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Electronic structure of LaBr3 from quasiparticle self-consistent GW calculations
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Rare-earth-based scintillators in general and lanthanum bromide (LaBr3) in particular represent a challenging
class of materials due to pronounced spin-orbit coupling and subtle interactions between d and f states that cannot
be reproduced by standard density functional theory (DFT). Here a detailed investigation of the electronic band
structure of LaBr3 using the quasiparticle self-consistent GW (QPscGW) method is presented. This parameter-free
approach is shown to yield an excellent description of the electronic structure of LaBr3. Specifically, it is able to
reproduce the band gap, the correct level ordering and spacing of the 4f and 5d states, as well as the spin-orbit
splitting of La-derived states. The QPscGW results are subsequently used to benchmark several computationally
less demanding techniques including DFT + U , hybrid exchange-correlation functionals, and the G0W0 method.
Spin-orbit coupling is included self-consistently at each QPscGW iteration and maximally localized Wannier
functions are used to interpolate quasiparticle energies. The QPscGW results provide an excellent starting point
for investigating the electronic structure of excited states, charge self-trapping, and activator ions in LaBr3 and
related materials.
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I. INTRODUCTION

Scintillators are materials that exhibit luminescence upon
excitation by ionizing radiation,1 which means that a fraction
of the absorbed energy is reemitted as light. The emitted
photons can be subsequently converted into an electric current
using, for example, photomultiplier tubes or photo diodes,
which allows one to measure the energy spectrum of the
incoming radiation. Scintillation is observed in crystals,
plastics, liquids, and glasses.2 Examples of inorganic crystal
scintillators include halides, oxides, and chalcogenides.1,2 The
emitted light can be produced by exciton recombination (e.g.,
alkali halides, CsI, MgWO4), core-to-valence, also known as
cross-luminescence or Auger-free luminescence, (e.g., BaF2,
CsCl) or most commonly by the relaxation of an excited
activator atom (e.g., NaI:Tl, SrI2:Eu, LaF3:Ce).1

Over the course of the past couple of years, interest
in scintillator materials has surged thanks to large scale
applications in nuclear and radiological surveillance, high-
energy physics, and medical imaging. While the general
potential of scintillators has been demonstrated, one of the
current goals is to develop materials with improved energy
resolution sufficient to detect fissile materials with a low
probability of errors at ports, borders, and airports.3 The
current state-of-the-art material is Ce-doped LaBr3,4 which
has been extensively characterized both experimentally5–8 and
theoretically.8–13 Yet fundamental features of its electronic
structure are still incompletely described and quantified.
Such information is, however, crucial for understanding the
much improved performance of LaBr3 compared to other
scintillators.

An ab initio description of the electronic structure of LaBr3

is challenging due to the presence of La-4f and 5d states
as well as pronounced spin-orbit coupling (SOC). If one
furthermore aims to model Ce activator ions, the Ce-derived
f and d levels need to be considered as well.

Previous electronic structure calculations of LaBr3 have
been based on density functional theory (DFT), the Hartree-

Fock (HF) method,9 the DFT + U approach,10 or hybrid
exchange-correlation (XC) functionals.9 As is well known, the
HF method grossly overestimates the band gap in extended
systems and the two latter methods both rely on additional
fitting parameters. They are therefore not predictive and re-
quire experimental information or higher-level calculations as
reference. In view of this situation the objective of the present
work is to calculate the electronic structure, specifically the
quasiparticle (QP) spectrum, of lanthanum bromide from an
essentially parameter-free approach. In doing so one obtains
a very good starting point for investigating, e.g., charge
self-trapping, exciton spectra, or activator level alignment.
To accomplish this goal, the quasiparticle self-consistent
GW (QPscGW) method14–16 is employed in conjunction with
maximally localized Wannier functions.17,18

The remainder of this paper is organized as follows. In
the next section the methodology and computational details
are reviewed. Section III A presents as the main result of the
present work the band structure and density of states from
QPscGW calculations including SOC. The convergence of
our calculations is elaborated in Sec. III B. A detailed com-
parison with both hybrid, DFT + U , and G0W0 calculations is
presented in Sec. III C. Finally, the main conclusions and an
outlook of future work are given in Sec. IV.

II. METHODOLOGY

A. GW approximation

In the most common implementation of the GW

approximation19–22 QP energies are computed to zeroth order
in perturbation theory according to

εnk = ε0
nk + ZnkRe

[〈ψnk|T + Vn−e

+VH + �
(
ε0
nk

)|ψnk〉 − ε0
nk

]
. (1)

Here, T , Vn−e, and VH denote the kinetic energy term as
well as the nucleus-ion and Hartree potentials, respectively.
The renormalization factor (or QP weight) Znk is obtained
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from the energy derivative of the self-energy.23 Typically,
the unperturbed single-particle energies and wave functions
are obtained from a density functional theory (DFT) or HF
calculation. This approach is usually referred to as the G0W0

method.
Obviously, the application of Eq. (1) does not alter the

underlying single-particle orbitals. It is primarily for this
reason that a starting guess is usually required to yield
qualitatively the correct level ordering (at least of the occupied
states). This condition is violated for example in lanthanide
oxides and can be overcome by generating the initial wave
function and QP energies using the DFT + U method.24 From
this description it is apparent that the G0W0 method yields
results that are dependent on the initial wave function.

To overcome these limitations, Kotani, Schilfgaarde, and
Faleev developed the QP self-consistent GW method.14–16

The key idea in the QPscGW approach is to optimize an
effective self-consistent noninteracting Hamiltonian H 0 =
T + Veff such as to reproduce the energy dependence of the
self-energy as closely as possible within the random phase
approximation (RPA). This is accomplished by minimizing a
norm that measures the difference between H 0 and H (ω) with
respect to the effective one-body potential Veff . A practical
scheme is obtained by requiring the XC potential to depend on
an average of the Hermitian part of the self-energy operator,

Vxc = 1

2

∑
ij

|ψi〉{Re[�(εi)]ij + Re[�(εj )]ij }〈ψj |, (2)

where Brillouin zone indices have been dropped for brevity. It
can be argued that within the limits of the RPA the solutions
of H 0 can be interpreted as quasiparticles.15

The original form of the QPscGW method was later slightly
modified by Shishkin, Marsman, and Kresse25 and extended to
account for vertex correction in W . For practically all materials
considered so far the QPscGW has been found to give band
gaps in very good agreement with experiment save for a slight
overestimation in particular for small gap materials.26–28

From our point of view, the two major features of the QP-
scGW method in comparison to the G0W0 method described
by Eq. (1) are that (i) the single-particle orbitals are updated
during the course of the self-consistency loop and (ii) the final
results are independent of the initial wave function and thus
also independent of any adjustable parameters. For the latter
statement to be fulfilled, it is essential that the basis in which
H 0 is expanded is sufficiently large to be considered complete
as discussed in Sec. III B.

B. Maximally localized Wannier functions

Wannier functions29 (WFs) provide a complementary basis
set to the Bloch functions. WFs are defined as Fourier
transformations of Bloch functions with respect to crystal
momentum vectors. This formulation is, however, arbitrary
due to the undetermined phases of the Bloch functions.
This was utilized by Marzari and Vanderbilt who introduced
generalized Wannier functions17 for composite bands defined
by

wRi(r) = �cell

(2π )3

∫
BZ

dk e−ik·R
Nk∑
n=1

U
(k)
ni ψki(r). (3)

Here the unitary matrices U (k) mix Bloch states having the
same wave vector k. The quadratic spread of the set of WFs
can then be expressed in terms of matrix elements

M (k,b)
mn = 〈ψkm|e−ib·r |ψk+bn〉, (4)

and subsequently minimized to obtain so-called maximally
localized Wannier functions (MLWFs). This formalism was
later extended by Souza et al. to the case of entangled energy
bands.18 For the purpose of the present work, the underlying
first-principles code was modified to enable the calculation of
the matrix elements appearing in Eq. (4),30 which were then
used as input for WANNIER9031 to obtain MLWFs. The site
and angular momentum projected QP energies were finally
interpolated using the MLFW basis to generate accurate band
structures and density of states (DOS).

C. Spin-orbit coupling and symmetry operations

The spin-orbit correction to the Hamiltonian can be ob-
tained from the Dirac equation by three successive Fouldy-
Wouthuysen transformations.32 In atomic units, the resulting
Hamiltonian for an electron in a central potential V can be
written as33–35

Hso = α2

2

1

r

dV

dr
� · s. (5)

Here α is the fine structure constant and � and s are the orbital
and spin angular momentum operators, respectively. Aryase-
tiawan and Biermann generalized Hedin’s equations19,20 to
the case of spin-dependent interactions.36,37 The algebraic
structure of the modified set of equations is very similar
to Hedin’s original equations, although it is shown that
in general the self-energy becomes spin-dependent and the
polarization now describes the response of the charge density
to magnetic fluctuations and vice versa. In the absence of
explicit two-particle spin-interaction, the self-energy will only
depend on variations in the electric field.36 Therefore, if vertex
corrections, spin-spin, and spin-other-orbit interactions are
neglected, this reduces for a nonmagnetic system to adding Hso

to the unperturbed single-particle Hamiltonian and embodies
an explicit spin dependence of the Green’s function. Sakuma
et al.38 applied this formalism to study the effect of SOC
in Hg chalcogenides in the G0W0 approximation and found
an enhancement of the spin-orbit splitting of 0.1 eV. In the
context of QPscGW calculations Chantis et al. have included
SOC as a perturbation on top of already converged orbitals for
III-V and II-VI zinc-blende semiconductors.26 In the present
case, to investigate spin-orbit splitting SOC is included in the
self-consistency cycles of the QPscGW method.

In the projector augmented wave method39,40 (PAW), the
SOC Hamiltonian consists of three terms,

H̃so = Hso +
∑
ij

|p̃i〉(〈φi |Hso|φj 〉 − 〈φ̃i |Hso|φ̃j 〉)〈p̃j |, (6)

where the projectors p̃ and orbitals φ and φ̃ have their usual
meaning.39 In DFT calculations it is customary to only include
the SOC in a sphere around each atom, using the spherically av-
eraged self-consistent Kohn-Sham potential. Assuming a com-
plete PAW basis set, the first and third terms in Eq. (6) cancel.
In the current implementation only the second term is kept.41
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For the QPscGW calculations reported in this work, the
local potential in Eq. (5) is computed at each step in the self-
consistent cycle as the spherically averaged sum of the
external, Hartree, and DFT XC potential.41 As a result, these
calculations include SOC only on a DFT level.

To render hybrid XC and GW calculations including SOC
computationally feasible it is imperative to take advantage
of the space group symmetries and solve for QPs within
the irreducible Brillouin zone only. To this end we augmented
the action of a symmetry operator in Cartesian space on wave
functions, projected wave functions, and the action of the
self-energy operator and its derivative with respect to energy
on a Bloch function to include rotations in spin space. Now, a
general space group operation contains a point group operator
S and a translation w. The action of this operator on a spinless
Bloch function is42

{S|w} exp[iSk · r]uk(r)

= exp[iSk · (r − w)]uSk(r − w), (7)

where uk is the cell-periodic wave function. The rotated wave
function thus corresponds to a Bloch function of wave vector
Sk. If the point group operator S contains a rotation by an
angle α around some unit axis n̂ the action of the space
group operator on a Bloch spinor would be augmented by
an additional rotation of the two spin components by the
spin-space rotation matrix

Rs(n̂,α) = exp

[
− iασ · n̂

2

]
= exp(A), (8)

where σi is a Pauli matrix. In practice this rotation matrix
is computed by Rs = V † exp(D)V , where V and D are the
eigenvector matrix and diagonal eigenvalue matrix of A,
respectively.

We also note in passing that operations of the type given
by Eq. (7) coupled with spin rotations are also useful for the
evaluation of the matrix M (k,b) defined in Eq. (4).

D. Computational details

Calculations have been performed using the projector
augmented wave method39,40 as implemented in the Vienna
ab initio simulation package.43–46 First wave functions and
QP energies were obtained within a generalized Kohn-Sham
scheme using several different approximations to represent
exchange and correlation effects. Subsequently, the single-
particle states of these calculations served as starting points
for G0W0 and QPscGW calculations. For the XC potential in
the initial calculations, we considered a generalized gradient
functional47, the DFT + U method48 with parameters from
Ref. 49, several range-separated hybrid XC functionals with
variable mixing parameter α and a fixed screening length of
μ = 0.2 Å

−1
,50 as well as exact-exchange (EXX), where the

latter is equivalent to carrying out a restricted HF calculation.
All calculations were performed at the experimental lattice

parameters51,52 using a �-centered 6 × 6 × 3 grid, a general
plane-wave cutoff energy of 219 eV, and a cutoff energy
of 146 eV for the response function in the GW loop. The
Green’s function and the screened interaction in the GW loop
were evaluated using 2088 and 1056 bands in calculations
with and without SOC, respectively. The effective QPscGW

Hamiltonian was expanded in a basis containing up to 192
bands (384 when including SOC) equivalent to states up to
34 eV above the conduction band minimum (CBM). In general,
our parameters ensure convergence of the valence band and
lower conduction band QP energies of about 0.05 eV. The
convergence of our calculations is demonstrated and discussed
in Sec. III B.

III. RESULTS

A. Band structure and density of states

Figure 1 represents the main result of the present paper.
It shows the band structure and density of states (DOS) of
lanthanum bromide from QPscGW calculations taking SOC
into account. As in virtually all halides that we are aware of, the
valence band is predominantly composed of halogen p states.
Similar to other compounds with comparably low symmetry
and a valence band maximum (VBM) that is primarily derived
from p states (for example, In2O3, Refs. 53 and 54, and SrI2,
Ref. 55), the VBM in LaBr3 is very flat indicating a very low
hole mobility.

By comparison the conduction band structure is more
complex. Its bottom mostly consists of La-5d states that extend
up to about 3.0 eV above the CBM where a minimum in the
DOS is observed. At slightly higher energies a pronounced
peak due to La-4f states is clearly visible, superimposed
on a rather broad band that has predominantly Br-derived d

character.
The SOC lifts the top of the valence band by 0.19 eV while

leaving both the bottom of the Br-4p band and the Br-4s band
unchanged. The most significant effect is observed for the La-
4p derived states which split by 2.25 eV in excellent agreement
with experiment [compare Fig. 2(a)]. In general over the
energy considered the agreement of the QPscGW calculation
with x-ray photoelectron spectroscopy (XPS) data56 is very
good if SOC is included.

The bottom of the conduction band, which is composed of
La-5d states, is virtually unaffected by SOC. There is also no
change in the position of the La-4f peak situated about 3.2 eV
above the CBM, although one notices a slight redistribution of
weights in this band. The QPscGW calculations yield a band
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FIG. 1. (Color online) (a) Band structure and (b) density of states
of LaBr3 as obtained from QPscGW calculations including spin-orbit
coupling. Experimental x-ray photoelectron spectrum from Ref. 56.
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FIG. 2. (Color online) Comparison of (a) valence and (b) con-
duction band density of states from QPscGW calculations with
and without spin-orbit coupling (SOC). Valence and conduction
band states are shown with respect to valence band maximum and
conduction band minimum, respectively, obtained from calculations
without SOC to highlight the SOC-induced shift.

gap of 6.19 eV, which is reduced to 5.99 eV when SOC is
taken into account. This value is in very good agreement with
experiments, which indicated a value of 5.9 eV.5

To the best of our knowledge, there are currently no
spectroscopic data corresponding to the single-particle exci-
tation spectrum that would enable a direct comparison of the
calculated conduction band structure with experiment. Sato56

measured the absorption spectrum, which depends on both
valence and conduction band states. Since excitonic effects
are known to be important in halides, as shown specifically for
LaBr3 in Ref. 5, an accurate description of absorption would
require the inclusion of electron-hole interactions (see, e.g.,
Refs. 57 and 58). This could be accomplished, for example, by
solving the Bethe-Salpeter equation,58–62 which is, however,
the subject of future work. In the present paper, we resort to
a simplified comparison based on the joint density of states
(JDOS). On a single-particle level, the latter is related to
the dielectric function and thus the absorption coefficient as
discussed, for example, in Ref. 63. One can therefore expect
a correlation between characteristic features in the absorption
spectrum with features in the JDOS.

As observed in Fig. 3, there indeed exist similar features in
absorption spectra measured by Sato56 and the JDOS obtained
from QPscGW calculations, as indicated by letters A and B.

When separating the contributions from different con-
duction band states to the JDOS, Fig. 3(b) shows that
features A and B arise from transitions from valence band
(VB) to La-d and f states, respectively. The fact that the
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FIG. 3. (Color online) (a) Absorption spectra measured by Sato56

and (b) state resolved contributions to joint density of states (JDOS)
from QPscGW calculations due to transitions from valence band (VB)
states to different conduction states (SOC contributions are included).

computed features occur at slightly higher energies compared
to experiment is consistent with the observation that electron-
hole interactions usually lead to a redshift of the calculated
spectrum. In Sec. III C, we compare the JDOS obtained from
different computational methods, which will demonstrate that
reproducing the two features discussed above is not trivial. The
good agreement between the QPscGW JDOS and the XPS data
therefore provides evidence for the reliability and accuracy of
the QPscGW results.

B. Convergence of QPscGW calculations

In Sec. II it was argued that the QPscGW method yields
results that are independent of the starting wave function.
This feature is illustrated in Fig. 4(a), which compares the
convergence of several characteristic QP energy differences
starting from both DFT and EXX wave functions. The two
different starting points correspond to a significant underes-
timation (DFT) and overestimation (EXX) of the band gap,
respectively. Yet after converging the QPscGW cycles, the
converged QP energy differences agree to within 0.05 eV for
valence and lower conduction band levels, and to 0.18 eV for
the La-4f states. The remaining differences can in principle
be reduced further by increasing the basis set in which the
effective Hamiltonian of the QPscGW method is expanded.

The previous statement is confounded by Fig. 4(b), which
shows the convergence of several QP energy differences with
respect to the number of bands included in the QPscGW basis
set.64 Due to the presence of both La and Br d states as well La-
f states, the density of states in the conduction band is larger
than in conventional semiconductors such as Si or GaAs. As a
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FIG. 4. (Color online) (a) Convergence of QPscGW calculations
starting from DFT and EXX wave functions, respectively, as evi-
denced by several quasiparticle energy differences. (b) Convergence
with respect to QPscGW basis set size starting from DFT wave
function. The results shown in (a) were obtained using 192 bands to
expand the effective QPscGW Hamiltonian, corresponding to states
up to 34 eV above the CBM. The calculations shown do not include
SOC.

result, one needs five times as many unoccupied than occupied
states in order to reach the convergence exhibited in Fig. 4(a), a
number that is considerably larger than for the aforementioned
semiconductors. In general we have found it very useful not
only to check convergence with respect to the number of bands
as shown in Fig. 4(b), but also to confirm convergence of our
calculations by comparing the results obtained from initially
very different wave functions such as DFT and EXX.

C. Hybrid DFT and G0W0 calculations

For studying various problems of interest such as charge
self-trapping, defect formation, or alignment of activator levels
one needs to consider ionic relaxations and representative
supercells. At present QPscGW calculations are, however,
computationally still extremely expensive because a large
number of unoccupied bands has to be included. More severely,
the method does not allow one to obtain total energies
and forces. It is therefore important to determine to what
extent computationally lesser demanding calculation schemes
can reproduce the reference electronic structure provided by
QPscGW calculations. To this end, a number of conventional
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FIG. 5. (Color online) (a) Band gap, (b) position of La-4f

states, and (c) valence band width from conventional exchange-
correlation functional (PBE), several hybrid exchange-correlation
functional (hybrid XC), and exact-exchange (EXX) calculations.
Vertical arrows indicate the improvement obtained by carrying out
G0W0 calculations. Gray bars indicate QPscGW values that serve as
reference data in this comparison. All data obtained without spin-orbit
coupling. In (a) two values are shown for PBE corresponding to the
gaps between VBM and La-4f and 5d states, respectively (compare
Fig. 6). For all other cases, the band gap between VBM and La-5d is
shown.

and hybrid exchange-correlation functionals, as well as the
corrections from G0W0 to some of these functionals, have
been considered.

Figure 5 shows the variation of several QP energy differ-
ences with the mixing parameter α of a range-separated hybrid
exchange-correlation functional50 with a screening length of
μ = 0.2 Å

−1
. For α = 0 this functional is identical to the XC

functional by Perdew et al. (PBE).47 For comparison we also
included data from EXX calculations, which do not include
correlation.

The data shows that, at the PBE level, the ordering of the
La-4f and 5d states is incorrect with 4f located below 5d

levels. Upon inclusion of exact exchange and/or by adding a
G0W0 calculation the level ordering is corrected but for most
functionals the QP energies are still quantitatively very differ-
ent from the QPscGW values. In general as α is increased the
QP energy differences considered here increase. Performing
G0W0 calculations in general improves the agreement. The
same trend was observed by Aulbur et al. for medium and
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DANIEL ÅBERG, BABAK SADIGH, AND PAUL ERHART PHYSICAL REVIEW B 85, 125134 (2012)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

−40 −30 −20 −10 0  10

D
en

si
ty

 o
f s

ta
te

s 
(s

ta
te

s/
eV

/c
el

l)

Energy wrt EVBM (eV)

HF/EXX

opt. hybrid

QPscGW

DFT+U+χ

DFT+U

PBE

FIG. 6. (Color online) Density of states as obtained from various
different calculation schemes (without SOC).

wide-gap materials using G0W0 on top of an EXX-based XC
functional.65 While the G0W0 method reduces the dependence
of the results on α, it remains pronounced.

For α values between approximately 0.5 and 0.65 all QP
energy differences considered in Fig. 5 intersect the respective
reference values. This suggests that a hybrid functional with
α in this range could possibly reproduce the DOS obtained
from QPscGW calculations. We therefore considered a hybrid
functional with α = 0.62, for which the total DOS is shown
in Fig. 6 together with results obtained from PBE, EXX,
DFT + U , and QPscGW. For simplicity SOC effects were
neglected in this comparison. In fact, apart from the deep
semicore states, the DOS for the modified hybrid functional
compares very favorably with the QPscGW reference.

The figure also contains the DOS obtained from DFT + U

calculations using U and J parameters determined previously
for other La compounds,49 both as-calculated (DFT + U ) and
with a rigid shift of the conduction bands to the QPscGW
band gap (“scissors” correction, DFT + U + χ ). Both the
upper valence and lower conduction band structures from
DFT + U + χ are in excellent agreement with QPscGW data,
and even though the agreement worsens for deeper lying
valence states, among the methods considered the DFT + U +
χ approach still yields the best agreement with the reference
DOS. Still for practical calculations one would have to resort
to the DFT + U method without the scissors correction, which
exhibits a pronounced band gap underestimation (3.60 eV
versus 6.19 eV without SOC).

In this context it is furthermore interesting to revisit the
JDOS, shown in Fig. 7, which was compared earlier with
absorption data (see Fig. 3). Also in this arena both the
DFT + U method and the modified hybrid XC functional
(not shown in Fig. 7) yield good agreement with QPscGW
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FIG. 7. (Color online) Joint density of states from different
calculation schemes (without SOC). It is instructive to compare these
curves with the data in Fig. 3.

calculations exhibiting the features discussed in detail in
Sec. III A. In stark contrast, the JDOS from PBE and EXX
calculations are qualitatively very different from the QPscGW
data. The position of the features in the absorption spectra
shown in Fig. 3 are not reproduced with these functionals.

IV. DISCUSSION AND CONCLUSIONS

In this paper it has been demonstrated that QPscGW
calculations of LaBr3 yield single-particle spectra (DOS) that
closely match experimental XPS data (Fig. 1). At the same
time the key features in the JDOS correlate with those in
the experimental absorption spectrum (Fig. 3). To obtain this
result it was essential to include spin-orbit coupling in the
calculations. The very good agreement between our QPscGW
calculations and experimental data provides confidence in
the reliability of the QPscGW method for treating systems
with f electrons and weak to moderate correlation. Our work
complements earlier studies of other f -electron systems that
used both the QPscGW method15,66 and the G0W0 approach24

but focused on systems in which f electrons are located in the
valence band.

The presence of both f and d states in the conduction band
of LaBr3 requires—by comparison with more conventional
semiconductors and insulators—an unusually large basis set
for the expansion of the effective Hamiltonian to obtain con-
verged results [Fig. 4(b)]. It was also explicitly demonstrated
that the QPscGW results are independent from the initial
wave function [Fig. 4(a)]. This property is a big advantage
of the QPscGW approach compared to other GW methods, as
exemplified in Fig. 5, which shows the G0W0 results to exhibit
a rather pronounced dependence on the initial wave function.
This behavior is important to keep in mind when interpreting
such calculations.

Another aspect that deserves mentioning is related to the
computation of matrix elements and their interpolation. The
QPscGW method does provide updated wave functions that
in turn can be used to compute matrix elements. In contrast
the wave functions are unchanged when doing G0W0 calcu-
lations. This difference becomes particularly apparent when
interpolation methods are used. These methods, based for
example in the present work on maximally localized Wannier
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functions, can be used to represent the aforementioned matrix
elements on a finer mesh in reciprocal space, dramatically
improving convergence of the calculations. If, as in the case of
LaBr3, the level ordering changes as the result of a G0W0

calculation the connectivity of the states changes as well,
which causes problems for interpolation methods. In such a
case the interpolation of the QP energies and the projections
on the basis of a PBE + G0W0 calculation are physically not
meaningful because the derivative matrices M (k,b) no longer
refer to the same states. The QPscGW method, however, does
not suffer from this shortcoming and matrix elements can be
readily interpolated once the MLWFs have been determined.

It is instructive to compare the electronic structure of LaBr3

both with other lanthanum halides and the free La atom. As
discussed at length in this paper in LaBr3 the La-4f levels are
located above the La-5d levels. This is similar to the ordering of
excited states in a free La2+ ion.67 In contrast for the 3+ charge
state of the La ion the excited 4f states are indeed observed
to lie below the 5d levels. This situation is compatible with a
partial charge transfer between La and Br.

Finally, it was shown that a hybrid XC functional can
be constructed that yields reasonable agreement with DOS
(Fig. 6) and JDOS (Fig. 7) obtained from QPscGW calcu-
lations. This functional should be suitable for studies that
require ionic relaxation and/or the use of supercells. The
DFT + U method (using parameters from the literature49) also
reproduces the DOS structure of valence and conduction band
states independently but still underestimates the band gap
significantly.
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