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1. INTRODUCTION.

Let Nu = -Au+x+gradu be the well-known number operator for

. X . . n+
the quantum-mechanical harmonic oscillator in R". In R L {(x,t):

x€R", t > 0}, the initial-value problem

“ 3¢ - Nu

u(x,0) = f(x)
is solved by
ux,t) = e‘th(x) = fo(x) = { Mx(x,y)f(y)dy

with X = e-t. Here

2
M, (x,y) = (2 (1-22yy0/2 exp( - (z-—kx; )
2(1-x")
")

is the Lebesgue measure form of the Mehler kernel, and (e"t is the

t>0

Hermite semigroup, whose infinitesimal generator is -N. The n~dimensional
Hermite polynomials

n
Hm(x) = 11 Hm (xi), m = {(m

.M )€Ifl,
. n
1 1

1,..

are defined so as to be orthogonal with respect to the canonical Gaussian

/2

measure vy, whose density is y(x) = (2x) " exp(—lxlz/Z). In terms of

these polynomials, MA is conveniently expressed:

M, Za H = Zlimf a i, |m| = Im,.
m m m m i



The operators M., are bounded and of norm 1 on P y 1 <

A

.. 2 . .,
and they are self~adjoint on LY. Further, they are given by a positive
kernel and leave constant functions invariant. This makes the maximal

theorem from semigroup theory (see Stein [3, 11I.3]) applicable. Hence,

the operator

*
M f(x) = sup [M
0<2<1

LEGO |

is bounded on Ls y 1 <p <=, This works even in infinite dimension.

The one-dimensional case is studied by Muckenhoupt [1], who also

* 1. 1,
shows that M maps LY into L

the same thing in arbitrary finite dimension. Of course, estimates for
*
M imply convergence results for fo as A+ 1 (t » 0).

The author is grateful to C. Borell for suggesting this maximal

function.

Theorem. For each finite dimension n,

(i.e., weak Li). We shall prove

the operator is bounded

T . 1,
from L into L .
— Y — Y

We need some notation for the proof. If D c R® xR"
p* = {y: (x,y) €D} for xEﬁfl, and slightly abusively,

(x,y) €D} for y€ﬂf& By ¢ >0 and € < =, we denote various con-

stants, and f ~g means c < f/g < C.

2. First part of the proof.

Notice that

Y(x) ~ y{y) for |x-y| < ¢/ly]

(2.1)

*
when y stays away from 0. We first study M when x is near y in

this sense, setting for R > O



Np = {(x,y) ER" xR": [x] < R and |y| <R, or |y| > R/2 and lx-y| < R/|y!}.

Lemma 1. The operator

£ sup L G EGayl
0<a<t o
R

maps Li boundedly into Li’w, for any R < =,

Proof. We cover R" with B(O,R) together with a sequence of balls of
type B{(z,CR/|z|), |z| > R/2, with bounded overlap, so that (x,y)EENR
implies that one of these balls contains x and y. Hence, it is enough
to verify that the restriction of M* to a ball of this type is uniformly
of weak type (1,1) for y or, equivalently in view of (2.1), for Lebesgue
measure. Because of the bounded overlap, we may then add these estimates
and obtain the lemma.

So take g > 0 in L’(B) (Lebesgue measure), with B = B(z, CR/|z]).

Now if ¢1~A2‘3 1/]2z! and x, y€B, we can estimate Mk(x,y) by

(1_}\2)"11/2 5_ C‘Bl“1

, ¢ = C(R,n), where

means Lebesgue measure. Hence,
-1 *
M, (x,y)g(y)dy < c|B] gdy < Cg (x),
B B
* /

g denoting the Hardy-Littlewood maximal function. And if 1~K2 < 1/lz|
and x, y€B, then |y~)x| differs from |x~y| by at most (1-2)|x] <

C ¢1-X2. Considering separately the cases when |y~Ax| 1is or is not much

larger than ¢1~A2, we see that

_ 1 2 | ?2
exp (—_m.)%_,.) i [ exp (- ..C_.L.Y.. Xé )
2(1-27) =)

for some c¢. But then { Mk(x,y)g(y)dy is bounded in B by a convolution

of g with a normalized contraction of the integrable radial decreasing

*
kernel (Zexp(*c,.lz) and thus by Cg (x), see [4, T11.2.2]. Lemma 1

follows since the case of B(0O,R) is similar.



*
Outgide NR » we shall estimate M by the operator defined by the

pointwise sup kernel

M(x,y) = sup MA(x,y).
0<x <

Lemma 2. For some R, the operator

£ J M(x,y)£(y)dy

maps LY into L;’m .

This would clearly imply the theorem.

We must estimate M and need some notation. If y # 0, let n = [yl
and e = y/n, and set x = fe + v where v is orthogonal to e. By a
and A we mean, respectively, min(f£,n) and max(¢,n). Of course, . _ =

max(£,0).

Lemma 3. Given a small g > 0, we may choose R so that the following esti-

mates hold when (x,y) ¢ NP for some ¢ and C depending only on B, R,

and n.

ey

(a) If Iix~-y| > g max(x|,|y|), then
53/2 - nl/z\
M(x,y) < C minl1,e /.
() Lf |x-y] < g max(|x|,|y]) and |v| < A-a, then

2 2 2
M . 2 ' i .
(x,y) < C(Afa)n/“ exp (- E§%§L~) min(‘i,eg /2= /2).

(c) If |x-y| < g max(lx|,iy|) and vl > A~a, then

2 2
MOx,y) f(C(A/!V’)n/Z exp(~cAlv]) min(1,e® /2 =12y

Proof. For x and y fixed, x # y,.it is easily seen that Mx(x,y) takes



its sup in 0 < A < 1 for some Amqn in [0,1][. fThe derivative
LA

8MX(x,y)/8R equals a positive factor times

9
U = ad(1-27) + (x - Ay)«(y-rx)

2 5 (2.2)
= ax (1=27) = aiv|® + (@=xn)(n=rg) = 1 - T1 + P.
Here the last product is
P = (A~xa)(a~xA) = ((1=-2)a+A-a)((1=-A)A~ (A-a)). (2.3)

If we replace n and v by O here, we see that then Amax = (a/A)+

and so
2 2
a2 £§./2 - n"/2
sup  exp(~ £3~i§%- = min(t, e ). (2.4)
0<A< 1 2(1-2")

In case (a), we conclude from (2.2} that
A L 2
U<o = eyde(y=x) + (=0 (x| + |y

n - [x»y!2 + 4(1-1} max (’xi,!y{)z <D

i

if R is large and 1 close to 1. Hence, kmax is bounded away from
and (2.4) gives the estimate in (a).

In case (b), notice that a > A/2 and A-a > RAhT/Z because

{x~y| > R/|y|. We see from (2.3) that
P~ (1-0)28% for 1-x > 4(a-a)a” (2.5)

So if 1=} is much larger than (A~3)A“1, then I1 <P and U > 0,

And if 1-) < (A—a)Awi/Z, we see by estimating 1 and P that
~1 2
U < nfa-a)s - (a-ad"/2 <0

.
for suitable R. Hence, =A™ (A~a)A ', and (b) follows from (2.4).
. t

To prove (c), we may assume |v| > B(A-a) for any fixed B, since



the contrary case is covered by the method of (b). Notice that

-1 . . . .
vl > RA™ /2. 1t is enough to show that

N i1
o~k ~ iV

max A . (2.6)

For 1 =X < c}vﬁAwi, we have
f ‘2 "“
/IT < 2n(1-0)/v|™ < ca /iv| < 1/2.

Since (2.5) remains valid, (2.6) follows if we can exclude 1~kmax 5_4(A*a)An1.
But 1-1 < lx(A—a)A‘1 implies P < C(A~a)2 < I1/2, and thus U < 0, if B

is large enough. This completes the proof of (c¢) and Lemma 3.

3. Proof of Lemma 2.

. . P - n .
We introduce sets forming a disjoint partition of R X]Rn“~NR if

B >0 1is small. Let a(x,y) denote the angle between non-zero x and v,

satisfying 0 < a(x,y) < m, and define

[}
it

{GGy) €8 6 <ny and alx,y) > w/4)

Lol
il

) {({x,y) ¢ Npi & % n, and x-y] > 8 max(|x]|,]y[)}

o)
[

5 {(x,y)&fNR: ix~y1<g max(|x],|y]) or both g <nand alx,y)<n/4} .

Take an £ >0 in Li . We write

{ M(x,y)f(y)dy = § + f + {
n -
R~ N’é r.)”; D; D§

and estimate these three terms.

. . H
The first two terms turn out fo be in LY . For

f
J(Y(X)dx | HeyE(y)dy “J{fiy)dy f Mx,y)y(x)dx,

x v
D, Ly



. 5 A . , . .
and the integral over D here can be estimated by Cy(y}) if we use

Lemma 3(a) and the fact that Ef §_§x§2/2 in D¥ . As to DZ’ we arrive
similarly at the integral
- 2 r"f' *2vq
J{etx}/zdxicg e P 7ar <oy .
P
y -
b

Before dealing with D3

at x. , i = 1,2,..., such that

¢ min(?,!/ixii) < diam Q. < min(1, 1/§xi|).

Choose the enumeration so that !xil is nondecreasing in 1.
If x denotes the characteristic function of D3, we set M3 = yM.

Since we do not want our kernel to vary too much within a Qi’ we let

'

ﬁs{x,y) = sup{MB(x',y): x and x in the same Qi}"

Notice that the estimates of Lemma 3 hold also for ES’ with new constants.
Clearly ‘ﬁéf(x} zj‘ﬁs(x,y)f(y)dy dominates M3f(x) and is constant 1in
each Qi'

Given a > 0, we shall construct a subset E of {x: ﬁéf(x) > al

such that

Y{ﬁgf > a} < Cy(E) (3.1)
and

U(y) < Cyly) in W (3.2)
Here

| S
U(y) = } Mg(x,y}y(x)dx,
B

This would yield

Lo no. ..
, we divide IR into disgjoint cubes Qi centered



T{MyE >a} < CY(B) < ca”’ IE M, f (x)y (x)dx

-1 -1
= Ca J £(y)U(y)dy < Ca [l £]| P
L
Y
and thus complete the proof of Lemma 2. This method is similar to that

used for Theorem { in [2].

The set E will be constructed as the union of certain Qj’ which
will be selected inductively. To obtain (3.2), we must not select too
many Qj close to each other. Therefore, we associate with each Qj
a forbidden region Fj, defined as the union of those Qi‘ i > j, which
intergsect the set Qj + Kj’ where Kj is the cone {x: a(x,y) < n/4 for
some Y€ Qj}.

The first step of the construction consists of selecting Q‘ if and
only if it intergects, and thus is contained in, {§3f > a}. At the ith
step, Qi is selected if and only if it intersects {ﬁsf > a}l and is not
forbidden, i.e., it is not contained in Fj for any Qj already selected.
Then E is defined as the union of those Qi gselected,

To verify (3.1), we observe that {§3f > a} 1is contained in the
union of thoge Qj aelected and the corresponding Fj. The Qj gelected
of course have rotal vy-measure v(E). So (3.1) follows if we verify
that Y(Pj).ﬁ Cy(Qj). When lxj! < C, we have y(Qj),V y®&"), so assume
the contrary. iet H, be the hyperplane {x: x»xj/lxjf =x; ¢+ s}.

Then Fjrlﬁs is empty for s < - C/]le, and has (n-1)-dimensional
Lebesgue measure at most C max(s, 1/[xj()“‘1 for s > - C/lle. On
Fjr\Hs, we see that

2 2
(s+]le) /2 ]xj[ /2 Ixj{s

< e .

y(x) < e

Hence,
o

vE) < C [ mam(s:,t/!xji)“~

*C/{xj{

2
~1x.1%/2 - |x.|s
1 3 h R



and (3.1) follows.

To show (3.2), we fix y and may assume |y] > R/2 since D§ =@
and U(y) = 0 otherwise. Let Sy denote the support of ﬁé(-,y), which
is the union of those Qj intersecting Dg. For vle =y/n, n = |y|,

we let § = R’v denote the line { se+v: s€R}, and set

I(v) = J HB( s etv,y)y(s e+v)ds
L NIENS
v y

s0 that

Uly) = J I(v)dv, (3.3)

the integral taken over e‘L =IRF‘1.

Assume z belongs to some Qjc:ErISy. Then Qj intersects Dg and
S0 e 1is in Kj' Therefore, Fj includes any Qi’ i > j, intersecting the
ray {z + te: t > 0}. 1t follows that zvr\En Sy is contained in an inter-
val J = { ge+v: ¢ <s<E+C min(I,t/lEl) . The point x = fe+v is in
or near Dg. We shall estimate I(v) by means of Lemma 3, and consider
the same cases (a), (b), (c) as in this lemma. Let a and A be as there.
Notice that the estimates for M(x,y) of Lemma 3 still hold of we replace
x by any point in J.

(8) Lemma 3(a) gives

£,2/2 - n*/2 - |x[12
I{v) < C min(1,1/]g|)e < C

——

2 2
it /2 - |v| /2,(3.A)

(b) Here A~an~n and A-a > 1/n. Lemma 3(b) gives

2 2 2
I(v) < Cn ‘(»A-‘i_‘-e-‘-)“/2 exp (- %QV‘Z)Q‘IXI /2 §°/2 - n°/2

min(T,e
2

< cn"(x§;)“/2 exp (~ if%ivlz)etn /2

.
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Varying A-a, we see that this expression takes its maximum when
A~ahvniv|2. Such a value of A-a is compatible with A-a > 1/n only
when n|v| > 1, and otherwise the largest admissible value of the ex-

pression occurs when A~a ~ {/n. In both cases, we get
-1 -n 0, = 2/2
I(v) < Cn  min(jv] ",n) e n/e, (3.5)

(¢) Here |v| > 1/n, and Lemma 3(c) gives
-1 n/2 ~n2/2
I(v) < Cn (/|v]D) exp(-nlv|) e .
Estimating exp(-niv|) by C(nlvl)—n/z, we see that (3.5) holds also in
this case.
Applying now (3.4-5) to (3.3), we obtain (3.2), and the proof is

complete.
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