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Abstract— A linear, invertible transform is defined between two
vectors or matrices as a tool for analyzing the bit-interleaved
coded modulation (BICM) mutual information in the wideband
regime. The transform coefficients depend on a set of real
values, which can be interpreted as probabilities. The transform
relates any BICM system with a nonuniform input distributio n
to another BICM system with a uniform distribution. Numeric al
evidence suggests that the two systems have the same first-order
behavior, which would make possible to analyze nonuniform
BICM systems based on known properties of uniform BICM
systems.

I. I NTRODUCTION

In 1992, Zehavi introduced the so-called bit-interleaved
coded modulation (BICM) [1], and it has since then been
rapidly adopted in commercial systems such as wireless and
wired broadband access networks, 3G/4G telephony, and dig-
ital video broadcasting [2]. An achievable rate for BICM
systems is the so-called BICM mutual information (BICM-
MI) defined as the sum of the mutual informations for each
bit separately [3] [4]. The asymptotic behavior of the BICM-
MI at low signal-to-noise ratio (SNR), i.e., in the wideband
regime, was studied in [5]–[9] as a function of the alphabet
and the binary labeling, assuming a uniform input distribution.

Probabilistic shaping for BICM, i.e., varying the probabili-
ties of the bit streams, was first proposed in [10], [11] and
developed further in [12]–[14]. Probabilistic shaping offers
another degree of freedom in the BICM design, which can
be used to make the discrete input distribution more similar
to a Gaussian distribution. This is particularly advantageous
at low and medium SNR.

In this paper, the first-order asymptotic behavior of the
BICM-MI is analyzed for BICM systems with nonuniform dis-
tributions. A linear transform is introduced, which establishes
an equivalence between an arbitrary nonuniform constellation
and another constellation with uniform probabilities, in the
sense that the BICM-MI of the two constellations have the
same first-order asymptote. Since the uniform case has been
investigated in detail and is now well understood (see ref-
erences above, in particular [9]), the new transform offersan
instrument to generalize such results into the nonuniform case.

Notation: Matrices are denoted by block lettersA and
vectors are row vectors. The Euclidean norm ofa is denoted

by ‖a‖. Random variables are denoted by capital lettersA
and random vectors by boldface capital vectorsA. The binary
set is denoted byB , {0, 1} and the negation of a bitb is
denoted bȳb = 1− b. Expectations are denoted byE.

II. SYSTEM MODEL

We consider the generic BICM scheme in Fig. 1. The
transmitter is, in the simplest case, a single binary encoder
concatenated with an interleaver and a memoryless mapper
Φ. Multiple encoders and/or interleavers may be needed to
achieve probabilistic shaping [11]–[14]. The mapperΦ is
defined via the alphabetX , [xT

0 , . . . ,x
T
M−1]

T, whereM =
2m and xi ∈ R

N for i = 0, . . . ,M − 1. Each symbolxi

is labeled by them bits that form the base-2 representation
[ni,0, ni,1, . . . , ni,m−1] of the integeri. As a consequence of
this enumeration convention, the constellationX is labeled by
the natural binary code. However, this is merely a notational
convention, which does not limit the applicability of the
results. An arbitrary binary labeling for the same alphabetcan
be analyzed simply by reordering the rows ofX.

Assuming independent, but possibly nonuniformly dis-
tributed, bits C0, . . . , Cm−1 at the input of the mapper
(cf. Fig. 1), the probability that the symbolxi will be
transmitted is [9, eq. (30)] [14, eq. (8)] [15, eq. (9)]

Pi =

m−1
∏

k=0

PCk
(ni,k) (1)

for i = 0, . . . ,M − 1, where PCk
(u) for u ∈ B is the

probability of Ck = u. SincePCk
(1) = 1 − PCk

(0), the
distributionP is fully specified by the set of bit probabilities
[PC0

(0), . . . , PCm−1
(0)]. A constellation is defined as the pair

[X,P], whereP , [P0, . . . , PM−1]
T is the input distribution.

An important special case is theuniform distribution, for
which PCk

(0) = 1/2 for k = 0, . . . ,m − 1 andP = Um ,

[1/M, . . . , 1/M ]T.
Throughout this paper, we assume that0 < PCk

(0) < 1 for
all k = 0, . . . ,m − 1, i.e., we assume that all constellation
points are used with a nonzero probability. If that was not the
case, the cardinality of the constellation should be reduced.
HencePi > 0 for i = 0, . . . ,M − 1.
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Fig. 1. A generic BICM system, consisting of a transmitter, an AWGN channel, and a receiver.

We consider transmissions over a discrete-time memoryless
additive white Gaussian noise channel. The received vectorat
any discrete time instant is

Y = X +Z, (2)

whereX is the channel input andZ is a Gaussian noise with
zero mean and varianceN0/2 in each dimension. The SNR is
defined as

SNR ,
Es

N0
= Rc

Eb

N0
, (3)

where Rc is the transmission rate in information bits per
symbol,Es , E[‖X‖2] is the average symbol energy, and
Eb , Es/Rc is the average bit energy.

At the receiver, using the channel outputY , the demapper
Φ−1 computes metricsLk for the individual coded bitsCk

with k = 0, . . . ,m − 1, usually in the form of logarith-
mic likelihood ratios. These metrics are then passed to the
deinterleaver(s) and decoder(s) to obtain an estimate of the
information bits.

III. M UTUAL INFORMATION

The mutual information (MI) in bits per channel use be-
tween the random vectorsX andY is

IX(X ;Y ) , E

[

log2
pY |X(Y |X)

pY (Y )

]

, (4)

where the expectation is taken over the joint pdfpX,Y (x,y)
and the conditional transition pdf is

pY |X(y|x) = 1

(N0π)N/2
exp

(

−‖y − x‖2
N0

)

.

The conditional MI is defined as the MI betweenX andY

conditioned on the value of thekth bit at the input of the
mapper, i.e.,

IX|Ck=u(X;Y ) , E

[

log2
pY |X,Ck

(Y |X, u)

pY ,Ck
(Y |u)

]

, (5)

where the expectation is taken over the conditional joint pdf
pX,Y |Ck

(x,y|u).
We are interested in the BICM-MI, defined as [3]–[5], [8]

I(SNR) , mIX (X;Y )−
m−1
∑

k=0

∑

u∈B

PCk
(u)IX|Ck=u(X ;Y ).

(6)

We will analyze the right-hand side of (6) as a function of
SNR, which means either varyingN0 for fixed constellation

or, equivalently, rescaling the alphabetX linearly for fixed
input distribution andN0.

Martinezet al. [3] recognized the BICM decoder in Fig. 1
as a mismatched decoder and showed that the BICM-MI in
(6) corresponds to an achievable rate of such a decoder. This
means that reliable transmission using a BICM system at rate
Rc is possible if and only ifRc ≤ I(SNR). Since from (3)
SNR/Rc = Eb/N0, the inequalityRc ≤ I(SNR) gives

Eb

N0
≥ SNR

I(SNR)

for any SNR. Specifically, for asymptotically low SNR (or
equivalently asymptotically low ratesRc, which means in the
wideband regime), the average bit energy needed for reliable
transmission is lower-bounded byEb/N0 ≥ α−1, where

α , lim
SNR→0+

I(SNR)

SNR
.

Furthermore,α−1 ≥ loge 2 = −1.59 dB, since no communi-
cation system can surpass the Shannon limit (SL).

IV. A D ISTRIBUTION-DEPENDENTTRANSFORM

In this section, we define a linear transform between vectors
or matrices, which depends on the input distributionP via the
bit probabilities[PC0

(0), . . . , PCm−1
(0)].

For all i = 0, . . . ,M − 1 andj = 0, . . . ,M − 1, we define
the transform coefficients

γi,j ,

m−1
∏

k=0

[

(−1)n̄i,knj,k

√

PCk
(0) + (−1)ni,kn̄j,k

√

PCk
(1)

]

.

(7)

Given probabilities [PC0
(0), . . . , PCm−1

(0)], the transform
X̊ = [̊xT

0 , . . . , x̊
T
M−1]

T of a matrix (or vector)X =
[xT

0 , . . . ,x
T
M−1]

T with M = 2m rows is now defined as

x̊i ,

M−1
∑

j=0

xjγi,j
√

Pj , i = 0, . . . ,M − 1, (8)

with Pj given by (1). For equally likely symbols, i.e.,P = Um,
the new transform becomes the identity operationX̊ = X,
because thenγi,i =

√
M for i = 1, . . . ,M and γi,j = 0 for

i 6= j.
Theorem 1: Given probabilities [PC0

(0), . . . , PCm−1
(0)],

the inverse transformX = [xT
0 , . . . ,x

T
M−1]

T of a matrix (or
vector)X̊ = [̊xT

0 , . . . , x̊
T
M−1]

T is

xj =
1

M
√

Pj

M−1
∑

i=0

x̊iγi,j , j = 0, . . . ,M − 1. (9)



Before proving Theorem 1, we need to establish a lemma.
Lemma 1: Let fk,u for k = 0, . . . ,m−1 andu ∈ B be any

real numbers. Then

M−1
∑

i=0

m−1
∏

k=0

fk,ni,k
=

m−1
∏

k=0

(fk,0 + fk,1).

Proof: A summation overi = 0, . . . , 2m−1 is equivalent
to m sums overik ∈ B, wherek = 0, . . . ,m − 1 and i =
i0 +2i1 + · · ·+2m−1im−1. With this notation,ni,k = ik and

M−1
∑

i=0

m−1
∏

k=0

fk,ni,k
=

∑

i0∈B

∑

i1∈B

· · ·
∑

im−1∈B

m−1
∏

k=0

fk,ik

=
∑

i0∈B

∑

i1∈B

· · ·
∑

im−1∈B

f0,i0f1,i1 · · · fm−1,im−1

=
∑

i0∈B

f0,i0
∑

i1∈B

f1,i1 · · ·
∑

im−1∈B

fm−1,im−1

=
m−1
∏

k=0

∑

ik∈B

fk,ik .

This Lemma will now be used in the proof of Theorem 1.
Proof of Theorem 1:

For j = 0, . . . ,M − 1,

M−1
∑

i=0

x̊iγi,j =
M−1
∑

i=0

γi,j

M−1
∑

l=0

xlγi,l
√

Pl

=

M−1
∑

l=0

xl

√

Pl

M−1
∑

i=0

γi,lγi,j . (10)

The inner sum can be expanded using the definition ofγi,j in
(7) as

M−1
∑

i=0

γi,lγi,j =

M−1
∑

i=0

m−1
∏

k=0

[

(−1)n̄i,knl,k

√

PCk
(0)

+ (−1)ni,kn̄l,k

√

PCk
(1)

]

·
[

(−1)n̄i,knj,k

√

PCk
(0)

+ (−1)ni,kn̄j,k

√

PCk
(1)

]

=
M−1
∑

i=0

m−1
∏

k=0

[

(−1)n̄i,k(nl,k+nj,k)PCk
(0)

+ (−1)n̄i,knl,k+ni,kn̄j,k

√

PCk
(0)PCk

(1)

+ (−1)ni,kn̄l,k+n̄i,knj,k

√

PCk
(0)PCk

(1)

+ (−1)ni,k(n̄l,k+n̄j,k)PCk
(1)

]

=

M−1
∑

i=0

m−1
∏

k=0

(−1)ni,k(nl,k+nj,k)

·
[

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

+ (−1)ni,k [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)
]

,

where the last equality follows by repeatedly using the iden-
tities ū = 1 − u and (−1)u = (−1)−u for u ∈ B. We apply
Lemma 1 with

fk,u = (−1)u(nl,k+nj,k)
[

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

+ (−1)u [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)
]

and obtain
M−1
∑

i=0

γi,lγi,j =

m−1
∏

k=0

[

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

+ [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)

+ (−1)nl,k+nj,k

(

(−1)nl,k+nj,kPCk
(0) + PCk

(1)

− [(−1)nl,k + (−1)nj,k ]
√

PCk
(0)PCk

(1)
)]

=

m−1
∏

k=0

[

(

(−1)nl,k+nj,k + 1
)

PCk
(0)

+
(

1 + (−1)nl,k+nj,k
)

PCk
(1)

+ [(−1)nl,k + (−1)nj,k − (−1)nj,k − (−1)nl,k ]

·
√

PCk
(0)PCk

(1)
]

=

m−1
∏

k=0

(

1 + (−1)nl,k+nj,k
)

, (11)

where the last step follows becausePCk
(0) + PCk

(1) = 1.
The factors in (11) are either2 or 0, depending on whether
nl,k = nj,k or nl,k 6= nj,k for the particular bit positionk.
Thus, the product will be zero unlessall bits of l and j are
equal, and

M−1
∑

i=0

γi,lγi,j =

{

M, j = l,

0, j 6= l,
, l = 0, . . . ,M − 1. (12)

Applying (12) to the inner sum of (10) and dividing both sides
by M

√

Pj , which by Sec. II is nonzero, completes the proof.

V. NUMERICAL RESULTS

Fig. 2 illustrates three alphabets: quaternary pulse ampli-
tude modulation (4-PAM), eight-level star-shaped quaternary
amplitude modulation (8-QAM), and an eight-level irregular
constellation, which achieves the SL−1.59 dB [9, Fig. 4 (a)].
Each alphabet is shown with two different input distributions,
one uniform and one nonuniform, scaled to the the same av-
erage energy and translated to zero mean. The apparent three-
dimensional structure in Fig. 2 (c) is an illusion; the alphabet
consists of eight points in the plane, just like Fig. 2 (b). An
alphabet that admits this particular illusion can be described as
a linear projection of a hypercube and achieves the SL at low
SNR [9, Theorem 12] when used with a uniform distribution.

The BICM-MI of these constellations are is shown in Fig. 3.
For 4-PAM and 8-QAM, probabilistic shaping improves the
BICM-MI considerably over a wide range of SNRs, which is
reasonable since the shaped constellations in Fig. 2 resemble
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Fig. 2. Uniform [X,Um] (empty circles) and nonuniform (filled circles) constellations [X,P] based on (a) 4-PAM, (b) star 8-QAM, and (c) an 8-level
irregular alphabet. Lines connect symbols whose codewordshave a Hamming distance of one. The symbol probabilities areproportional to the area of the
corresponding circles. The constellations in (c) create anillusion of perspective, although they are purely two-dimensional just like those in (b).
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Fig. 3. The BICM-MI of the six constellations in Fig. 2 and thethree transformed constellations in Fig. 4. The AWGN bound(N/2) log2 (1 + (2/N)SNR)
is included for reference, where the dimensionN = 1 for (a) andN = 2 for (b) and (c). In all cases, the curves for[X,P] and [X̊,Um] meet at their lower
endpoints, whereEb/N0 = α−1 = −0.34 (a), −0.73 (b), and−1.59 dB (c).
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Fig. 4. The transforms[X̊,Um] of the three constellations[X,P] in Fig. 2.



a Gaussian distribution better. This is not the case for the third
alphabet, whose BICM-MI is not improved by shaping, at least
not with this particular distribution.

The transforms of the three nonuniform constellations are
calculated according to (8) and evaluated with a uniform dis-
tribution. Graphically, the transformed constellations (shown
in Fig. 4) look quite different from the original constellations
in Fig. 2. The 4-PAM constellation with equal spacing and
nonuniform probabilities is converted into a 4-PAM constel-
lation with unequal spacing and uniform probabilities. The
BICM-MIs of the transformed constellations, which are also
shown in Fig. 3, are different from the original ones in general,
with one exception: their lower endpoints coincide, indicating
that theirα parameters are the same. This equivalence between
constellations and their transforms has been observed for every
studied nonuniform constellation.

VI. CONCLUSIONS

The numerical results in Sec. V provide evidence that the
BICM-MI of two constellations related by the transform have
the same low-SNR behavior, quantified by the parameterα.
Analytical evidence will be provided in a future publication.
The significance of this relation lies in the abundance of
existing analytical results for the first-order asymptotics of
the BICM-MI with uniform distributions [5]–[9], [16] and the
absence of similar results for nonuniform distributions.
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[14] A. Guillén i Fàbregas and A. Martinez, “Bit-interleaved coded mod-
ulation with shaping,” inIEEE Information Theory Workshop (ITW),
Dublin, Ireland, Aug.–Sep. 2010.

[15] T. Nguyen and L. Lampe, “Bit-interleaved coded modulation with
mismatched decoding metrics,”IEEE Trans. Commun., vol. 59, no. 2,
pp. 437–447, Feb. 2011.

[16] C. Stierstorfer and R. F. H. Fischer, “(Gray) Mappings for bit-interleaved
coded modulation,” inIEEE Vehicular Technology Conference (VTC-
Spring), Dublin, Ireland, Apr. 2007.


