Yublished in Harmonic Analysis, Proceedings, Cortona 1982. Lecture Notes in Mathematics (Springer) 992 (1983). 73-82.

ON THE MAXIMAL FUNCTION FOR THE MEHLER KERNEL.

Peter Sjögren

1. INTRODUCTION.

Let $Nu = -\Delta u + x \cdot grad u$ be the well-known number operator for the quantum-mechanical harmonic oscillator in \mathbb{R}^n . In $\mathbb{R}^{n+1} = \{(x,t): x \in \mathbb{R}^n, t > 0\}$, the initial-value problem

$$-\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \mathbf{N}\mathbf{u}$$

$$u(x,0) = f(x)$$

is solved by

$$u(x,t) = e^{-tN}f(x) = M_{\lambda}f(x) = \int M_{\lambda}(x,y)f(y)dy$$

with $\lambda = e^{-t}$. Here

$$M_{\lambda}(x,y) = (2\pi(1-\lambda^2))^{-n/2} \exp(-\frac{(y-\lambda x)^2}{2(1-\lambda^2)})$$

is the Lebesgue measure form of the Mehler kernel, and $(e^{-tN})_{t>0}$ is the Hermite semigroup, whose infinitesimal generator is -N. The n-dimensional Hermite polynomials

$$H_{m}(x) = \prod_{i=1}^{n} H_{i}(x_{i}), m = (m_{1}, ..., m_{n}) \in \mathbb{N}^{n}$$

are defined so as to be orthogonal with respect to the canonical Gaussian measure γ , whose density is $\gamma(x) = (2\pi)^{-n/2} \exp(-|x|^2/2)$. In terms of these polynomials, M_{λ} is conveniently expressed:

$$M_{\lambda} \Sigma a_{mm}^{H} = \Sigma \lambda^{|m|} a_{mm}^{H}, |m| = \Sigma m_{i}.$$

The operators M_{λ} are bounded and of norm 1 on L_{γ}^p , $1 \leq p \leq \infty$, and they are self-adjoint on L_{γ}^2 . Further, they are given by a positive kernel and leave constant functions invariant. This makes the maximal theorem from semigroup theory (see Stein [3, III.3]) applicable. Hence, the operator

$$M^*f(x) = \sup_{0 < \lambda < 1} |M_{\lambda}f(x)|$$

is bounded on L_{γ}^{p} , 1 \infty. This works even in infinite dimension.

The one-dimensional case is studied by Muckenhoupt [1], who also shows that M^* maps L^1_{γ} into L^1_{γ} , (i.e., weak L^1_{γ}). We shall prove the same thing in arbitrary finite dimension. Of course, estimates for M^* imply convergence results for $M_{\lambda}f$ as $\lambda \to 1$ (t $\to 0$).

The author is grateful to C. Borell for suggesting this maximal function.

Theorem. For each finite dimension n, the operator M^* is bounded from L_{γ}^{1} into $L_{\gamma}^{1,\infty}$.

We need some notation for the proof. If $D \subset \mathbb{R}^n \times \mathbb{R}^n$, we let $D^x = \{y \colon (x,y) \in D\}$ for $x \in \mathbb{R}^n$, and slightly abusively, $D^y = \{x \colon (x,y) \in D\}$ for $y \in \mathbb{R}^n$. By c > 0 and $C < \infty$, we denote various constants, and $f \sim g$ means $c \le f/g \le C$.

2. First part of the proof.

Notice that

$$\gamma(x) \sim \gamma(y)$$
 for $|x-y| < C/|y|$ (2.1)

when y stays away from 0. We first study M^* when x is near y in this sense, setting for R>0

 $N_R = \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n \colon |x| \le R \text{ and } |y| \le R, \text{ or } |y| \ge R/2 \text{ and } |x-y| \le R/|y|\}.$

Lemma 1. The operator

$$f \rightarrow \sup_{0 \le \lambda \le 1} \left| \int_{N_{\mathbf{p}}^{\mathbf{X}}} M_{\lambda}(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y} \right|$$

 $\underline{\text{maps}} \quad L_{\gamma}^{1} \quad \underline{\text{boundedly into}} \quad L_{\gamma}^{1,\infty}, \quad \underline{\text{for any}} \quad R < \infty.$

<u>Proof.</u> We cover \mathbb{R}^n with B(0,R) together with a sequence of balls of type B(z,CR/|z|), $|z|\geq R/2$, with bounded overlap, so that $(x,y)\in N_R$ implies that one of these balls contains x and y. Hence, it is enough to verify that the restriction of M to a ball of this type is uniformly of weak type (1,1) for γ or, equivalently in view of (2.1), for Lebesgue measure. Because of the bounded overlap, we may then add these estimates and obtain the lemma.

So take $g \ge 0$ in $L^1(B)$ (Lebesgue measure), with B = B(z, CR/|z|). Now if $\sqrt{1-\lambda^2} \ge 1/|z|$ and $x, y \in B$, we can estimate $M_{\lambda}(x,y)$ by $(1-\lambda^2)^{-n/2} \le C|B|^{-1}$, C = C(R,n), where $|\cdot|$ means Lebesgue measure. Hence,

$$\int_{B} M_{\lambda}(x,y)g(y)dy \leq C|B|^{-1} \int_{B} g dy \leq Cg^{*}(x),$$

g* denoting the Hardy-Littlewood maximal function. And if $\sqrt{1-\lambda^2} < 1/|z|$ and $x, y \in B$, then $|y-\lambda x|$ differs from |x-y| by at most $(1-\lambda)|x| < C\sqrt{1-\lambda^2}$. Considering separately the cases when $|y-\lambda x|$ is or is not much larger than $\sqrt{1-\lambda^2}$, we see that

$$\exp\left(-\frac{|y-\lambda x|^2}{2(1-\lambda^2)}\right) \leq C \exp\left(-\frac{c|y-x|^2}{1-\lambda^2}\right)$$

for some c. But then $\int M_{\lambda}(x,y)g(y)dy$ is bounded in B by a convolution of g with a normalized contraction of the integrable radial decreasing kernel $C\exp(-c|.|^2)$ and thus by $Cg^*(x)$, see [4, III.2.2]. Lemma 1 follows since the case of B(0,R) is similar.

Outside $N_{R}^{}$, we shall estimate M^{\star} by the operator defined by the pointwise sup kernel

$$M(x,y) = \sup_{0 \le \lambda \le 1} M_{\lambda}(x,y).$$

Lemma 2. For some R, the operator

$$f \mapsto \int_{\mathbb{R}} M(x,y) f(y) dy$$

$$\mathbb{R}^{n} \setminus N_{\mathbb{R}}^{x}$$

 $\underline{\text{maps}} \ L_{\gamma}^{1} \ \underline{\text{into}} \ L_{\gamma}^{1,\infty} \ .$

This would clearly imply the theorem.

We must estimate M and need some notation. If $y \neq 0$, let $\eta = |y|$ and $e = y/\eta$, and set $x = \xi e + v$ where v is orthogonal to e. By a and A we mean, respectively, $\min(\xi, \eta)$ and $\max(\xi, \eta)$. Of course, $\xi_+ = \max(\xi, 0)$.

Lemma 3. Given a small $\beta > 0$, we may choose R so that the following estimates hold when $(x,y) \notin N_R$ for some c and C depending only on β , R, and n.

- (a) If $|x-y| \ge \beta \max(|x|,|y|)$, then $M(x,y) \le C \min \left(\frac{\xi_+^2/2 \eta_-^2/2}{1,e}\right).$
- (b) If $|x-y| < \beta \max(|x|,|y|)$ and |v| < A-a, then $M(x,y) \le C(\frac{A}{A-a})^{n/2} \exp(-\frac{cA|v|^2}{A-a}) \min(1,e^{\xi^2/2} n^2/2).$
- (c) If $|x-y| < \beta \max(|x|,|y|)$ and $|v| \ge A-a$, then $M(x,y) \le C(A/|v|)^{n/2} \exp(-cA|v|) \min(1,e^{\xi^2/2} \eta^2/2).$

<u>Proof.</u> For x and y fixed, $x \neq y$, it is easily seen that $M_{\lambda}(x,y)$ takes

its sup in $0 < \lambda < 1$ for some λ_{\max} in [0,1[. The derivative $\partial M_{\lambda}(x,y)/\partial \lambda$ equals a positive factor times

$$U = n\lambda(1-\lambda^{2}) + (x - \lambda y) \cdot (y-\lambda x)$$

$$= n\lambda(1-\lambda^{2}) - \lambda |y|^{2} + (\xi-\lambda \eta)(\eta-\lambda \xi) = I - II + P.$$
(2.2)

Here the last product is

$$P = (A-\lambda a)(a-\lambda A) = ((1-\lambda)a + A-a)((1-\lambda)A - (A-a)).$$
 (2.3)

If we replace n and v by 0 here, we see that then $\lambda_{max} = (a/A)_{+}$ and so

$$\sup_{0 \le \lambda \le 1} \exp\left(-\frac{(\eta - \lambda \xi)^2}{2(1 - \lambda^2)}\right) = \min\left(1, e^{\xi_+^2/2 - \eta^2/2}\right). \tag{2.4}$$

In case (a), we conclude from (2.2) that

$$U \le n - (x-y) \cdot (y-x) + (1-\lambda)(|x| + |y|)^{2}$$

$$\le n - |x-y|^{2} + 4(1-\lambda) \max(|x|,|y|)^{2} < 0$$

if R is large and λ close to 1. Hence, λ_{\max} is bounded away from 1, and (2.4) gives the estimate in (a).

In case (b), notice that a > A/2 and $A-a > RA^{-1}/2$ because |x-y| > R/|y|. We see from (2.3) that

$$P \sim (1-\lambda)^2 A^2$$
 for $1-\lambda > 4(A-a)A^{-1}$. (2.5)

So if $1-\lambda$ is much larger than $(A-a)A^{-1}$, then II < P and U > 0. And if $1-\lambda < (A-a)A^{-1}/2$, we see by estimating I and P that

$$U < n(A-a)A^{-1} - (A-a)^2/2 < 0$$

for suitable R. Hence, $1-\lambda_{\max} \sim (A-a)A^{-1}$, and (b) follows from (2.4). To prove (c), we may assume |v| > B(A-a) for any fixed B, since

the contrary case is covered by the method of (b). Notice that $|\mathbf{v}| > R\,A^{-1}/2 \;. \ \ \, \text{It is enough to show that}$

$$1 - \lambda_{\text{max}} \sim |\mathbf{v}| \mathbf{A}^{-1}. \tag{2.6}$$

For $1-\lambda < c|v|A^{-1}$, we have

$$I/II < 2n(1-\lambda)/|v|^2 < cA^{-1}/|v| < 1/2.$$

Since (2.5) remains valid, (2.6) follows if we can exclude $1-\lambda_{max} \leq 4(A-a)A^{-1}$. But $1-\lambda \leq 4(A-a)A^{-1}$ implies $P < C(A-a)^2 < II/2$, and thus U < 0, if B is large enough. This completes the proof of (c) and Lemma 3.

3. Proof of Lemma 2.

We introduce sets forming a disjoint partition of $\mathbb{R}^n \times \mathbb{R}^n \setminus \mathbb{N}_R$ if $\beta>0$ is small. Let $\alpha(x,y)$ denote the angle between non-zero x and y, satisfying $0\leq \alpha(x,y)\leq \pi$, and define

$$\begin{array}{l} D_1 = \{(x,y) \notin N_R \colon \xi \leq n, \text{ and } \alpha(x,y) \geq \pi/4\} \\ \\ D_2 = \{(x,y) \notin N_R \colon \xi > n, \text{ and } |x-y| \geq \beta \max(|x|,|y|)\} \\ \\ D_3 = \{(x,y) \notin N_R \colon |x-y| < \beta \max(|x|,|y|) \text{ or both } \xi \leq n \text{ and } \alpha(x,y) < \pi/4\}. \end{array}$$

Take an $f \ge 0$ in $L_{\gamma}^{\frac{1}{2}}$. We write

$$\int_{\mathbb{R}^{n} \setminus N_{R}^{x}} M(x,y)f(y)dy = \int_{1}^{x} + \int_{2}^{x} + \int_{3}^{x}$$

and estimate these three terms.

The first two terms turn out to be in $L^{\frac{1}{\gamma}}$. For

$$\int \gamma(x)dx \int M(x,y)f(y)dy = \int f(y)dy \int M(x,y)\gamma(x)dx,$$

$$D_1^x$$

and the integral over D_1^y here can be estimated by $C\gamma(y)$ if we use Lemma 3(a) and the fact that $\xi_+^2 \le |x|^2/2$ in D_1^y . As to D_2 , we arrive similarly at the integral

$$\int_{D_2^y} e^{-|x|^2/2} dx \le C \int_{y}^{\infty} e^{-\xi^2/2} d\xi \le C \gamma(y).$$

Before dealing with D_3 , we divide \mathbb{R}^n into disjoint cubes Q_i centered at x_i , i = 1,2,..., such that

c min(1,1/
$$|x_i|$$
) \leq diam $Q_i \leq \min(1, 1/|x_i|)$.

Choose the enumeration so that $|x_i|$ is nondecreasing in i.

If χ denotes the characteristic function of D_3 , we set $M_3 = \chi M$. Since we do not want our kernel to vary too much within a Q_i , we let

$$\overline{M}_3(x,y) = \sup\{M_3(x',y): x \text{ and } x' \text{ in the same } Q_i\}.$$

Notice that the estimates of Lemma 3 hold also for \overline{M}_3 , with new constants. Clearly $\overline{M}_3f(x) = \int \overline{M}_3(x,y)f(y)dy$ dominates $M_3f(x)$ and is constant in each Q_1 .

Given $\alpha>0,$ we shall construct a subset E of $\{x\colon\overline{M}_3f(x)>\alpha\}$ such that

$$\gamma\{\overline{M}_{3}f > \alpha\} \leq C\gamma(E) \tag{3.1}$$

and

$$U(y) \le C \gamma(y)$$
 in \mathbb{R}^n . (3.2)

Here

$$U(y) = \int_{E} \overline{M}_{3}(x,y)\gamma(x)dx.$$

This would yield

$$\gamma \{M_3 f > \alpha\} \leq C \gamma(E) \leq C \alpha^{-1} \int_E \overline{M}_3 f(x) \gamma(x) dx$$

$$= C \alpha^{-1} \int f(y) U(y) dy \leq C \alpha^{-1} \|f\|_{L_{\gamma}^1},$$

and thus complete the proof of Lemma 2. This method is similar to that used for Theorem 1 in [2].

The set E will be constructed as the union of certain Q_j , which will be selected inductively. To obtain (3.2), we must not select too many Q_j close to each other. Therefore, we associate with each Q_j a forbidden region F_j , defined as the union of those Q_i , i > j, which intersect the set $Q_j + K_j$, where K_j is the cone $\{x: \alpha(x,y) \le \pi/4 \text{ for some } y \in Q_j\}$.

The first step of the construction consists of selecting Q_1 if and only if it intersects, and thus is contained in, $\{\overline{M}_3f>\alpha\}$. At the ith step, Q_1 is selected if and only if it intersects $\{\overline{M}_3f>\alpha\}$ and is not forbidden, i.e., it is not contained in F_j for any Q_j already selected. Then E is defined as the union of those Q_i selected.

To varify (3.1), we observe that $\{\overline{M}_3f>\alpha\}$ is contained in the union of those Q_j selected and the corresponding F_j . The Q_j selected of course have total γ -measure $\gamma(E)$. So (3.1) follows if we verify that $\gamma(F_j) \leq C\gamma(Q_j)$. When $|x_j| \leq C$, we have $\gamma(Q_j) \sim \gamma(R^n)$, so assume the contrary. Let H_s be the hyperplane $\{x: x \cdot x_j / |x_j| = x_j + s\}$. Then $F_j \cap H_s$ is empty for $s \leq -C/|x_j|$, and has (n-1)-dimensional Lebesgue measure at most C max $(s, 1/|x_j|)^{n-1}$ for $s > -C/|x_j|$. On

$$\gamma(x) \le e^{-(s+|x_j|)^2/2} \le e^{-|x_j|^2/2 - |x_j|s}$$

Hence,

$$\gamma(F_{j}) \le C \int_{-C/|x_{j}|}^{\infty} \max(s, 1/|x_{j}|)^{n-1} e^{-|x_{j}|^{2}/2 - |x_{j}|s} ds$$

$$\leq C|\mathbf{x}_{j}|^{-n} e^{-|\mathbf{x}_{j}|^{2}/2} \sim \gamma(Q_{j}),$$

and (3.1) follows.

To show (3.2), we fix y and may assume $|y| \ge R/2$ since $D_3^y = \emptyset$ and U(y) = 0 otherwise. Let S_y denote the support of $\overline{M}_3(\cdot,y)$, which is the union of those Q_j intersecting D_3^y . For $v \perp e = y/\eta$, $\eta = |y|$, we let $\ell = \ell_y$ denote the line $\{s \in v: s \in \mathbb{R}\}$, and set

$$I(v) = \int_{\mathbf{v}} \overline{M}_{3}(s e+v,y)\gamma(s e+v)ds$$

so that

$$U(y) = \int I(v)dv, \qquad (3.3)$$

the integral taken over $e^{i} = \mathbb{R}^{n-1}$.

Assume z belongs to some $Q_j \subset E \cap S_y$. Then Q_j intersects D_3^y and so e is in K_j . Therefore, F_j includes any Q_i , i > j, intersecting the ray $\{z + te: t > 0\}$. It follows that $\ell_v \cap E \cap S_y$ is contained in an interval $J = \{se+v: \xi \leq s \leq \xi + C \min(1,1/|\xi|)$. The point $x = \xi e+v$ is in or near D_3^y . We shall estimate I(v) by means of Lemma 3, and consider the same cases (a), (b), (c) as in this lemma. Let a and A be as there. Notice that the estimates for M(x,y) of Lemma 3 still hold of we replace x by any point in J.

(a) Lemma 3(a) gives

$$I(v) \le C \min(1, 1/|\xi|)e^{\xi_{+}^{2}/2 - \eta^{2}/2 - |x|^{2}/2} \le Ce^{-\eta^{2}/2 - |v|^{2}/2}.$$
 (3.4)

(b) Here $A \sim a \sim \eta$ and $A-a > 1/\eta$. Lemma 3(b) gives

$$I(v) \leq C\eta^{-1} \left(\frac{A}{A-a}\right)^{n/2} \exp\left(-\frac{c A}{A-a} |v|^2\right) e^{-|x|^2/2} \min\left(f, e^{\xi^2/2 - \eta^2/2}\right)$$

$$\leq C\eta^{-1} \left(\frac{\eta}{A-a}\right)^{n/2} \exp\left(-\frac{c \eta}{A-a} |v|^2\right) e^{-\eta^2/2}.$$

Varying A-a, we see that this expression takes its maximum when $A-a\sim\eta|\mathbf{v}|^2$. Such a value of A-a is compatible with A-a > 1/ η only when $\eta|\mathbf{v}|$ > 1, and otherwise the largest admissible value of the expression occurs when $A-a\sim1/\eta$. In both cases, we get

$$I(v) \le C\eta^{-1} \min(|v|^{-n}, \eta^n) e^{-\eta^2/2}.$$
 (3.5)

(c) Here $|v| > 1/\eta$, and Lemma 3(c) gives

$$I(v) \le C\eta^{-1} (\eta/|v|)^{n/2} \exp(-\eta|v|) e^{-\eta^2/2}.$$

Estimating $\exp(-\eta |v|)$ by $C(\eta |v|)^{-n/2}$, we see that (3.5) holds also in this case.

Applying now (3.4-5) to (3.3), we obtain (3.2), and the proof is complete.

References

- 1. Muckenhoupt, B., Poisson integrals for Hermite and Laguerre expansions.

 Trans. Amer. Math. Soc. 139(1969), 231-242.
- Sjögren, P., Weak L¹ characterizations of Poisson integrals, Green potentials, and H^P spaces. Trans. Amer. Math. Soc. 233(1977), 179-196.
- 3. Stein, E.M., Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton University Press, Princeton 1970.
- Stein, E.M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton 1970.