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Abstract

Continuous-amplitude modulation for wireless optical channels is presented. For bandwidth measured as99% in-band power, its
spectral efficiency is4.57 times that of the same modulation format with discontinuousamplitude for the same power requirement.

I. I NTRODUCTION

In wireless optical and short-haul fiber links, intensity modulation with direct detection (IM/DD) is prevalent [1]–[4]. IM/DD
gives access to only the intensity of light to carry information. As a consequence, conventional quadrature-amplitudemodulation
(QAM) and spectrally-efficient signaling schemes such as continuous phase modulation [5] cannot be used since they also
encode data on the phase of the optical carrier. This makes the design of spectrally-efficient modulation formats for IM/DD
channels challenging.

IM/DD systems, in the absence of optical amplification, can be modeled as additive white Gaussian noise (AWGN) channels
with nonnegative inputs [1, Ch. 5], [2], [6], [7, Sec. 11.2.3]. One approach to increase spectral efficiency is by using nonnegative
M -ary pulse amplitude modulation (M -PAM) [1, Eq. (5.8)]; however,M -PAM is power inefficient forM > 2 [8]. Another
approach is by using subcarrier modulation (SCM), which enables the use ofM -QAM over intensity-modulated channels by
adding a direct current (DC) bias to the electrical signal tomake it nonnegative [1, Ch. 5]. In [6] and our prior work [9]–[11],
SCM formats are optimized to provide a good trade-off between power and spectral efficiency.

In this work, we present a continuous-amplitude modulation(CAM) format for IM/DD systems. In comparison with
previously known modulation formats, the presented modulation format offers better spectral characteristics.

II. SYSTEM MODEL

In IM/DD systems, an electrical nonnegative waveformx(t) modulates a light source such as a laser diode. At the receiver,
the photodetector outputs the electrical signaly(t) which is proportional to the intensity of the incoming light. An equivalent
baseband model for IM/DD when the dominating noise is from the receiver itself, and not from optical amplifiers is

y(t) = x(t) + n(t), (1)

wherex(t) ≥ 0 andn(t) is a zero-mean white Gaussian process with double-sided power spectral densityN0/2, under the
assumption that the channel is nondistorting [1, Ch. 5], [2], [6], [7, Sec. 11.2.3], [12, p. 155]. The baseband channel input is
x(t) =

∑

∞

k=−∞
su(k)(t− kT ), where the symbolsu(k), for k = . . . ,−1, 0, 1, . . ., are independent and uniformly mapped to

a real and nonnegative waveform belonging to the signal setS = {s0(t), s1(t), . . . , sM−1(t)}, wheresi(t) = 0 for t /∈ [0, T ),
i = 0, 1, . . . ,M − 1, andT is the symbol period. The receiver demodulatesy(t) using a correlator or matched filter receiver
with a minimum-distance detector and puts outû(k) as the estimate ofu(k).

III. C ONTINUOUS-AMPLITUDE MODULATION

In our prior work, a 4-level modulation format optimized to maximize the minimum distance between constellation points
for average and peak optical power constraints was presented [11]. This modulation format was denoted asT4 and consists
of the signaling set

T4 = {0,
√

2/T (1 + cos(πt/T )) p(t),
√

2/T (1 − cos(πt/T )) p(t), 2
√

2/T p(t)}, (2)

wherep(t) = rect(t/T ) = 1 for t ∈ [0, T ) and 0 elsewhere. The signals given in the set correspond to the labels s0(t),
s1(t), s2(t), ands3(t). This modulation format is normalized to have unit average optical power. Fig. 1 depicts the baseband
waveforms ofT4 over one symbol slot. One drawback of this signaling set is the sharp transitions that could occur between
consecutive signals, e.g., ifs0(t) is followed bys1(t). This leads to spectral broadening and reduces spectral efficiency.

We propose a new modulation formatT c
4 which is constructed usingT4. The general idea is that at every time interval,

two symbols can be selected fromT4 in order to keep the signal amplitude continuous. Thus, ifs0(t) or s1(t) are sent in
time intervalk, then eithers0(t) or s2(t) can be sent in time intervalk + 1 (see Fig. 2). Further, ifs2(t) or s3(t) are sent in
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Fig. 1. The baseband waveforms ofT4 over one symbol slot.T c
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Fig. 2. A two-state Markov chain describingT c

4
signaling.
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time intervalk, then eithers1(t) or s3(t) can be sent in time intervalk+1. This reduces the modulation rate but can improve
spectral efficiency. The generated signal is continuous, and so is the first derivative, which also helps in producing a rapid
roll-off of the power spectral density. ForT c

4 , the demodulator should use a detector that takes the memoryinto account, e.g.,
a maximum-likelihood sequence detector, rather than making decisions based on one output symbol only.

IV. PERFORMANCEANALYSIS

To evaluate the performance of the above modulation formats, we use the spectral efficiency defined asη = Rb/W [bit/s/Hz],
whereRb = Rs log2 M is the bit rate in bits per second,Rs = 1/T is the symbol rate in symbols per second, andW is the
baseband bandwidth ofx(t). To measure spectral efficiency, we use the fractional powerbandwidthW defined as the width
of the smallest frequency interval carrying a certain fraction of the total power as in [11, Eq. (10)]. Fig. 3 depicts the spectra
Sx(f) of T4 andT c

4 , and the normalized frequenciesfT corresponding to90% and99% in-band power. If the bandwidth is
measured as90% in-band power thenT c

4 hasη = 2.87 bits/s/Hz, which is1.1 times that ofT4 (η = 2.61 bits/s/Hz) for the
same average and peak optical power requirement. Further,η = 2.87 bits/s/Hz is1.53 times that of OOK (η = 1.88 bits/s/Hz)
for a 0.62 dB degradation in average and peak optical power. However, if the bandwidth is measured as 99% in-band power,
T c

4 hasη = 1.58 bits/s/Hz which is4.57 times that ofT4 (η = 0.35 bits/s/Hz) for the same power requirement, and8.25
times that of OOK (η = 0.19 bits/s/Hz) for a0.62 dB degradation in average and peak optical power.

V. CONCLUSIONS

We presented a continuous-amplitude modulation for intensity-modulated channels. This modulation format achieves high
spectral efficiency which makes it suitable for low-cost systems.
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