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Abstract— A linear, invertible transform is defined between two by ||a||. Random variables are denoted by capital lettérs
vectors or matrices as a tool for analyzing the bit-interlezed and random vectors by boldface capital vectdrsThe binary
coded modulation (BICM) mutual information in the wideband set is denoted by Iy {0,1} and the negation of a bit is

regime. The transform coefficients depend on a set of real - .
values, which can be interpreted as probabilities. The trasform denoted by = 1 — b. Expectations are denoted Iy

relates any BICM system with a nonuniform input distributio n
to another BICM system with a uniform distribution. Numeric al Il. SYSTEM MODEL

evidence suggests that the two systems have the same firstier We consider the generic BICM scheme in Fig. 1. The

behavior, which would make possible to analyze nonuniform ¢ itter is. in the simplest inale bi d
BICM systems based on known properties of uniform BICM @nsSmitier is, in the simplest case, a single binary encode
systems. concatenated with an interleaver and a memoryless mapper
®. Multiple encoders and/or interleavers may be needed to

|. INTRODUCTION achieve probabilistic shaping [11]-[14]. The mappkris

In 1992, Zehavi introduced the so-called bit-interleavegefined via the alphabéf = [f,...,2%, |7, where M =

coded modulation (BICM) [1], and it has since then beem” andx;, ¢ RN for i = 0,...,M — 1. Each symbolz;

rapidly adopted in commercial systems such as wireless ggdabeled by then bits that form the base-2 representation
wired broadband access networks, 3G/4G telephony, and dig;, n; 1, ..., n;,,_1] of the integeri. As a consequence of
ital video broadcasting [2]. An achievable rate for BICMhis enumeration convention, the constellatiris labeled by
systems is the so-called BICM mutual information (BICMthe natural binary code. However, this is merely a notationa
MI) defined as the sum of the mutual informations for eaconvention, which does not limit the applicability of the
bit separately [3] [4]. The asymptotic behavior of the BICMresults. An arbitrary binary labeling for the same alphatzet
MI at low signal-to-noise ratio (SNR), i.e., in the widebange analyzed simply by reordering the rows>of

regime, was studied in [5]-[9] as a function of the alphabet Assuming independent, but possibly nonuniformly dis-
and the binary labeling, assuming a uniform input distitiut tributed, bits Cy,...,C,,—; at the input of the mapper
~ Probabilistic shaping for BICM, i.e., varying the probabil (cf. Fig. 1), the probability that the symbat; will be
ties of the bit streams, was first proposed in [10], [11] angansmitted is [9, eq. (30)] [14, eq. (8)] [15, eq. (9)]
developed further in [12]-[14]. Probabilistic shaping ev#

another degree of freedom in the BICM design, which can p_ mflp _ 1
be used to make the discrete input distribution more similar (. H o (i) 1)
to a Gaussian distribution. This is particularly advantage h=0

at low and medium SNR. for i = 0,...,M — 1, where P¢, (u) for v € B is the

In this paper, the first-order asymptotic behavior of therobability of C, = w. Since P, (1) = 1 — P¢, (0), the
BICM-MI is analyzed for BICM systems with nonuniform dis-distributionP is fully specified by the set of bit probabilities
tributions. A linear transform is introduced, which estalwés [FPc,(0),. .., Pc,._,(0)]. A constellation is defined as the pair
an equivalence between an arbitrary nonuniform consietiat [X, P], whereP = [Py, ..., Py;—1]T is theinput distribution.
and another constellation with uniform probabilities, et An important special case is theniform distribution, for
sense that the BICM-MI of the two constellations have thahich P, (0) = 1/2 for k = 0,...,m — 1 andP = U,, =

same first-order asymptote. Since the uniform case has béef\, ..., 1/M]T.
investigated in detail and is now well understood (see ref- Throughout this paper, we assume that P, (0) < 1 for
erences above, in particular [9]), the new transform offers all k = 0,...,m — 1, i.e.,, we assume that all constellation

instrument to generalize such results into the nonunifaasec points are used with a nonzero probability. If that was net th
Notation: Matrices are denoted by block lettels and case, the cardinality of the constellation should be reduce
vectors are row vectors. The Euclidean normaois denoted HenceP; > 0 fori =0,..., M — 1.
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Fig. 1. A generic BICM system, consisting of a transmitter, AWGN channel, and a receiver.

We consider transmissions over a discrete-time memoryless equivalently, rescaling the alphabkt linearly for fixed
additive white Gaussian noise channel. The received vettolinput distribution andVy.
any discrete time instant is Martinezet al. [3] recognized the BICM decoder in Fig. 1
as a mismatched decoder and showed that the BICM-MI in
Y=X+2, @) (6) corresponds to an achievable rate of such a decoder. This

where X is the channel input and is a Gaussian noise with means that reliable transmission using a BICM system at rate
zero mean and variandé, /2 in each dimension. The SNR is . is possible if and only ifR. < I(SNR). Since from (3)

defined as SNR/R. = Ey, /Ny, the inequalityR. < I(SNR) gives
E. E, E, SNR
NR £ = = R.— ~ 2 T oo
SNE No i Ny’ 3) No ~— I(SNR)

where R, is the transmission rate in information bits pefor any SNR. Specifically, for asymptotically low SNR (or

symbol, E, £ E[||X|?] is the average symbol energy, angduivalently asymptotically low rate&;, which means in the

Fy, £ E,/R. is the average bit energy. wideband regime), the average bit energy needed for reliabl
At the receiver, using the channel outfit the demapper transmission is lower-bounded W,/ Ny > o', where

&~ computes metricd;, for the individual coded bits”}, R ) I(SNR)

with & = 0,...,m — 1, usually in the form of logarith- a= Mmoo

mic likelihood ratios. These metrics are then pa_ssed to tEﬁrthermorea

_demterle_aver(s) and decoder(s) to obtain an estimate ef t&\tion system

information bits.

—1 >1log,2 = —1.59 dB, since no communi-
can surpass the Shannon limit (SL).

IV. ADISTRIBUTION-DEPENDENTTRANSFORM

_ _ e In this section, we define a linear transform between vectors
The mutual information (MI) in bits per channel use be- or matrices, which depends on the input distributiouia the
tween the random vectolX andY is bit probabilities[P¢, (0), ..., Pc, ,(0)].
pyx (Y]X) Foralli=0,...,M—1andj=0,...,M — 1, we define
v (Y) ' @) the transf?rm coefficients

where the expectation is taken over the joint pef y (z, y) yis A H {(71)ﬁi,knj,k Pe (0) + (—1)nermo /P (1)}_
and the conditional transition pdf is 7 g :

I11. M UTUAL INFORMATION

Ix(X;Y)2E [log2

k=0
py|x(ylz) = éeXP (M) - s )
|x (Nom)N/2 No : Given p[%babmtief [Pc¥(0),---,PCWLT1(0)], the transform
The conditional MI is defined as the MI betweeX andy .= [%g,--.@y] of a matrix (or vectonX =
conditioned on the value of thith bit at the input of the [z, .., @3] with M = 2™ rows is now defined as
mapper, i.e., M—1

223 wyg/P,  i=0,....M-1 (@8
Py x,0, (Y| X, u) j;o ViV L 8)

, (5
py.c.(Yu) ] © with P; given by (1). For equally likely symbols, i.&,= U,,,,
where the expectation is taken over the conditional joirft pehe new transform becomes the identity operation= X,
Px.v|c, (T, ylu). because thery; ; = M fori = 1,...,M and~;; = 0 for
We are interested in the BICM-MI, defined as [3]-[5], [8]i +# ;.

m—1 Theorem 1. Given probabilities [Pc, (0), ..., Pc,, _,(0)],
I(SNR) £ mIx(X;Y) — Z Z Pe, (u)Ix|c,—u(X;Y). the inverse transfornk = [g,...,z},_,|" of a matrix (or

k=0 ueB vectoNX = [&5,..., &y )7 is

) | Mo

We will analyze the right-hand side of (6) as a function of Tj= ———= Z Ti%Yi g j=0,....M—1. (9)
SNR, which means either varyingy/, for fixed constellation M\/P; i=0

IX\Ck:u(X; Y) é E |:1Og2



Before proving Theorem 1, we need to establish a lemmahere the last equality follows by repeatedly using the iden
Lemma 1: Let f;, fork=0,...,m—1andu € B be any titiesu =1 —u and(—1)" = (—1)7* for u € B. We apply

real numbers. Then Lemma 1 with
M—1m—1 m—1 _ (_1\uln ety e) | 1\ etk
Sr = (1) RTRIR (—1)M0RTRIE Py (0) 4 Po, (1)
Z H fk7ni,k = H(fk,O'i'fk,l)' [ ' )
‘=0 k=0 o o + (=1 [(=1)"* + (=1)"%] \/Pe, (0) Pey, 1}
Proof: A summation ovei = 0,...,2™ —1 is equivalent (== (U™ V Fe(0)Pe, (1)
to m sums overi, € B, wherek = 0,...,m — 1 andi = and obtain
io + 261 + - - + 2™ i, 1. With this notation; ,, = i) and M—1 me1
M—1m—1 m—1 Z Vi lYig = H [(‘Unl’ﬁnj’kpck (0) + Pc, (1)
DR IFIIED SIS I 1 E1
=0 k=0 W0EBILEB iy _1E€B k=0 +[(=1)"F + (=1)"*] \/ Pc, (0) Pe, (1)
— Z Z c. Z f07i0f17i1 e fm_l,”k1 + (71)nl,k+nj,k ((71)nz,k+nj,kpck (0) + PCk(l)
i0EB L EB  im_1€B (1) 4 (1)) P (OB (D)
(1) 4 (1) » » )}
= Z Jo.io Z S Z Jm—1i 1 ) ’ §
i0€B i€B im—1EB [
n(iﬁl H [ ). g 4 1) Pg, (0)
=11 > fraw . |
k=0 irEB + (1+ (=1)rertmar) Po, (1)
n L1 (1) () (1)
This Lemma will now be used in the proof of Theorem 1. -/ Pe, (O)Pck(l)}
Proof of Theorem 1. el
Forj=0,...,M —1, — H (1 + (_1)nz,k+nj,k) , (11)
M—1 M—1 k=0
Z TV, = Z Vi Z iV B where the last step follows becausg, (0) + Pc, (1) = 1.
i= The factors in (11) are eitheX or 0, depending on whether
M-—1 Iv[ 1 i i i
nyk = mjk Of ny # njy for the particular bit positiork.
= Z AV Z Vil Vi (10) ' Thus, the product will be zero unlesdl bits of [ and j are
= = equal, and
The inner sum can be expanded using the definitiof; fin
' M, j=I,
(7) as Z%Ww: L 1=0,....,M—1. (12)
M—1 M—1m—1 0. J#
Z VilYij = Z H [ 1)kmk ) Po, (0) Applying (12) to the inner sum of (10) and dividing both sides
i=0 k=0 by M ,/P;, which by Sec. Il is nonzero, completes the proof.
m,knz,k PCk(l } O
. |:(_1)ﬁi,knj’k Pe, (0) V. NUMERICAL RESULTS
i Fig. 2 illustrates three alphabets: quaternary pulse ampli
+ (=1)"ernan Pck(l)} tude modulation (4-PAM), eight-level star-shaped quatern
M—-1m—1 amplitude modulation (8-QAM), and an eight-level irregula
= Z H [ )Rk (nektns0) P (0) constellation, which achieves the Si1.59 dB [9, Fig. 4 (a)].
i=0 k=0 Each alphabet is shown with two different input distribngo
+ (= 1)k stnikn e /PO (0) P, (1) one uniform and one nonuniform, scaled to the the same av-
ni kA kg /P P erage energy and translated to zero mean. The apparert three
LA c.(0)Fe, (1) dimensional structure in Fig. 2 (c) is an illusion; the alpéia
+ (_1)"i,k(ﬁl,k+ﬁj,k)Pck(1)} consists of eight points in the plane, just like Fig. 2 (b). An
Ml alphabet that admits this particular illusion can be déscdias
_ (71)niyk(nlyk+njyk) a linear projection of a hypercube and achieves the SL at low
= SNR [9, Theorem 12] when used with a uniform distribution.

S The BICM-MI of these constellations are is shown in Fig. 3.
: {(_1) KT Poy (0) 4 Pey (1) For 4-PAM and 8-QAM, probabilistic shaping improves the
n n . BICM-MI considerably over a wide range of SNRs, which is
_ ik _ Lk _ gk
+ (=) (=)™ + (=1)" k] Pe, (O)Pck(l)}’ reasonable since the shaped constellations in Fig. 2 résemb
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Fig. 2. Uniform [X,U,,] (empty circles) and nonuniform (filled circles) constetlas [X,P] based on (a) 4-PAM, (b) star 8-QAM, and (c) an 8-level
irregular alphabet. Lines connect symbols whose codewbate a Hamming distance of one. The symbol probabilitiespavportional to the area of the
corresponding circles. The constellations in (c) creatdlasion of perspective, although they are purely two-disienal just like those in (b).
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Fig. 3. The BICM-MI of the six constellations in Fig. 2 and ttneee transformed constellations in Fig. 4. The AWGN bouhg2) log, (1 + (2/N)SNR)
is included for reference, where the dimensivn= 1 for (a) andN = 2 for (b) and (c). In all cases, the curves fof, P] and [X, U,,| meet at their lower
endpoints, wheréZ;, /Ny = o~ = —0.34 (a), —0.73 (b), and—1.59 dB (c).
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Fig. 4. The transformgX, U,,] of the three constellation&, P] in Fig. 2.



a Gaussian distribution better. This is not the case forhihid t
alphabet, whose BICM-MI is not improved by shaping, at least

not with this particular distribution.

[
The transforms of the three nonuniform constellations are

A. Martinez, A. Guillen i Fabregas, and G. Caire, “Riterleaved coded
modulation revisited: A mismatched decoding perspettiMeEE Trans.
Inf. Theory, vol. 55, no. 6, pp. 2756-2765, June 2009.

] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleavecbded modula-

tion,” |IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927-946, May 1998.

calculated according to (8) and evaluated with a uniform dig® A- Martinez, A. Guillen i Fabregas, and G. Caire, “Biterleaved coded

tribution. Graphically, the transformed constellatiostdwn
in Fig. 4) look quite different from the original consteltats
in Fig. 2. The 4-PAM constellation with equal spacing and
nonuniform probabilities is converted into a 4-PAM constel
lation with unequal spacing and uniform probabilities. The
BICM-MIs of the transformed constellations, which are also
shown in Fig. 3, are different from the original ones in geaher
with one exception: their lower endpoints coincide, intiiog
that theira: parameters are the same. This equivalence betweé&h
constellations and their transforms has been observedéoy e

studied nonuniform constellation.

VI. CONCLUSIONS

The numerical results in Sec. V provide evidence that thg
BICM-MI of two constellations related by the transform have
the same low-SNR behavior, quantified by the parameter
Analytical evidence will be provided in a future publicatio
The significance of this relation lies in the abundance of
existing analytical results for the first-order asymptotif
the BICM-MI with uniform distributions [5]-[9], [16] and t&

absence of similar results for nonuniform distributions.
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