because they offer the unique advantage of

monitoring alterations in gene expression related to multifaceted

cell-to-cell interactions under physiological conditions.

The kinetics and magnitude of the overall alterations in gene

expression differed between the two types of adjuvants. While

CpG ODN induced a quick change in expression of 3,830 genes,

with 1,366 genes remaining elevated at 48 h, the response to a-

GalCer was more modest and transient, with a total of 602 genes

modulated over all studied time points (Fig. 1B and C).

In addition to innate immune responses and inflammatory

responses, a number of biological processes associated with antigen

processing and presentation and T cell activation that are

expressed GO terms. B GO terms from the two regions showing high significance for both adjuvants were jointly grouped into wider bio-functional
terms. Colors range from green to red, indicating increasing Q-value, and the angle of the arrows represents the proportion of genes within that GO
term that are up- or down- regulated. A completely vertical arrow pointing upward indicates 100% of the genes annotated to that specific GO term
were up-regulated, while a horizontal arrow means that 50% of the genes were up-regulated and that 50% of the genes were down-regulated.
doi:10.1371/journal.pone.0020448.g002
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important for initiating an adaptive immune response were

commonly induced by the two adjuvants (Fig. 2B). Inflammatory

response was identified by IPA as the main bio-function shared by

both CpG ODN and a-GalCer (Fig. 5A and Figure S4). These

results extend our previous real time RT-PCR results, in which the

expression of more inflammatory cytokine and chemokine genes

were more robustly expressed in the mouse vagina after local

delivery of CpG ODN when compared to a-GalCer [13]. IPA has

successfully been used to identify relationships and connections

between differentially expressed genes. For example, IPA demon-

strated the mechanisms of action of CpG ODN in mouse spleens

and elucidated the mode of action of the human yellow fever

vaccine [11,24]. Although both adjuvants induced an inflamma-

tory response, the characteristics of the responses differed. CpG

ODN modulated the expression of approximately four times as

many inflammatory genes when compared to a-GalCer (Fig. 5A).

Ifng was the common interactor in the inflammatory responses

elicited by both adjuvants, but Tnf was exclusively induced by

CpG ODN (Fig. 5A). A recent microarray and bioinformatic study

on gene expression identified Tnf and Ifng as the main inducers in

the murine spleen following intra-peritoneal injection of CpG

ODN [11].

Our co-expression studies identified networks of ‘‘regulation of

neutrophils differentiation’’ and ‘‘positive regulation of neutrophil

chemotaxis,’’ which contained highly inter-connected genes

among CpG ODN-induced networks (Fig. 4A). The neutrophil-

attracting ELR-CXC chemokines Cxcl1 and Cxcl2 genes were

also highly up-regulated in the vagina of CpG ODN-treated mice

(Fig. 5A). In line with this observation, our flow cytometry analysis

could detect more than a ten-fold increase in the percentage of

neutrophils (CD11b+, Gr-1+, MHC II) in the vagina 12 h after

CpG ODN administration. Notably, the levels of neutrophil

infiltration in the vagina were reduced at 48 h and returned to the

same basal levels as the controls at 72 h (Figure S5). We also

showed that the percentage of macrophages (MHC II+, CD11b+,

CD11c-) and DCs (MHC II+, CD11b+, CD11c+) increased in the

mouse vagina after administration of CpG ODN or a-GalCer.

These findings are consistent with a previous study that showed

expansion of tissue neutrophils, macrophages and DCs following

mucosal CpG ODN delivery [26]. Whereas triggering an

inflammatory response is considered to be required for adjuvants

to exert their function, excessive inflammation may lead to serious

tissue damage. In fact, our previous results demonstrate that CpG

ODN, but not a-GalCer, causes massive inflammatory cell

infiltration into the mouse vagina and leads to damage to the

mouse vaginal epithelium [13].

We employed an integrated analysis of the transcriptome data

to pinpoint signature pathways and processes that could not have

Figure 4. Co-expression and module network analysis of significantly altered genes significantly in the mouse vagina in response
to local administration of adjuvants. Genes identified as having significantly altered expression, i.e., a Q-value of#0.01 following A CpG ODN or
B a-GalCer administration were analyzed for co-expression. Rows and columns of the heat map represent the same genes. The level of co-expression
(connectivity) between genes is displayed by color intensity in the heat map, ranging from no connectivity in light yellow to a strong connection in
red. High connectivity modules, shown as yellow, green and blue bars, were identified, and rectangular frames show functional terms and inter-
relationships of annotated biological terms of the genes within each module. For a larger version of this figure, refer to Figure S7.
doi:10.1371/journal.pone.0020448.g004

Figure 3. Adjuvant induced molecular pathways in the mouse vagina. Mapping and clustering of CpG ODN- or a-GalCer-induced pathways
in the vagina based on Q-values. Pathways were selected for mapping if they demonstrated significance (Q#0.001) in either of the two adjuvant-
treated groups for at least one time point.
doi:10.1371/journal.pone.0020448.g003
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been otherwise realized by standard clustering methods. This

integrated approach has been recently used to identify the

molecular effects of diet on metabolism in mice [27]. An

intriguing finding that emerged from our integrated analysis was

the co-expression of genes involved in proteasome activation and

MHC class I peptide loading in the vagina of mice given CpG

ODN or a-GalCer. Given the critical importance of proteasome

and MHC class I loading events in the development of cytotoxic

T cell CTL response [28], it is likely that these 2 adjuvants can

trigger a CTL response following vaginal administration.

Interestingly, we could show that female C57Bl/6 mice

immunized i.vag. with the model antigen ovalbumin in combi-

nation with CpG ODN or a-GalCer (same doses of adjuvants

used in the current study) developed a potent ovalbumin

Figure 5. Adjuvant-induced inflammatory response bio-function in the mouse vagina. Following vaginal administration of CpG ODN or a-
GalCer, Ingenuity Pathway Analysis identified ‘‘Inflammatory response’’ as the top bio-function network among significantly up-regulated (Q#0.01)
genes. A A network showing cellular localization and known relationships between genes involved in the inflammatory response. Genes are colored
based on their induction by CpG (red), a-GalCer (blue) or both adjuvants (purple). B Key interactor genes are highlighted in A and were confirmed at
the protein level by ELISA (IL-1b) and CBA (IL-6, TNF, IL-10 and IFN-c). Results shown are pooled from two independent experiments. Bars show
mean+SEM (*: p#0.05, **: p#0.01).
doi:10.1371/journal.pone.0020448.g005
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SIINFEKL peptide-specific in vivo CTL response in lymph nodes

that drained the genital tract (Lindqvist M et al., un-published

results).

Both common and different molecular pathways were triggered

in the vagina in response to adjuvants. Thus, classical and

alternative pathways of complement activation were induced by a-

GalCer. However, the C3 molecule was significantly up-regulated

in the vagina in response to both CpG ODN and a-GalCer. The

involvement of the complement system in modulating T- and B

cell responses by bridging innate and adaptive immunity has been

previously established [29]. Interestingly, the C3 molecule has

been shown to function as a molecular adjuvant to enhance

humoral immune responses to co-administered antigens in mice

[30]. Pathways involved in ‘‘platelet activation and aggregation’’

and ‘‘platelet activation triggers’’ were targeted by CpG ODN and

a-GalCer, respectively. Platelets play an important role in

inflammation in addition to their role in thrombosis [31]. Thus,

through interactions with endothelial cells, platelets induce NF-kB

signaling and enhance neutrophil migration into tissue [32,33].

Notably, up-regulation in expression of genes involved in

inhibitory receptor programmed death 1 (PD-1) signaling, which

has an essential role in controlling excessive inflammatory

response [34], was only observed in the vaginas of a-GalCer

treated mice (Fig. 3). This expression pattern may explain the

more controlled inflammatory response elicited in the vagina in

response to a-GalCer. Another pathway induced only by CpG

ODN was glycolysis. TLR agonists can induce glycolysis and

thereby regulate DC activation [35]. Furthermore, the end

product of glycolysis, lactate, is an important component in

maintaining the acidic pH of the vagina; therefore, it contributes

to the innate defenses of the female genital tract [36].

In conclusion, through employment of integrated analyses of

transcriptome data, we identified signature pathways, processes

and networks shared by two classes of promising mucosal

adjuvants, namely the TLR9 agonist CpG ODN and the iNKT

cell agonist a-GalCer. To our knowledge, this is the first integrated

genome-wide transcriptome analysis on the effect of immuno-

modulatory adjuvants on immunological functions and pathways

in the mammalian female genital tract. These results provide new

insights into understanding the mechanism of action of mucosal

adjuvants in the female genital tract and therefore may inform

rational development of effective vaccine adjuvant and immuno-

therapeutic approaches to counter STIs.

Supporting Information

Figure S1 Singular value decomposition (SVD) analysis
for validation of microarray data. Alterations in gene

expression in the vagina following administration of CpG ODN

(red), a-GalCer (blue) or the PBS (orange) and PBS/Tween

(turquoise) controls were monitored over time by microarray.

Following normalization, the quality of the data in terms of

consistency was assessed by SVD. Time points are characterized

by the following plot symbols: circle = 4 h, square = 24 h and

triangle = 48 h. The figure shows two dimensions, and a third

dimension is illustrated by the size of the plot symbol.

(EPS)

Figure S2 Annotation and expression of biological
processes. Down-regulated genes in the vagina at 4 h, 24 h

and 48 h following CpG ODN or a-GalCer administration were

annotated to GO terms for biological processes. GO terms that

were significant (Q#0.001) for either adjuvant and any time point

were color mapped and clustered based on Q-values.

(EPS)

Figure S3 Down-modulated pathways in the murine
vagina in response to vaginal delivery of adjuvants.
Mapping and clustering of CpG ODN or a-GalCer down-

modulated pathways in the vagina based on Q-values. Pathways

were selected for mapping if they demonstrated significance

(Q#0.001) in either of the two adjuvant-treated groups for at least

one time point.

(EPS)

Figure S4 Inflammatory networks and major interactor
genes identified in the murine vagina in response to
vaginal delivery of adjuvants. Ingenuity Pathway Analysis

identified ‘‘Inflammatory response’’ as a top bio-function following

vaginal administration of CpG ODN or a-GalCer in the mouse

vagina. Networks show relationships between significantly up-

regulated genes (Q#0.01) at each time-point, where full lines are

direct relationships and dotted lines indicate indirect relationships.

Color labels ranging from bright pink to red are representative of

the degree of the increase in fold change expression values

compared to the respective control groups (darker reds represent

higher gene expression levels).

(EPS)

Figure S5 Recruitment of innate immune cells to the
mouse vagina following vaginal administration of adju-
vants. Groups of mice were i.vag. administered a single dose of

CpG ODN, a-GalCer, PBS or PBS/Tween 5%. After 12 h, 48 h

and 72 h following vaginal delivery of CpG ODN or a-GalCer,

vaginas were excised and pooled, and cells were extracted. Cells

were stained for cell markers, and flow cytometry was used to

quantify the percentage of: A and C neutrophils expressing

CD11b+, Gr-1+, and MHC II-; A and E DC-like cells expressing

CD11b+, Gr-1+, and MHC II+; B and D macrophages, identified

as MHC II+, CD11b+, CD11c- cells; and B and F conventional

DCs, identified as being MHC II+, CD11b+, and CD11c+. Gates

were set on live leukocytes, and the plots in the lower rows of A

and B were gated on the double positive cells in the upper row.

Plots shown are representative of 12 h post-treatment from two

independent experiments with pooled samples from 4 mice in each

group and time point. Numbers represent the percentage of the

gated population, while numbers in parenthesis in the lower row

show abundance of live leukocytes.

(EPS)

Figure S6 Grouping of biological processes identified in
the murine vagina in response to local administration of
adjuvants. Broader functional grouping of GO terms for

significantly induced biological processes by CpG ODN and a-

GalCer. Panels A and B display CpG ODN-specific GO terms with

the highest significance at 48 h and 4 h, while C and D are a-GalCer

specific. Colors range from green to red to indicate increasing Q-

value, and the angle of the arrows represents the proportion of genes

within that GO term that are up- or down-regulated. A completely

vertical arrow pointing upward indicates 100% of the genes

annotated with that specific GO term were up-regulated, while a

horizontal arrow means that 50% of the genes were up-regulated.

(EPS)

Figure S7 Co-expression and module network analysis
of significantly altered genes significantly in the mouse
vagina in response to local administration of adjuvants.
Genes identified as having significantly altered expression, i.e., a

Q-value of#0.01 following A CpG ODN orB a-GalCer

administration were analyzed for co-expression. Rows and

columns of the heat map represent the same genes. The level of

cohyphen;expression (connectivity) between genes is displayed by
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color intensity in the heat map, ranging from no connectivity in

light yellow to a strong connection in red. High connectivity

modules, shown as yellow, green and blue bars, were identified,

and rectangular frames show functional terms and interrelation-

ships of annotated biological terms of the genes within each

module. This supporting figure is a larger version of Figure 4.

( )

Table S1 List of Q-values, log 2 fold changes, the
pathway and GO networks including their associated
gene members used for the integration analysis of the
transcriptomic data.
(XLSX)
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