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We here present a statistical model of hydrogen bond induced network structures in liquid alcohols.
The model generalises the Andersson-Schulz-Flory chain model to allow also for branched struc-
tures. Two bonding probabilities are assigned to each hydroxyl group oxygen, where the first is the
probability of a lone pair accepting an H-bond and the second is the probability that given this bond
also the second lone pair is bonded. The average hydroxyl group cluster size, cluster size distribution,
and the number of branches and leaves in the tree-like network clusters are directly determined from
these probabilities. The applicability of the model is tested by comparison to cluster size distributions
and bonding probabilities obtained from Monte Carlo simulations of the monoalcohols methanol,
propanol, butanol, and propylene glycol monomethyl ether, the di-alcohol propylene glycol, and the
tri-alcohol glycerol. We find that the tree model can reproduce the cluster size distributions and
the bonding probabilities for both mono- and poly-alcohols, showing the branched nature of the
OH-clusters in these liquids. Thus, this statistical model is a useful tool to better understand the
structure of network forming hydrogen bonded liquids. The model can be applied to experimental
data, allowing the topology of the clusters to be determined from such studies. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3690137]

I. INTRODUCTION

The intermolecular interaction in liquids containing hy-
droxyl (OH–) groups, such as alcohols, are largely influenced
by strongly directional hydrogen (H–) bonds. The strength
of H-bonds in alcohols is about 10 kBT at room temperature,
leading to a transient network of H-bonds in the liquid, with
bonds breaking and reforming on a timescale of τ ∼ 10−11 s.1

The strong influence of H-bonds on the properties of alcohols
becomes evident when they are compared to their alkane ana-
logues; the most obvious difference is perhaps the dramatic
increase in freezing and boiling temperatures. In monoalco-
hols, H-bonds also lead to dynamics not generally observed
in liquids, such as relaxations slower than the structural α re-
laxation, characterised by a Debye-peak observed in dielectric
spectroscopy,2 as well as a relaxation process acting on a time
scale intermediate between the Debye and the α relaxation
processes, as determined by the NMR-spectroscopy;3 these
relaxation processes are believed to be related to the dynam-
ics of the transient H-bonded clusters.

In alcohols, each OH-group can participate in three
H-bonds; the hydrogen can act as an H-bond donor and the
two lone pairs as H-bond acceptors. Since the average number
of bonds per OH-group, or average coordination number, 〈nb〉
is always found to be less than 2 for alcohols,4–8 it is often
assumed that the OH-clusters are chains without significant
branching. However, all finite clusters of size n, without loops,
contain n − 1 bonds, regardless of branching, and thus 2(n
− 1)/n < 2 bonds per OH-group. Even though the coordina-
tion number is a quantitative description of the H-bond net-

a)Electronic mail: per.sillren@chalmers.se.

work, it gives no information on the cluster topology or clus-
ter size distribution.

The structure of alcohols has been studied by exper-
imental techniques, such as vibrational spectroscopy,8–12

neutron-,5, 13 and x-ray diffraction,6, 7, 14 as well as computa-
tional methods,4, 15 but the lack of an established quantitative
model has made it difficult to reconcile the different results
and to connect the structures to thermodynamics and dynam-
ics. A family of models that has been used to describe the
intermolecular structure of water, as well as other network-
forming systems, are the “patchy particle” models,16 wherein
typically hard spherical particles are decorated with attrac-
tive patches of one or several kinds. Together with Wertheim’s
thermodynamic perturbation theory and the related statistical
associating fluid theory (SAFT),17, 18 these models have been
able to reproduce thermodynamic properties of liquid water,19

methanol-water mixtures,20 as well as pure alcohols.21 These
theories use as their starting point assumptions about topology
of the network forming liquid, and the cluster size distribution
and bonding probabilities can be used as input.22 A better un-
derstanding of the OH-group cluster topology is thus needed,
both to interpret experiments and to improve theories.

In this paper, we introduce a simple statistical model
aimed at describing hydrogen bonding in alcohols. Each
OH-oxygen has two lone pairs and thus two possibilities
to bond to neighbouring OH-hydrogens. The probability of
forming a first bond, and the conditional probability of form-
ing a second bond given that a first bond already exists, consti-
tute our two model parameters. In terms of these two bonding
probabilities, we derive the statistics of the resulting tree-like
clusters, including the cluster size distribution, mean clus-
ter size, and the fraction of cluster roots, leaves, and inter-
nal hydroxyl groups (see Figure 1). Conversely, the bonding
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probabilities, and thus the topology of the OH-clusters, can be
directly determined when at least two of the latter properties
are known, either from simulations or from experimental data.
We note that similar models, however, not based on condi-
tional probabilities, have been used in the context of polymer
science.23, 24 The formulation in terms of conditional proba-
bilities is more relevant in the case of alcohols which have
two identical bonding sites with equal a priori probabilities
of forming an H-bond.

To investigate the relevance of the tree model, we apply it
to configurations from Monte Carlo simulations of methanol,
and 1-butanol, as well as a series of mono- and poly-
alcohols, each with a three carbon backbone: 1-propanol,
1,2-propanediol (propylene glycol, PG), 1,2,3-propanetriol
(glycerol), and 1-methoxy-2-propanol (propylene glycol
monomethyl ether, PGME). We find that the tree
model generally produces cluster size distributions and
average cluster sizes consistent with the simulation data.
However, we find clear deviations for the smallest cluster
sizes for the monoalcohols. We attribute these deviations to
entropy effects not accounted for by the model. It is important
to point out that we study networks of OH-groups rather than
clusters of molecules. Thus, for monoalcohols that only have
one OH-group per molecule there is no difference, but for
polyalcohols each molecule has several OH-groups and can
thus partake in several clusters.

Hydrogen bonded systems have previously been analysed
using a simpler model with only one bonding probability per
unit site (OH-group),8 known as the Anderson-Schulz-Flory
(ASF) chain model.25 The rationale for applying a model
that only involves one bonding probability per site to alco-
hols which have two lone pairs per site, is the assumption
that an OH-group with one bonded lone pair has a negligible
probability of a second bonded lone pair. However, we show
that this approximation is generally not sufficient and bonding
also of the second lone pair has to be accounted for to prop-
erly characterise the clusters. In the following, we denote the
nodes, the OH-groups, in the hydrogen bonded network ac-
cording to the terminology of Graener et al.,26 as described in
Fig. 1. A root node, by definition, has one or two bonded lone-
pairs and a non-bonded hydrogen. A leaf is a node that has no
bonded lone-pairs, but a bonded hydrogen (γ ). Internal nodes
have either one or two bonded lone-pairs, and a bonded hydro-
gen (δ). A node that has neither its lone pairs nor its hydrogen
bonded is a monomer (α). We start by outlining the statistics
of the simpler ASF model before we derive the statistics of
the branched tree model.

II. THE ANDERSON-SCHULZ-FLORY MODEL

The Anderson-Schulz-Flory model describes chains of
particles (nodes) that bond to a neighbouring particle with a
probability pb; no branching or loops are accounted for in the
model. The probability is connected to the average number of
bonds per particle through

pb = 〈nb〉
2

. (1)
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FIG. 1. A propanol cluster containing 6 hydrogen bonded OH-groups. The
topology of the OH-cluster, highlighted in the top part, contains one root (β),
two leaves (γ ), and three internal OH-groups (δ).

A cluster of size n has n − 1 bonds, so the average number of
bonds per particle is related to the average cluster size (chain
length) through

〈nb〉 = 2(1 − 1/〈n〉), (2)

so that

〈n〉 = 1

1 − pb

. (3)

The cluster size distribution r(n), called the Anderson-
Schulz-Flory distribution, is simply given by the probability
of forming n − 1 consecutive bonds followed by a chain end:

r(n) = pn−1
b (1 − pb), (4)

which is normalised so that
∑

nr(n) = 1. The mean and vari-
ance of the distribution can be calculated by realising that
nr(n) = pbdr(n)/dpb + pn−1

b which gives

〈n〉 = 1

1 − pb

, (5)

as before, and

〈n2〉 − 〈n〉2 = pb〈n〉2. (6)

We note that for pb � 1, which has been reported to be the
case for alcohols,1, 27–29 this distribution is rather wide, with a
standard deviation approximately equal to the mean.

The cluster size distribution r(n) gives the probability
that a randomly chosen cluster has size n. From r(n) we also
get the often more relevant weighted cluster size distribu-
tion R(n), which gives the probability that a randomly chosen
OH-group belongs to a cluster of size n:

R(n) = nr(n)∑
n nr(n)

= nr(n)

〈n〉 . (7)

To characterise the clusters, we can determine the frac-
tion of roots (including monomers), nα/β , leaves (excluding
monomers), nγ , and internal OH-groups, nδ , where α are
monomers, β are chain ends with non-bonded hydrogens, γ

are chain ends with non-bonded oxygens, and δ represents
internal, doubly bonded OH-groups.26 Since there is exactly
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one α/β per cluster, nα/β is just the total number of clusters
divided by the total number of OH-groups,

nα/β =
∑

n r(n)∑
n nr(n)

= 1

〈n〉 = 1 − pb. (8)

The same is true for nγ , except that we have to subtract the
monomers,

nγ = 1 − r(1)

〈n〉 = pb

〈n〉 = pb − p2
b. (9)

All OH-groups that are not chain ends are internal OH-
groups, so that

nδ = 1 − (1 − pb) − (
pb − p2

b

) = p2
b. (10)

III. A STATISTICAL MODEL OF BRANCHED
HYDROGEN BOND NETWORKS

The ASF chain model does not account for branching,
which makes it incomplete with respect to describing the hy-
drogen bonded networks of alcohols, where each OH-group
can be H-bonded to three neighbouring OH-groups. To ad-
dress this, we generalise the ASF chain model by allowing for
a third H-bond on each OH-group and derive the properties of
such a model.

Instead of the single bonding probability pb, used above,
we define a probability pA = p(OA) for accepting a first
H-bond from a neighbouring molecule and a probability
pB = p(OB|OA) for accepting a second H-bond given that a
first bond already exists. The unconditional probability that a
second bond exists is given by Bayes’ rule,

p(OB) = p(OB |OA)p(OA)

p(OA|OB)
= pApB. (11)

The probability that the hydrogen is bonded, i.e., that the OH-
group is donating a hydrogen bond, is given by the addition
law of probability,

pH = p(OA) + p(OB) − p(OA ∩ OB) = pA + pApB, (12)

where p(OA ∩ OB) = 0 denotes the probability that the hy-
drogen is bonded to both an A-site and a B-site. Setting this
to zero means that we ignore the possibility of bifurcated H-
bonds, i.e., hydrogens bonded to more than one oxygen. For
alcohols, such an approximation is motivated since bifurcated
H-bonds are found to be very rare.1, 5 The average number of
bonds per OH-group 〈nb〉 is

〈nb〉 = pH + pA + pApB

= 2 (pA + pApB), (13)

which clearly, shows that the average coordination number
cannot be greater than 2. In analogy with Eq. (3), the average
cluster size becomes

〈n〉 = 1

1 − pA − pApB

. (14)

The cluster size distribution can be written either in a
closed form or in a recursive formulation. The latter starts

from r(1) = 1 − pA, and for n ≥ 2 we have

r(n) = pA(1 − pB)r(n − 1) + pApB

n−2∑
k=1

r(k)r(n − k − 1).

(15)

The closed form on the other hand is

r(n) =
∞∑

k=0

an,kp
n−k−1
A (1 − pB)n−2k−1pk

B(1 − pA)k+1, (16)

where an,k = 1
n

( n
k+1 )( n−k−1

k
) denotes the number of different

trees with n nodes and k branches, see Appendix for further
details.

The second and third moments, 〈n2〉, and 〈n3〉, of the clus-
ter size distribution, r(n), can be written in terms of the mean,
〈n〉,

〈n2〉 = −〈n〉 + 2(1 − pA)〈n〉3, (17)

〈n3〉 = 〈n〉 − 6(1 − pA)(〈n〉4 + 〈n〉3)

+12(1 − pA)2〈n〉5, (18)

details are again found in the Appendix. The variance is then

〈n2〉 − 〈n〉2 = −〈n〉 − 〈n〉2 + 2(1 − pA)〈n〉3. (19)

As for the chain model, the weighted cluster size distri-
bution, R(n), is defined by Eq. (7). The mean and variance
of R(n), can be written in terms of the moments of r(n). The
mean is

〈n〉R = 〈n2〉
〈n〉 , (20)

and the variance is

〈n2〉R − 〈n〉2
R = 〈n3〉

〈n〉 −
( 〈n2〉

〈n〉
)2

. (21)

To characterise the topology of the clusters, it is useful
to know the fraction of OH-groups that have non-bonded hy-
drogens, i.e., roots of the tree structures or α/β groups, and
the fraction of OH-groups that have a non-bonded oxygen,
i.e., leaves of the tree structures, or γ groups. The fraction of
roots, nα/β , including monomers, is easy to find since there are
exactly 1 root per cluster so that

nα/β =
∑

r(n)∑
nr(n)

= 1

〈n〉 . (22)

The number of leaves nleaves are always one more than the
number of branches, so we would like to calculate

nleaves = 1∑
n nr(n)

∑
n

∑
k

(k + 1)yn,k, (23)

where the shorthand yn,k for the individual terms in the sum
(16) is used. This sum can be evaluated with the help of
Eq. (A10),

nleaves = (1 − pA). (24)
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(a)

(b)

FIG. 2. (a) Two cluster size distributions, r(n), with equal mean, 〈n〉 = 10,
but different branching probabilities, pB = 0 (dashed line), and pB = 1/8 (full
line). (b) The corresponding weighted cluster size distributions, R(n).

By subtracting the fraction of OH-groups which are
monomers, r(1)/〈n〉 = (1 − pA)/〈n〉, we get the fraction of
γ -groups.

nγ = 1

〈n〉 (1 − pA)(〈n〉 − 1). (25)

To illustrate the role of branching in the distribution func-
tions, two distributions are compared in Figure 2. Both distri-
butions have the same mean cluster size 〈n〉 = 10, but different
branching probabilities, pB = 0, and pB = 1/8, respectively.
We note that the distributions for clusters with more branch-
ing have more small and large, but fewer intermediate sized
clusters.

IV. MONTE CARLO SIMULATION DETAILS

To test the relevance of the tree model to H-bond net-
works in alcohols, we perform Monte Carlo (MC) simula-
tions using the optimised potentials for liquid simulations -
all atoms (OPLS-AA) potential model, however, without di-
hedral restraints. The OPLS-AA model has been designed to
reproduce a number of physical properties, such as the den-
sity, radial distribution functions, and heat of vaporisation of
organic liquids.30 Molecular dynamics simulations using the
closely related optimised potentials for liquid simulations -
united atoms (OPLS-UA model have been carried out previ-
ously for some alcohols.1, 31 The difference between OPLS-
AA and OPLS-UA is that in the AA model, all atoms are
treated explicitly, while in the UA model, CHn groups are
treated as one unit to save time.

The OPLS-AA model is based on a pairwise additive po-
tential where the pair interaction between molecules i and j

are given by a Coulomb term plus a Lennard-Jones term

vij (r) =
on i∑
k

on j∑
l

qkql

4πε0rkl

+ 4εkl

[(
σkl

rkl

)12

−
(

σkl

rkl

)6]
,

(26)
where ε0 is the vacuum permittivity, qk is the (partial) charge
on atom k, and rkl is the distance between atoms k and l. The
total potential energy is given by the sum over all molecules

V (rN ) =
∑

i

∑
j>i

vij (r). (27)

The intramolecular energy comes from harmonic poten-
tials with bond lengths and bond angles as their main input:

Vintra = C

2

∑
i

∑
k �=l

(rkl − dkl)2

w2
kl

, (28)

where

w2
kl = dkl√

μkl

= dkl

√
Mk + Ml

MkMl

, (29)

with dkl being the equilibrium distance between atom k and
l, and Mk is the mass of atom k. A good value of C/2, deter-
mined from matching simulation data with diffraction data,32

is 65 J Å
−1

(amu)−1/2.
MC simulations were performed at T = 300 K for

methanol, 1-propanol, PG, glycerol, PGME, and 1-butanol
using the empirical potential structure refinement (EPSR)
software.32 For each liquid, we simulated 500 molecules
under constant NVT (number of molecules, volume, temper-
ature) in boxes with periodic boundary conditions. 10 000
MC-cycles were run to equilibrate the systems, whereafter
cluster size distributions were calculated every five MC-cycle
for another 10 000 cycles; the “clusters” routine provided in
the EPSR software was used. Hydrogen bonds were defined
by requiring the H–O distance to be between 1.4 and 2.4 Å.5

V. RESULTS AND DISCUSSION

An example of a propanol cluster obtained from the
MC simulation is shown in Figure 1. This particular clus-
ter has 6 hydrogen bonded hydroxyl groups, two being
leaves (γ -groups), three internal OH groups (δ-groups),
and one root (β-group). It is clear from inspection of the
MC-configurations that branched clusters are present for all
investigated liquids. It is thus physically relevant to use a
model that allows for branched, tree-like clusters to describe
the topology of the networks.

Cluster size distributions, r(n), and weighted cluster size
distributions, R(n), determined from the analysis of the MC-
configurations are shown in Figure 3. Methanol has the widest
distribution, as well as the largest average cluster size, 〈n〉
= 5.9, while PGME has the narrowest distribution as well
as the smallest average cluster size 〈n〉 = 1.4. This could
be attributed to the fact that methanol has the least steric
hindrance, enabling it to easily form hydrogen bonds, while
PGME’s bulkiness hinders hydrogen bonding. Propanol (〈n〉
= 3.0), PG (〈n〉 = 2.6), glycerol (〈n〉 = 3.1), and butanol (〈n〉
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= 2.89) which are more bulky than methanol but less than
PGME, have average cluster sizes intermediate between those
of methanol and PGME. Generally, we find average cluster
sizes that are in qualitative agreement with previous simula-
tion and experimental work.1, 27, 28, 33

Cluster size distributions for the tree model were calcu-
lated with the requirement that they have the same mean and
variance as the cluster size distributions from the simulations.
This condition, combined with Eqs. (14) and (19), uniquely
determines the bonding probabilities, pA and pB, and the clus-
ter size distributions r(n) and R(n). Table I lists the average
cluster sizes 〈n〉, and the mean cluster sizes, 〈n〉R, that a ran-
domly chosen OH-group belongs to, i.e., the mean of R(n), de-
termined from the MC-configurations together with bonding
probabilities, pA and pB, obtained from the tree model distri-
butions as well as directly from the simulated configurations.

Figure 3 compares the cluster size distributions, r(n),
and the weighted cluster size distributions, R(n), for the tree
model, the chain model, and the MC-simulations, respec-
tively. Logarithmic scales are used to highlight and com-
pare the distributions over the large range of cluster sizes, n,
present. Figure 4 shows the same weighted cluster size dis-
tributions as in Figure 3, but on a linear scale; this highlights

FIG. 3. Left: Cluster size distributions, r(n). Right: Weighted cluster size dis-
tributions, R(n). Solid lines show the distributions of the tree model obtained
by requiring them to have the same mean and variance as the cluster size dis-
tributions from the simulations, which are shown as bars. Dashed lines show
the ASF chain distributions with the same mean as the cluster size distribu-
tions from the simulations.

TABLE I. Average cluster sizes, 〈n〉, average sizes of the cluster a randomly
chosen OH-group belongs to, 〈R(n)〉, and bonding probabilities pA and pB

obtained by requiring the model distributions to have the same mean and
variance as the cluster size distributions from the simulations. The values of
pA and pB calculated directly from the simulations are shown within paren-
theses, and were obtained by counting the fraction of oxygens with one (f1
= pA(1 − pB)) or two (f2 = pApB) H-bonds.

Methanol Propanol PG Glycerol PGME Butanol
〈n〉 5.9 3.0 2.6 3.1 1.4 2.89

〈n〉R 17 5.5 5.7 8.2 2.3 5.12
pA 0.730 0.642 0.529 0.521 0.240 0.633

(0.719) (0.620) (0.553) (0.569) (0.254) (0.611)
pB 0.139 0.042 0.169 0.298 0.121 0.033

(0.135) (0.058) (0.147) (0.239) (0.067) (0.093)

the behaviour for the smallest cluster sizes, which contain the
largest fraction of the molecules. Overall, we find a very good
agreement between the network properties obtained from the
MC-simulation and the results of the tree model, see Figure 3
and Table I. On the contrary, the chain model deviates consid-
erably from the simulations, as clearly seen in Figure 3. It is
interesting to note that the best agreement between the chain
model and the simulations are given by propanol, butanol, and
PGME. Considering the low pB of propanol and butanol (see
Table I) this is not surprising. PGME, on the other hand, has
a pB > 0.1 (Table I). However, also this result can be under-
stood since the difference in the average cluster size 〈n〉 (and
hence the variance, see Eq. (19)) between the chain and the
tree model depends on pB only through the product pApB. A
good agreement between the tree and the chain model is thus
expected whenever the product pApB is small. From the fit to
the simulations, pApB < 0.04 is obtained for propanol, bu-
tanol, and PGME while pApB ∼ 0.1 is obtained for the other
liquids. A chain model is thus expected to work considerably
worse for the latter, just as observed.

The fact that the structure of alcohols are dominated by
OH-bonded clusters is evident from the results of the tree
model by a large probability for the OH-groups forming the
first bond. The exception here is PGME, where pA is rather
low resulting in a large fraction of monomers. The branched
topology of the OH-bonded clusters is revealed by a non-zero
(3%–30%) probability for forming the second bond, pB, for all
liquids, even though it is significantly lower than pA. Compar-
ing the results for propanol, PG, and glycerol, that have iden-
tical carbon backbones and very similar average cluster sizes,
it is found that the branching probability, pB, increases with
increasing number of OH-groups per molecule. This implies
that the OH-clusters in propanol are mainly chains, while in
PG and glycerol they are more branched. The cluster size dis-
tributions for propanol, PG, and glycerol are found to be very
similar when we consider clusters of hydroxyl groups. If we
instead consider clusters of molecules, the cluster sizes will
be larger for PG and glycerol, since they have more than one
OH-group per molecule, which could explain why some prop-
erties, such as viscosity, vary largely between these liquids
even though the OH-clusters are very similar.

By using Eqs. (14) and (A1), we can also use the model
to extract bonding probabilities from previous studies where
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the average cluster size 〈n〉, and the fraction of monomers are
given. In this fashion, we obtain for methanol pA = 0.56 and
pB = 0.1514 (x-ray, reverse Monte Carlo), pA = 0.78 and pB

= 0.01927 (MD), pA = 0.8 and pB = 0.191 (MD), pA = 0.86
and pB = 0.08 (269 and 290 K)28 (MD), and pA = 0.79 and
pB = 0.09 (339 K)28 (MD). Even though the results are not
directly comparable since a variety of definitions of H-bonds
have been used, geometric as well as energetic, it is reassuring
that they all confirm the branched nature of the clusters and
that they are in qualitative agreement with our results concern-
ing the bonding probabilities. We also note that our value for
the average number of H-bonds per glycerol molecule, 3 × (2
− 2/〈n〉) ≈ 4.06, is intermediate between a previous molecu-
lar dynamics study33 (3.25 H-bonds per molecule) and a more
recent neutron diffraction study,13 where the average number
of bonds per molecule was estimated to be 5.68 ± 1.51.

Even though the tree model always reproduces the over-
all shape of the cluster size distributions there is a discrepancy
between the model and the simulated cluster size distributions
for the smallest cluster sizes, as shown in Fig. 4. The deviation
is largest for methanol, where the number of monomers is sig-
nificantly larger than the rest of the distribution suggests, and
the number of clusters with 2–6 OH-groups are fewer com-
pared to the model distribution. A similar, but less marked
observation is made for propanol and butanol. For propanol
and butanol, the tree model describes the distribution well for
cluster sizes of n > 3, while for PG, glycerol, and PGME, the
tree model works well over the whole cluster size range.

FIG. 4. Weighted cluster size distributions, R(n), on a linear scale. Lines
show weighted cluster size distributions obtained from the tree model by re-
quiring them to have the same mean and variance as the cluster size distribu-
tions from the simulations.

The origin of this deviation can be understood through
entropy arguments. When adding one OH-group to a cluster,
the enthalpy, H, of the liquid decreases by an amount corre-
sponding to the energy of the hydrogen bond formed. Also the
entropy, S, of the liquid decreases when the bond is formed,
leading to a corresponding positive term in the free energy
change, 
G = 
H − T
S. While the enthalpy change can be
assumed to be largely independent of the size of the cluster, an
OH-group joins, the entropy change will depend on the clus-
ter size and be smaller for a larger cluster. Thus, since the tree
model does not take these entropic effects into account, and
assumes a cluster size independent change in free energy as
a monomer joins a cluster and thus a cluster size independent
bonding probability, the number of monomers is underesti-
mated and the number of small clusters is overestimated. This
argument could also explain why the discrepancy is smaller
for the polyalcohols; Even if a polyalcohol molecule has one
free OH-group, the other OH-groups of the molecule have a
large probability, 1 − R(1), of being H-bonded, thus decreas-
ing the translational/rotational entropy of the molecule.

To improve the model, one would need to include bond-
ing probabilities that depend on the size of the cluster a par-
ticular OH-group joins, starting on an initial value for small
cluster sizes and saturating at a value of n that depends on the
particular liquid. A comparison of the simulated cluster size
distributions and the tree model distributions for methanol in-
dicates that the bonding probabilities become constant around
n ≈ 7, while for propanol and butanol they become constant
already at n ≈ 4. A model with bonding probabilities de-
pending on the cluster size will certainly better reproduce the
computer simulation data, but will also be significantly more
complex.

VI. CONCLUSION

A simple statistical model starting from the hydrogen
bonding possibilities in alcohols have been described and
compared to Monte Carlo simulation data for five different
alcohols. The model, based on two bonding probabilities for
each OH-group, provides the possibility to form branched,
tree-like, H-bonded clusters.

From a comparison to the structural configurations pro-
duced by MC-simulations, we find that the model can re-
produce the overall cluster size distributions for both mono-
and poly-alcohols. The amount of branching in the clusters
rangers from 3% to 30%. A slight discrepancy between the
tree model and the computer simulation data is found for
small clusters in the monoalcohols, which can be attributed
to entropic effects, implying cluster size dependent bonding
probabilities.

The strength of the tree model lies in the straightforward
application to experimental and computer simulation data.
Knowing two independent quantities about the cluster size
distribution, such as the average cluster size and the num-
ber of monomers, often reported in experiments and simula-
tions, the topology of the OH-bonded clusters is given by the
model. In addition, a possible application is to use the model
in combination with Wertheim’s perturbation theory, recently
reformulated in terms of bonding probabilities, to calculate
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the free energy of the liquid enabling a theoretical study of
the structure dependence of thermodynamic properties such
as heat capacities and compressibility. Another important ap-
plication of the model could be as a tool to analyse vibrational
OH-stretch spectra from Raman or IR measurements, for
which the roots, leaves, and internal OH-group give rise to
different bands.26, 34 The relative areas of these bands should
thus, with aid of the model, enable determination of bonding
probabilities and cluster sizes directly from such experiments.

APPENDIX: DERIVATION OF r(n) AND ITS MOMENTS

In this Appendix, we give a derivation of the cluster size
distribution and its moments. Let r(n) denote the cluster size
distribution, i.e., the probability that a randomly chosen clus-
ter has size n. The probability of having a monomer, r(1), is
just the probability that the chosen OH-group is not bonded at
all, i.e.,

r(1) = 1 − pA. (A1)

The probability for getting a cluster of size two is obtained
by multiplying the probability of the first OH-group having
exactly one H-bond, pA(1 − pB), by the probability that the
second OH-group has no further bonds

r(2) = pA(1 − pB)(1 − pA) = pA(1 − pB)r(1). (A2)

For clusters of size three, there are two options: a linear chain
or a branched v-shaped cluster. The linear chain has probabil-
ity pA(1 − pB)r(2) while the branched cluster has probability
pApBr2(1) so that in total

r(3) = pA(1 − pB)r(2) + pApB[r(1)]2. (A3)

Continuing in this fashion we get, for n ≥ 2,

r(n) = pA(1 − pB)r(n − 1) + pApB

n−2∑
k=1

r(k)r(n − k − 1),

(A4)
where the first term is the probability of a chain and the second
term is the sum over all possible branched clusters of size n.

A closed expression for r(n) can be obtained by noting
that

an,k = 1

n

(
n

k + 1

)(
n − k − 1

k

)
(A5)

is the number of different trees with n nodes and k branches.35

A given tree with n nodes and k branches must have n − k
− 1 nodes with a A-bonds, k nodes with B-bonds, k + 1 nodes
without A-bonds and n − 2k − 1 nodes without B bonds: The
probability of getting a tree with n nodes and k branches is
thus

r(n, k) = an,kp
n−k−1
A (1 − pB)n−2k−1pk

B(1 − pA)k+1. (A6)

The cluster size distribution is then obtained by summing over
the number of branches

r(n) =
∞∑

k=0

r(n, k). (A7)

Differentiating r(n, k) with respect to either pA or pB,

∂rn,k

∂pB

= k

pB

rn,k − n − 2k − 1

(1 − pB)
rn,k, (A8)

and then solving for kr(n, k)

kr(n, k) = pB(1 − pB)

1 + pB

∂r(n, k)

∂pB

+ pB(n − 1)

1 + pB

r(n, k), (A9)

allows us to evaluate∑
n,k

(k + 1)r(n, k) = (1 − pA)〈n〉. (A10)

As we could not find an expression for the moment gen-
erating function, the moments of r(n) were calculated by brute
force starting from Eq. (A7). The sum for the xth moment can
be written as

〈nx〉 = 1 − pA

pA(1 − pB)

∞∑
k=0

(skSx) , (A11)

where

sk = 1

(k + 1)!k!

(
pB(1 − pA)

pA(1 − pB)2

)k

(A12)

is the part of 〈nx〉 independent of n and x and

Sx =
∞∑

n=0

nx−1n!

(n − 2k − 1)!
[pA(1 − pB)]n. (A13)

To our knowledge, there is no easy way to evaluate these
sums directly. Limiting ourselves to the first three moments, a
strategy where the three sums involved are rewritten in terms
of 〈n〉 is used. This is achieved by noting the following rela-
tions between the different Sx:

S2 = 2k + 1 + ζ

ζ (1 − ζ )
S1, (A14)

S3 = 4(k + 1)2 − 4(k + 1) + 6(k + 1)ζ + (1 − ζ )2

ζ (1 − ζ )2
S1,

(A15)

where ζ = pA(1 − pB).
Successive applications of Eqs. (A9) and (A10) makes it

possible to rewrite the sums for higher moments in terms of

〈n〉 = 1 − pA

pA(1 − pB)

∞∑
k=0

(skS1) , (A16)

and thus to express 〈n2〉 and 〈n3〉 in terms of 〈n〉.
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