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Umklapp-assisted electron transport oscillations in metal superlattices
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We consider a superlattice of parallel metal tunnel junctions with a spatially nonhomogeneous probability
for electrons to tunnel. In such structures tunneling can be accompanied by electron scattering that conserves
energy but not momentum. In the special case of a tunneling probability that varies periodically with period a

in the longitudinal direction, i.e., perpendicular to the junctions, electron tunneling is accompanied by umklapp
scattering, where the longitudinal momentum changes by a multiple of h/a. We predict that as a result a sequence
of metal-insulator transitions can be induced by an external electric or magnetic field as the field strength is
increased.
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I. INTRODUCTION

To design novel electrical conductors in the form of artifi-
cially structured materials remains one of the most important
tasks of nanoscience. This is because progress in this type of
“quantum engineering” may lead to new and better electronic
devices. Multilayered systems are a widely used material of
this type, with semiconductor superlattices arguably the most
prominent example.1 Work on semiconductor superlattices
with spatially modulated properties on the submicrometer
scale started already 40 years ago, following the pioneering
work of Esaki and Tsu.2 The early focus on semiconductors
was natural, since the de Broglie wavelength of their con-
duction electrons is typically large enough to be comparable
to the period of then feasible superlattices. Qualitatively
new effects based on quantum interference phenomena—still
mostly absent in metal superlattices3—could therefore be
predicted and observed.1

More recent developments have led to engineered conduc-
tors such as quantum dots, nanowires, and other “nanosolids,”
which could be useful components in novel superlattice
architectures.4 Here, we focus on nanowires and note that
many are good metals with a high conductivity due to ballistic
electron transport. However, the de Broglie wavelength of
their electrons is typically much too small compared to the
modulation period a of a nanowire-based superstructure for
quantum interference effects to occur. Nevertheless, we show
below that a prominent interference effect of a different origin
emerges in such structures under the realistic assumption that
kF a � 1, so that the quasiclassical approximation is valid and
hence the electron energy dispersion can be linearized.

The two-dimensional (2D) superlattice structure to be
considered is sketched in Fig. 1. It comprises a set of 1D
wires coupled by electron tunneling in such a way that the
probability for tunneling varies periodically along the direction
of the wires. For this structure we will show that when a
magnetic field is applied perpendicular to the 2D plane—or
when an electric field is applied in the plane and perpendicular

to the wires—a series of metal-insulator transitions occurs with
respect to the interwire hopping transport of electrons as the
strength of the external field increases.

Let us start with a single, isolated wire, where electrons
move freely along the longitudinal direction and occupy a 1D
band of “longitudinal” energies. In the transverse direction,
they are confined to the wire and occupy a single, discrete
“transverse” energy level. Now, disregard for a moment the
longitudinal motion and focus on the transverse electron
dynamics in a set of identical wires, aligned in parallel and
each with the same transverse level occupied. By switching on
a longitudinally uniform probability for electrons to tunnel to
adjacent wires, these previously degenerate energy levels will
form a band, which allows transverse motion between wires.
Hence, in the absence of an external field the superlattice is
effectively a two-dimensional (nonisotropic) metal.

If we now apply an external electric field
−→E perpendicular

to the wires, the transverse energy levels will be shifted out
of resonance so that band motion in the transverse direction
is prevented by Wannier-Stark localization of the electron
states.5 However, if the tunneling probability can be made to
vary periodically along the wires, the situation is qualitatively
modified. This is because (i) the longitudinal and transverse
motions of the electrons can no longer be separated, and
(ii) the longitudinal momentum has to be conserved only
modulo h̄G, where G = 2π/a and a is the modulation period.
Although the total energy is still conserved when electrons
tunnel between wires, energy can now be shifted from the
longitudinal to the transverse motion in umklapp processes that
involve discrete changes of longitudinal momentum. It follows
that the transverse energy-level shifts can be compensated and
band motion restored for a discrete set of electric field values.

The effect of umklapp-assisted resonant tunneling is con-
trolled by the dimensionless parameter φ = �/�0, where
� = Heffab is the flux of an “effective” magnetic field Heff =
(c/vF )|−→E | through a superlattice “unit cell” of area ab (see
Fig. 1) and �0 = hc/e is the magnetic flux quantum. The result
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FIG. 1. Sketch of the considered 2D superlattice, comprising
an array (period b) of parallel nanowires coupled by interwire
electron tunneling with a periodically modulated tunneling strength
(period a).

is the same if instead a magnetic field H is applied, except that
now � = Hab. Resonant tunneling occurs when φ = p/q is
a rational number (p and q are integers) but, as we will discuss
below, band motion is possible only when φ is an integer (i.e.,
for q = 1).

In Fig. 2 we illustrate the effect of umklapp-assisted
resonant tunneling when φ = 1 [Fig. 2(a)] and φ = 1/2
[Fig. 2(b)]. While in case (a) the resonance condition is fulfilled
for neighboring wires, in case (b) every second wire is in
resonance and resonant tunneling occurs via virtual states on
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FIG. 2. Transverse energy levels involved in resonant interwire
tunneling (thick bars) in three neighboring wires (n, n + 1, and
n + 2). The total electron energy is the sum of a longitudinal part
proportional to K (linear spectrum assumed) and a transverse part,
which (for fixed K) is shifted from one wire to the next by an amount
proportional to the dimensionless flux φ of an external electric or
magnetic field. Since K in the periodically modulated superlattice
system of Fig. 1 is conserved only modulo G, energy can be shifted
between the longitudinal and transverse parts in a tunneling event that
conserves the total energy. This is why a sequence of transverse levels
is shown for each wire. For integer values of the flux parameter, as
in (a) where φ = 1, resonant transmissions (arrows) between states
on adjacent wires are energetically allowed. In (b), where φ = 1/2,
resonant transitions occur between states on every second wire. The
two paths through virtual states on the intermediate wire shown
(arrows) contribute with equal amplitudes but opposite signs to to
the total transition amplitude, which when all paths are considered
turns out to be zero due to destructive interference.

the intermediate wire. In this case contributions to the total
tunneling amplitude from a number of different paths through
various virtual states have to be summed up. The contributions
from the two paths identified by arrows in Fig. 2(b) have
equal magnitudes but different signs (since the two virtual
levels have mirror symmetry with respect to the resonant
levels). By generalizing this argument one finds that tunneling
between the resonant levels becomes completely suppressed
by destructive interference in this case (if direct hopping
between next-nearest neighbors is neglected). In the general
case of a rational flux, φ = p/q, the transverse energies are
resonant for wires separated by a distance �y = qb, where b

is the superlattice period. Although it would be quite difficult
to explicitly consider the destructive interference between all
the possible paths for large q, we are nevertheless able to prove
below that resonant hopping is completely suppressed for any
(noninteger) rational value of the parameter φ.

II. SPECTRAL PROPERTIES

We consider an infinite superlattice structure (see Fig. 1)
subject to a constant electric field

−→E = −E ŷ. In the qua-
siclassical limit kF a � 1 large momentum transfers (�p ∼
pF ) may be neglected, which justifies a linearization of
the energy dispersion related to the longitudinal motion (in
each wire). Under this approximation the Hamiltonian is
a sum of left- and right-moving electrons, which can be
considered independently; the corresponding Hamiltonian of
right-moving electrons has the form

Hrm =
∑
n,n′

∫
dx�†

n(x)

{
− E0

(
ia

∂

∂x
+ 2πnφ

)
δn,n′

+V (x)(δn,n′+1 + δn+1,n′ )

}
�n′(x). (1)

Here �
†
n(x) [�n(x)] is the field operator that creates (destroys)

the electron at the point x in the nth wire and obeys the
standard anticommutation relations; V (x) = V (x + a) is the
periodic potential responsible for electron transitions between
the wires and E0 = h̄vF /a. The same Hamiltonian can be
considered in the case of a superlattice subject to a constant
magnetic field

−→
H = Hẑ. In both cases φ is the dimensionless

flux of the relevant external field—the magnetic field H or the
effective magnetic field Heff = (c/vF )E—through a unit cell
of the superlattice structure.

It follows that the spectrum E (measured from the Fermi
level) and the wave functions of the system can be found from
the equation

−E0

(
i

∂

∂x
+ 2πφn

)
ϕn(x) + v(x) [ϕn+1(x) + ϕn−1(x)]

= Eϕn(x), (2)

where we have introduced a dimensionless coordinate by
letting x/a → x, V (ax) → v(x). Hence, v(x) is the periodic
function with unit period.

We will now proceed by solving Eq. (2) exactly for an
arbitrary tunneling amplitude v(x). The first step is to note
that according to Bloch’s theorem ϕn(x) = exp (iKx)un(x),
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where K is the (dimensionless) quasimomentum, −π < K <

π , and un(x) = un(x + 1) is a periodic function. Hence, the
auxiliary function u(n) ≡ un(x = −1/2) obeys the equation
(see Appendix A),

u(p) = ei(ε−K+2πφp)
∑

n

e−iθ(p−n)Jp−n(A)u(n), (3)

where Jn(x) is a Bessel function, ε = E/E0, while A and θ

are defined through the relations

2

E0

∫ 1/2

−1/2
dy v(y)e2πiφy ≡ Aeiξ , θ = π/2 + πφ + ξ. (4)

Equation (3) determines the energy spectrum and the wave
functions in our problem. The structure of the spectrum
strongly depends on the nature of the number φ. If φ has
a noninteger value, the eigenenergies and eigenstates are
labeled by the three quantum numbers K,m, and r; the
quasimomentum K and the (integer) band index m refer to
the longitudinal motion along the x axis while the integer
r is related to the transverse motion in the y direction. The
dispersion law reads

Em,r (K) = E0 (K + 2πm − 2πφr) , m,r = 0, ± 1, . . . .

(5)

The energy-level distribution depends crucially on whether
or not the noninteger φ is a rational number. If it is a rational
number, φ = p/q, one notes that Em,r (K) = Em+Mp, r+Mq(K)
for a given quasimomentum K and any integer M . This results
(for each K) in a set of infinitely degenerate, equidistant
energy levels. If φ is an irrational number, on the other hand,
the energy levels are homogeneously distributed, forming a
discrete spectrum that is said to be everywhere dense.

The eigenfunctions can be found from Eq. (3) rewritten as

um,r (n) = e−iξ (n−r)Jn−r (γ ), γ = A

2 sin πφ
, (6)

and have the same form for both rational and irrational values
of φ. Therefore, for any noninteger φ, all states are localized
near a particular wire r , within a localization radius Rloc

defined as(
Rloc

b

)2

≡
∑

n

n2J 2
n−r (γ ) −

[∑
n

nJ 2
n−r (γ )

]2

= γ 2

2
. (7)

It is remarkable that this result holds even when the flux
parameter φ is a (noninteger) rational number, since in this
case our superlattice structure has translational symmetry in
the y direction. Accordingly, bands of electron states with
infinite extension in this direction should form (see, e.g.,
Ref. 6). However, even though the transverse energy levels
of the parallel wires periodically are in resonance, this does
not happen. The reason is a fully destructive interference
between the probability amplitudes for resonant hopping along
different paths, as illustrated for the special case of φ = 1/2 in
Fig. 2(b).7

In case φ is an integer, not only does the external field
become effectively periodic in the y direction but a band of
extended states also forms [Rloc → ∞, according to Eqs. (6)
and (7)]. Therefore, in addition to the two longitudinal

quantum numbers K,m a continuous quasimomentum K̃,
where −π < K̃ < π , must be used to label the transverse
motion along the y axis. The dispersion law, which is found
from Eq. (3), reads

Em(K, K̃) = E0(K + 2πm + A sin(K̃ + θ )). (8)

Thus, for each pair (K,m) of eigenvalues related to the
longitudinal motion, the transverse energies spread into a
band of width δE = 2AE0. The corresponding eigenstates
are of the plane-wave type, uK̃,m(n) = exp(−iK̃n), and, as
a consequence, are delocalized in both the longitudinal and
transverse directions.

III. ELECTRICAL CONDUCTIVITY

The detailed features of the energy spectrum influence
various physical quantities in essential ways. Here, we con-
sider the linear response of the system to a weak ac external
electrical field

−→E (t) = E0 cos ωt ŷ. The total Hamiltonian of
the system H = Hrm + Hint(t) is the sum of the unperturbed
Hamiltonian Hrm, Eq. (1), and the perturbation Hamiltonian
Hint(t) = H(int) cos ωt , where

H(int) = ebE0

∑
n

n

∫
dx�†

n(x)�n(x). (9)

Absorption of the ac electric field is proportional to the real
part of the conductivity σ (ω), which in linear response theory
has the form

σ (ω) = 1

E0L

∑
α,β

Iα,βH(int)
β,α

f (Eα) − f (Eβ)

Eα − Eβ − h̄(ω − iν)
. (10)

Here ν is a phenomenological relaxation rate, L is the sample
length in the longitudinal direction, f (E) is the Fermi-Dirac
distribution function, and Iα,β is the matrix element of the
current operator

Î = ie

h̄N

∑
n

∫
dxv(x)[�†

n+1(x)�n(x) − H.c.], (11)

where N is the total number of wires in the superlattice.
Standard calculations lead to an electrical conductivity of

the form (see Appendix B)

σ (ω) = ie2

h

ab

(h̄vF )2

∑
n

|vn|2
[

1

2π (n − φ) − t0(ω − iν)

− 1

2π (n − φ) + t0(ω − iν)

]
, (12)

where t0 = a/vF and vn is a Fourier component of the
potential v(x). In the low-frequency limit, ω � ν, the electrical
conductivity can be approximated as

σ (0) = G0
ab

(h̄vF )2

∑
n

|vn|2 t0ν

[2π (n − φ)]2 + (t0ν)2
, (13)

where G0 = 2e2/h is the conductance quantum.
It follows that in this limit the conductivity plotted as a

function of the number of flux quanta per unit cell in the
superlattice, φ, has a set of peaks corresponding to integer
numbers, φ = 0, ± 1, ± 2, . . . (see Fig. 3). The scale of the
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FIG. 3. Schematic behavior of the low-frequency transverse
conductivity σ (0) as a function of magnetic field flux � through
a unit cell of the superlattice structure shown in Fig. 1; �0 = hc/e is
the flux quantum.

fluctuations is determined by the ratio between successive
maxima [σl(0), φ = l] and minima [σl+1/2(0), φ = l + 1/2]
of the conductivity,

σl(0)

σl+1/2(0)
∼ 1

(t0ν)2
, σl+1/2(0) ∼ G0 t0ν (Rloc/b)2 (14)

where Rloc is the localization radius, Eq. (7). Hence, if
t0ν � 1, the field dependence of the absorption as well as the
conductivity has a pronounced peak structure as schematically
shown for the conductivity in Fig. 3.

Our analysis ignores any kind of disorder. It is known that
in low-dimensional systems disorder leads to a localization
of electronic states even in zero external field. In our system
localization will be induced by both disorder and the homo-
geneous external field. The importance of each effect can be
characterized by a localization radius and kinetic phenomena
will obviously be mostly governed by whichever radius is
smaller. It is important that the predicted structure in the
microwave absorption will survive even if disorder dominates
since the localization radius induced by the field varies
periodically with the field strength. However, the intensity
of the peaks will be determined by the disorder-induced
localization radius rather then by the strength |vn|2 of the
umklapp-assisted tunneling processes [Eq. (13)].

Now let us discuss the approximations used in our analysis
and estimate the range of system parameter values and external
field strengths for which it is valid. First, we have used the
Schrödinger equation (2), which has a linear energy spectrum.
For this approximation to be valid the longitudinal momen-
tum fluctuations associated with umklapp-assisted resonant
transmission of electrons between adjacent wires must be
small on the scale of the Fermi momentum pF . The total
momentum change due to such processes is restricted by
the relaxation time τr ∼ 1/ν, which corresponds to coherent
tunneling through Nν ∼ vtτr/b wires, where vt ∼ AbE0/h̄ is
the electron velocity in the transverse direction. Reasonable
estimates for the “tunneling” parameter, A ∼ 10−3, and for the
superlattice periods, a,b ∼ 10 μm, give an upper limit of τr ∼
10 ns for a relaxation time consistent with an approximately
linear spectrum. On the other hand, the criterion that the

electron motion is ballistic gives a lower limit for the relaxation
time of τr ∼ b/vt ∼ 0.1 ns.

An additional requirement for the Schrödinger equation (2)
to be valid must be fulfilled if an external magnetic field is
applied to the system. This is because the cyclotron motion
of the electrons can be neglected [and a term quadratic in H

dropped from Eq. (2)] only if

H � EF

E0

�0

2πabNν

. (15)

For a relaxation time τr ∼ 1 ns this restriction corresponds to
H � 6 T.

The single-particle approach used in our analysis neglects
the Coulomb interaction between electrons. In principle,
however, a Coulomb blockade of interwire tunneling might
prevent the formation of extended electron states in the
transverse direction.8 To avoid such a blockade the electrostatic
charging energy of the wire, Eel ∼ e2/L, should be smaller
than the width δE ∼ AE0 of the transverse energy band. Using
our estimates for the relevant parameters, this corresponds to a
lower limit of order 100 μm for the length L of the nanowires.

Finally we estimate the required strengths of the external
electric and magnetic fields by noting that a dimensionless flux
of φ = 1 corresponds to E ∼ 0.05 V/cm or H ∼ 0.4 T. Such
field strengths can easily be applied in an experiment.

IV. CONCLUSIONS

In conclusion, we have shown that the transport properties
of a superlattice comprising a set of parallel metallic nanowires
coupled by tunneling in such a way that the tunneling
probability varies periodically along the wires differ greatly
from the predictions of linear transport theory. In particular, an
electric-field-induced sequence of metal-insulator transitions
gives rise to highly nonlinear current-voltage characteristics,
while the sensitivity to a magnetic field leads to large-
magnitude oscillations of the magnetoconductance. It is impor-
tant that these phenomena are manifest in comparatively weak
external fields. Hence, in relatively weak fields interference
phenomena give rise to pronounced mesoscopic features in
the transport properties of the studied metallic superlattices.
Such superlattice structures could, e.g., be realized using
arrays of metallic carbon nanotubes9 or nanowires similar to
those that have been proposed for memory10 and mechanical
single-electron transistor11 applications.
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APPENDIX A: SPECTRUM AND WAVE FUNCTION FOR
INTEGER AND NONINTEGER NUMBERS OF FLUX

QUANTA φ

It is convenient to rewrite Eq. (2) in the equivalent form

ϕp(x) = ei(ε+�p)(x−x0)
∑

n

1

2π

∫ π

−π

dk e−i(p−n)k−iG(x,x0;k)ϕn(x0)

(A1)

where � = 2πφ and

G(x,x0; k) = 2

E0

∫ x

x0

dy v(y) cos[k − �(y − x0)]. (A2)

If we search for a solution of Eq. (A1) of the Bloch type,
ϕn(x) = exp (iKx)un(x), then it follows from Eq. (A1) that
the function un(x) satisfies the equation

up(x) = ei(ε−K+�p)
∑

n

1

2π

∫ π

−π

dk e−i(p−n)k−iG(x,k)un(x),

(A3)

where G(x,k) = G(x + 1,x; k). Equation (3) is a consequence
of Eq. (A3).

It follows from Eq. (3) that if u0(n) is a solution with
ε = ε0 then u1(n) = u0(n − 1) is a solution with ε1 = ε0 − �.
Therefore, the spectrum has the form

εr,m = ε0 + 2πm − r�, m,r = 0, ± 1, ± 2, . . . , (A4)

and the corresponding wave function is ur,m(n) = ur (n) =
u0(n − r). As a consequence, one has to determine only one
solution u0(n) (together with the corresponding energy value
ε0).

To proceed, define the function

W (k) =
∑

n

u(n)eın(k+θ), W (k + 2π ) = W (k), (A5)

which, as follows from Eq. (3), satisfies the equation

W (k − �) = ei(ε0−K+A sin k)W (k). (A6)

If we now let W (k) = exp[iw(k)], w(k + 2π ) = w(k), then

w(k − �) − w(k) = ε0 − K + A sin k. (A7)

Integrating the last equation over the period, one gets ε0 = K.
The solution of Eq. (A7),

w(k) = A

2 sin πφ
cos(k + πφ), (A8)

determines the corresponding wave function u0(n), Eq. (6), in
the case of noninteger φ.

The expression for the spectrum in the case of integer φ,
Eq. (8), is a consequence of the well-known identity for Bessel
functions,

eız sin ϕ =
∑

k

Jk(z)eıkϕ. (A9)

APPENDIX B: CALCULATION OF THE ELECTRICAL
CONDUCTIVITY

To calculate the conductivity we take into account that
the commutator between the unperturbed Hamiltonian Hrm

and the perturbation Hamiltonian H(int) is proportional to the

current operator,
[Hrm,H(int)] = ıh̄E0bNÎ . (B1)

As a result, the electrical conductivity, Eq. (10), takes the form

σ (ω) = −ıh̄b
N

L

∑
α, β

|Iα, β |2
Eα − Eβ

f (Eα) − f (Eβ)

Eα − Eβ − h̄(ω − ıν)
.

(B2)

Thus the problem is reduced to a calculation of the matrix
element of the current operator Î ,

Iα,β = ıe

h̄
(hα,β − h∗

β,α), {α,β} = (K,m,r),

hα,β = 1

N

∑
n

∫
dx v(x)[ϕ(α)

n+1(x)]∗ϕ(β)
n (x). (B3)

Using the periodicity of the Bloch functions, the matrix
element hα,β can be expressed as

〈K,m,r| ĥ |K′,m′,r ′〉

= 2πδ(K − K′)
1

N

∑
n

∫ 1/2

−1/2
dxv(x)

[
u

(m,r)
n+1 (x)

]∗
u(m′,r ′)

n (x).

(B4)

Notice that the appearance of the δ function in Eq. (B4) is due
to the infinite size of the system; the squared δ function in the
matrix element of the current operator, Eq. (B2), is transformed
in the usual manner as

[2πδ(K − K′)]2 → L

2πa
δ(K − K′). (B5)

The coordinate dependence of the functions u(m,r)
n (x) is

determined by Eqs. (6), (A1), and (A2) as follows: First, define
the functions χ (x) and ϑ(x) by the relation

2

E0

∫ x

−1/2
dy v(y)ei�y ≡ χ (x)eiϑ(x). (B6)

Then, with the help of Eqs. (6), (A1), and (A2) the expression
for the functions u(m,r)

n (x) takes the form

u(m,r)
p (x) = eı[2πm+�(p−r)](x+1/2)−ı(p−r)[ϑ(x)+θ−ξ ]

×
∑

n

eın[ϑ(x)+θ−2ξ ]Jp−r−n(χ (x))Jn(γ ). (B7)

The last expression can be simplified using a “summation
theorem” for Bessel functions.12 As a result

u(m,r)
p (x) = ei[2πm+�(p−r)](x+1/2)−i(p−r)q1(x)Jp−r (q2(x)),

(B8)

where the definite forms of the functions q1,2(x), which do not
depend on the quantum numbers m and r , are not relevant.
Substituting this expression in Eq. (B4), one gets

〈K,m,r| ĥ |K′,m′,r ′〉

= 2πδ(K − K′) δr−1,r ′
1

N

∫ 1/2

−1/2
dx v(x)e−2ıπ(m−m′)(x+1/2).

(B9)

As a consequence one gets, with the help of Eqs. (B2) and
(B3), for the electrical conductivity the result

σ (ω) = − ıe2

h

ab

(h̄vF )2
[R(φ) + R(−φ)] , (B10)

184202-5



KULINICH, GORELIK, GREDESKUL, SHEKHTER, AND JONSON PHYSICAL REVIEW B 85, 184202 (2012)

where the quantity R(φ) is defined as

R(φ) = 1

2πN

∑
m,m′,r

|vm−m′ |2
m − m′ − φ

×
∫ π

−π

dK f (Er,m(K)) − f (Er−1,m′ (K))
2π (m − m′ − φ) − t0(ω − ıν)

, (B11)

which can be simplified to read

R(φ) = −
∑

n

|vn|2
2π (n − φ) − t0(ω − ıν)

. (B12)

Substituting this expression into Eq. (B10), one gets the result
Eq. (12).
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