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
 

Abstract—We present a self-consistent electro-thermal model for 

multi-anode Schottky diode multiplier circuits.  The thermal 

model is developed for an n -anode multiplier via a thermal 

resistance matrix approach.  The non-linear temperature 

responses of the material are taken into consideration by using a 

linear temperature-dependent approximation for the thermal 

resistance.  The electro-thermal model is capable of predicting 

the hot spot temperature, providing useful information for 

circuit reliability study as well as high power circuit design and 

optimization.  Examples of the circuit analysis incorporating the 

electro-thermal model for a substrateless- and a membrane-

based multiplier circuits, operating up to 200 GHz, are 

demonstrated.  Compared to simulations without thermal model, 

the simulations with electro-thermal model agree better with the 

measurement results.  For the substrateless multiplier, the error 

between the simulated and measured peak output power is 

reduced from ~ 13 % to ~ 4 % by including the thermal effect.   
 

Index Terms—Electro-thermal model, Gallium Arsenide, high 

power submillimeter-wave generation, self-heating, thermal 

analysis, frequency multiplier, Schottky diodes.  

 

I. INTRODUCTION 

LANAR Schottky diode based frequency multipliers have 

been demonstrated to be promising compact and reliable 

sources for terahertz (THz) applications [1-3].  These terahertz 

applications include radio astronomy, astrophysics and earth 

observation applications [4-6], as well as imaging and general 

sensing applications [7-9]. To-date, the output power of 

Schottky diode based multiplier chains are in the micro-watt 

range for operating frequencies beyond 1 THz.  For future 

THz science applications, this output power range is not 

sufficient.  This generates a technological need to improve and 
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optimize the current multiplier design towards delivering a 

higher output power.   

At present, the initial stage of a THz multiplier chain is 

pumped with input power of a few hundred of milli-watts at 

W-band (75 GHz – 110 GHz) [5].     Intuitively, the goal of 

achieving a higher multiplier output power in the THz range 

can be realized by increasing the input power at the initial 

stage of the multiplier chain.  Recent technological 

advancement in power amplifier developments has 

demonstrated the capability of providing power in the 1-Watt 

range at W-band [10].  This makes it possible to drive the 

initial multiplier stage at such high power.  However, several 

phenomena that can reduce efficiency at high power, such as 

current saturation [11] and thermal effects [12], have been 

observed in  varactor multipliers.  Today, the major concern is 

the power handling capability of the multiplier chip, where the 

diodes degrade in performance or fail in operation due to 

excessive heat in the chip.  This is particularly severe for 

multiplier chips based on Gallium Arsenide (GaAs), which 

has a relatively poor thermal conductivity.  The chip heat 

sinking capability becomes worse at higher frequencies due to 

a smaller size of the chip geometry and the device area. 

The thermal management issue has become an important 

aspect in the multiplier design for high power THz 

applications.  A diode model incorporating the thermal effects 

on the electrical performance is needed during the circuit 

design stage.  To-date, reports on thermal analysis and electro-

thermal modeling of transistors [13-19] are abundant.  Similar 

effort has also been performed on diodes, such as the hetero-

structure barrier varactor (HBV) [20-22] and transferred 

electron devices (TED) [23].   

For planar Schottky diodes, the electrical properties can be 

modeled via physics-based [24],[25] or equivalent circuit 

based [26],[27] approach.  From the thermal perspective, a 2D 

heat flow model for a hybrid multiplier circuit [28] and a 

‘series-resistor’ thermal model for the substrateless multiplier 

chip [12] have been presented.  A systematic 3D thermal 

analysis on the Schottky diode based multipliers has also been 

reported recently [29].  However, these models are not 

coupled to the electrical model for self-consistent analysis.  

Thus, these models are limited to calculations of the junction 

temperatures by assuming a constant power dissipation level.  

In other words, a model which is capable of providing a 
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quantitative estimate of the thermal effects on the electrical 

performance of the diode multiplier chip is not available.   

The objective of this work is to develop a practical 

engineering approach to optimize high power THz diodes 

simultaneously from both the electrical and thermal 

perspectives.  We propose a self-consistent electro-thermal 

diode model, for which temperature-dependent electrical 

parameters are updated as a function of dissipated power in 

each individual diode.   

In this paper, layouts of the Schottky diode multiplier chips 

to be discussed are presented in Section II.  The electro-

thermal model for multipliers with n -number of anodes is 

then elaborated in Section III.  In this model, the thermal 

resistance (Rth) network is mathematically presented as an 

nn  matrix.  This thermal resistance matrix is extracted by 

solving the heat equation for a given multiplier geometry and 

material properties, using the 3-D finite element method 

(FEM).  Finally, Section IV demonstrates the implementation 

of the electro-thermal model in circuit analysis, where 

harmonic-balance (HB) analyses are performed on both the 

substrateless- and membrane- based frequency doubler.  

Effects of the chip thermal characteristics on the electrical 

performance are discussed.  The simulation result shows a 

better agreement with the measurement result when the 

thermal effects are included.  This indicates the importance of 

implementing the self-consistent electro-thermal model for the 

circuit design and optimization.   

II. THE SCHOTTKY DIODE CHIP LAYOUT 

To-date, two novel techniques for fabricating Schottky diode 

based multiplier chips used in the THz multiplier chain have 

been developed by the Jet Propulsion Laboratory (JPL), i.e. 

the substrateless and the monolithic membrane diode 

(MOMED) technologies [4],[5].   

In this work, the electro-thermal model is built based on and 

verified by the JPL multiplier chips, as shown in Figure 1 and 

Figure 2.  These multipliers are designed for frequency 

doubling operation up to 200 GHz, using a balanced 

architecture.  The multiplier chips are seated in the waveguide 

channel by clamping the supporting beam leads to the 

waveguide wall.  The input signal is coupled directly to the 

diodes, whereas the output signal from the diodes is coupled 

to the output waveguide, through the RF matching circuit and 

waveguide channel.    

For the substrateless multiplier, the GaAs substrate 

underneath the RF matching circuit is removed, leaving a 50 

μm thick GaAs frame for supporting the diodes.  For the 

membrane multiplier chip, the GaAs substrate is remained 

under the diodes and matching circuit.  However, the 

thickness of GaAs substrate is reduced to 5 μm for this chip.  

Thus, a comparison between the performances of both 

multipliers is essential to reveal the effect of excess heating on 

the electrical performance. 

Although the electro-thermal model development is based 

on the 6-anode multiplier chip, the validity of this model is not 

restricted to this specific number of anodes on the multiplier 

chip.  Similar methodology can be used to analyze general 

multiplier chips with a variable number of anodes as well as 

other chip layouts such as Schottky diode mixer chips and 

microstrip based monolithic microwave integrated circuits 

(MMICs).        

 
Figure 1 Top view of the multiplier chip mounted in a half-waveguide split 

block (a) substrateless multiplier; (b) membrane multiplier. 

 
Figure 2  A schematic view of the A-A’ cross section of the multiplier chip in a 

full waveguide block.  NB! The drawing is not to scale. 

  

III. THE ELECTRO-THERMAL MODEL 

For frequency multiplication applications, the Schottky 

diodes are reverse-biased and operating as varactors [30].  

Heat generation normally occurs within diode junction areas, 

elevating the local junction temperatures and thus modifying 

the temperature-dependent electrical parameters of the diode.  

The amount of generated heat is dynamic, depending on the 

high frequency input power, DC bias and current densities.  

The heat is then dissipated through various cooling 

mechanisms, such as conduction, convection and radiation.   

The combined effectiveness of the cooling mechanisms is 

characterized by the local junction temperature elevation.  In 

this work, only the conductive cooling mechanism is 

considered and the other cooling mechanisms are assumed to 

be negligible.  Moreover, the potential uneven heat-flux 

distribution within the chip due to high frequency current-

crowding phenomena, i.e. the skin and proximity effects [31], 

are not taken into account.  This assumption is made 

considering that the electrical current conduction flows 

through a much smaller volume of material than the thermal 
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conduction.  Thus, the heat flow path is determined by the 

physical geometry and material properties of the chip.   

 

A. The Single Diode Electro-Thermal Model 

Figure 3 presents a self-consistent electro-thermal model for 

a single diode, showing the interaction between the electrical 

and thermal model.  The electrical model provides the 

generated heat power to the thermal model in the form of 

instantaneous anode junction voltage and current (V(t) and 

I(t)).  The thermal model then calculates and updates the 

electrical model with the local junction temperature (T anode).  

In the electrical model, the diode is modeled with a current-

source, Id, a charge source, Qd, and a series resistance, Rs.  

Temperature-dependent electrical parameters are entered to 

the model via analytical expressions.  Using an electrical 

analogy approach in the thermal model, the instantaneous heat 

power to be dissipated (P dis) is modeled as a current source, 

whereas the heat flow path is presented as a parallel 

connection of a thermal resistor (Rth) and a thermal capacitor 

(Cth).   

 

 

Figure 3  A self-consistent electro-thermal model for a single diode. 

 

For multiplier applications at hundreds of gigahertz (GHz), 

the thermal time-constant (τth) for the multiplier chip can be 

assumed to be much longer (i.e. in tens of milli-second range) 

than the period of diode operating frequency [29].  Thus, the 

temperatures can be assumed to be time-independent (steady-

state) for a specific power dissipation level.  The anode 

temperature is then calculated using (1), with the stationary 

dissipated power defined as a voltage-current multiplication.   

disanode
th

anode P)(TRTT  0   (1) 

Due to the non-linear material thermal conductivity, the 

thermal resistance is explicitly power dissipation level 

dependent.  This non-linear system can be solved by 

approximating the thermal resistance, as a temperature-

dependent function, using Taylor series.  By performing a 

Taylor expansion around the ambient temperature (T0) and 

only taking into consideration the linear term, the thermal 

resistance is approximated as (2).  This approach of 

temperature-dependent thermal resistance treatment is 

proposed in the transistor electro-thermal model [14],[15]. 

 

 0
0

0 TT
T

)(TR
)(TR)(TR anode

anode

th
thth

anode 



  (2) 

 

 

Based on this single diode electro-thermal model, the model 

is then further extended to the multi-anode case.   

 

B. The Multi-Anode Thermal Network 

For the multi-anode thermal network, the thermal 

interactions between anodes must be considered.  As shown in 

Figure 4, the thermal interactions between anodes are modeled 

as the thermal coupling network ( s
thR ) and the self-heating 

effects are modeled as the thermal resistances connected to the 

anodes ( anode
thR ).  The heat sink or ambient temperature is 

modeled as 
sT0  and each anode temperature can be calculated 

using (3).   

 

 
Figure 4 The thermal resistance network of an n-anode multiplier chip. 

 

  disanode
th

anode
PTRTΔT  sT0  (3) 

 

where ΔT  and 
dis

P are 1n  matrices, and  anode
th TR  is a 

nn matrix.  The matrix representation of thermal resistance 

for junction temperature calculation is similar to that proposed 

for multi-finger transistors [14].  With the 1n  
dis

P matrix, 

the model is not limited to the case of equal heat power 

loading for all the anodes.  Analysis of unequal heat power 

loading between anodes and potential thermal runaway cases 

are possible. 

Analogously to the electrical circuit analysis, the n-port 

thermal network can be developed using the nodal analysis 

method.  In this development, the thermal coupling network in 

the overall n-port thermal network is first formulated in the 

thermal coupling admittance matrix,  TG
s

th , written as (4).  

The thermal coupling resistance matrix,  TR
s

th , is then 

derived from the admittance matrix.  Lastly, the self-heating 

thermal resistances are included in the final thermal resistance 

matrix, as in (6). 

 

    TTG
s

th
s

ijthG  (4) 

     

 

 
0

1







 

T

T

TTT

s

ith

s

jth

s

ith
s

ith
s

ijth

G

G

GGG

 1

1







j

j

jifor

 

1;1  jiji  

 

 



 4 
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ji   

(6) 

 

 

In the multi-anode thermal model, the temperature 

dependency of the thermal resistance elements are addressed 

similar to the single anode thermal model, using the Taylor 

expansion approximation.  By assuming negligible effects of 

the cross terms and high order terms in the Taylor series, the 

temperature dependency of the thermal resistance elements 

can be expressed as (7). 
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C. The Thermal Resistance Matrix Extraction 

In this work, the nn thermal resistance matrix is extracted 

from FEM simulations using the Ansys Mechanical 

Simulation tool [32].  The multiplier chip 3-D layout is 

entered into the program and the heat flow equation is solved 

with appropriate thermal boundary conditions and material 

properties.  By only considering the stationary state and 

conduction heat flow, the heat flow equation is simplified to 

the Fourier’s heat law, as stated in (8).     

       TTq    (8) 

where q is the heat flux,   T  is the temperature-dependent 

thermal conductivity and T is the temperature gradient.  The 

power dissipation in each anode is treated as a heat source and 

the thermal resistance elements are evaluated for an arbitrary 

chip layout and material properties. 

For the GaAs-based multiplier chip analysis, the 

temperature-dependent GaAs thermal conductivity (κGaAs) 

given in equation (9) is used [33] for the temperature range in 

this paper.     

 
Km

W
T

TGaAs
28.1)

300
(6.50   (9) 

The thermal conductivity of gold is 310 W/mK, and brass is 

109 W/mK.  In this analysis, the effect of the passivation layer 

is assumed to be negligible and thus not included in the 

simulation.  Further details on the FEM thermal simulation 

procedure are reported in [29].  With the above mentioned 

configurations, the following procedure is then performed:    

i. Estimation of a reasonable power dissipation range, i.e. 

with the hot spot temperature kept below 500K, by 

applying an equal heat source on all of the anodes 

simultaneously in the 3D FEM simulations. 

ii. Calculation of the thermal resistance elements, using 

(10), by performing a sequence of 3D FEM simulations 

for several heat source power levels. 

jkPdis
j

i
ith dis

k

anode

anode

ij
P

TT
)(TR






,0

0 |  (10) 

iii. Extraction of the ambient temperature thermal resistance 

and temperature-dependent term, as defined in (7), 

through a series of curve-fitting procedures on the 

thermal resistance elements calculated from (ii).   

iv. Calculation of the anode junction temperatures using (3) 

with the thermal resistance matrix extracted from (iii). 

v. Comparison of the temperatures simulated from (i) and 

those calculated from (iv) for a range of specific power 

dissipation levels. 

  

Examples of the formulation and implementation of the 

self-consistent electro-thermal model in circuit analysis are 

shown in Section IV. 

IV. EXAMPLE OF CIRCUIT ANALYSIS IMPLEMENTATION 

This section shows an example of a harmonic balance 

analysis of a 6-anode 200 GHz frequency doubler chip using 

the developed self-consistent electro-thermal model.  In this 

example, the electro-thermal model is implemented using the 

symbolically defined device (SDD) component available in 

the Agilent Design System (ADS) microwave circuit 

simulator [34].   

 

A. The Schottky Diode Varactor Electrical Model 

The electrical model of a Schottky diode varactor is shown 

in Figure 3.  For the SDD component implementation, the 

voltage-dependent current source, voltage-dependent charge 

source and losses through the series resistance are specified 

similarly to those in the generic diode model in ADS [34].  

The varactor diode electrical and device parameters for the 

frequency doubler chip are summarized in TABLE I. 

TABLE I 

DIODE ELECTRICAL AND DEVICE PARAMETERS AT 300 K 

Parameter Symbol Substrateless 

Multiplier 

Membrane 

Multiplier 

Thermal voltage (mV) VT 25.8 25.8 

Diode ideality factor η 1.2 1.14 

Reverse saturation  

current (A) 
Is 6.7 x 10-14 1.6 x 10-13 

Zero-biased junction 

capacitance (fF) 
Cj0 59 64 

Forward-biased 

depletion capacitance 

coefficient 

α 0.5 0.5 

Barrier height  (eV) øb 0.85 0.85 

Series resistance (Ω) Rs 3.2  3.5 

Anode contact area 

(μm2) 
A 52.5 40.25 

Epilayer doping 

concentration (cm-3) 
Nd 1 x 1017 2 x 1017 
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In general, several electrical device parameters are 

dependent on the anode junction temperature.  For the 

operating condition in this example, the analyzed temperature-

dependent electrical parameters are limited to VT , Is and Rs, as 

stated in (11) to (13).  Other temperature-dependent electrical 

parameters can be entered to the model if required.    

  TTVT   (11) 

  )exp(2

T

b
s

V
TTI


  (12) 

     

 

  ss

ss

fingercontactspreadingepis

R
K

T
KTR

RTR

RRTRTRTR

)1(
300

300

)1(

89.0



















 
(13) 

For the planar diode, the series resistance is comprised of 

several resistive components, as in (13).  Among these 

components, the ohmic contact resistance (Rcontact) and air-

bridge finger resistance (Rfinger) are assumed to be temperature 

independent.  Only the epi-layer resistance (Repi) and 

spreading resistance (Rspreading) are temperature-dependent.  In 

this work, it is assumed that the temperature-dependent part of 

the epi-layer resistance is similar to that of the spreading 

resistance.  The temperature-dependent resistance proportions, 

χ, are approximately 40% and 30% of the total series 

resistance for the substrateless multiplier chip and membrane 

multiplier chip, respectively.  The temperature-dependent 

empirical low-field mobility model developed by M. Sotoodeh 

[35] is used to scale the temperature-dependent series 

resistance.  For a temperature range within 300 K to 500 K, 

which is generally a reasonable device operation range, the 

series resistance exhibits temperature dependency as in (13). 

B. The Frequency Doubler Chip Thermal Model 

In order to extract the thermal resistance matrix, the 

procedure presented in Section III.C is performed.  For a 6-

anode multiplier chip, the order of the thermal resistance 

matrix required for analysis is six.  For a thorough thermal 

investigation, including thermal run-away study, a 6 x 6 

thermal resistance matrix is required.  However, for a normal 

multiplier operation, the power dissipation and temperature at 

anode i is assumed to be the same as those at anode (n+1-i), 

due to the symmetry property of the balanced topology (see 

Figure 2).  Thus, the thermal resistance matrix can be 

simplified to a 3 x 3 thermal resistance matrix.   

 

1) The Reasonable Operating Power Range 

The reasonable range of operating power levels for both 

multipliers are estimated by performing FEM simulations with 

equal power dissipation levels on all the anodes.  Due to the 

chip symmetry property, it is sufficient to solve the 3D FEM 

heat equation in half of the chip domain.  In this analysis, the 

maximum reasonable power dissipation level is estimated to 

be approximately 30 and 12 mW per anode for the 

substrateless multiplier chip and membrane multiplier chip, 

respectively.   

2) The Thermal Resistance Matrix Elements 

Upon identifying the power dissipation range, the thermal 

resistance elements are calculated from a sequence of single 

heat source FEM simulations, as described in step (ii), for 

several power levels.  Due to the symmetry in the FEM 

simulations, the extracted thermal resistance elements 

represent the resistance as if the sources at anode i and anode 

(n+1-i) are turned-on at the same time. 

The thermal resistance elements, calculated as a function of 

power dissipation level, are then analyzed as a function of 

anode temperature.  The thermal resistances at ambient 

temperature and the temperature-dependent coefficients, as 

stated in (7), are then extracted through a linear curve-fitting 

procedure.  Figure 5 shows the temperature dependencies of 

the diagonal thermal resistance elements for both multiplier 

chips as well as the corresponding fitted curves.  The 

extractions show good agreements using the linear 

temperature-dependent thermal resistance approximations.  

The extracted thermal resistance matrices for the substrateless 

and membrane multiplier chip are written in (14) and (15), 

respectively.     

 
Figure 5 The temperature dependency of diagonal thermal resistance elements 

in the single heat source cases.  The markers show the temperatures acquired 

from the FEM simulations at power level of 5, 10, 20, 30 and 40 mW for the 

substrateless multiplier, and 2, 4, 6, 8, 10 and 12 mW for the membrane 

multiplier.  The solid lines show the corresponding fitted-curves. 
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3) The Thermal Model Verification 

For model verification, the anode junction temperatures 

with equal power, up to the maximum reasonable power 

dissipation level, on all the anodes are calculated using (3).  

These calculated temperatures are then compared to those 

acquired from FEM simulations.  The result shows a good 

agreement of the anode temperatures acquired from both 

methods (see Figure 6).  This indicates that the temperature-

dependent thermal resistance, by only considering Taylor 

series expression up to first order term, is adequate in solving 

the non-linear problem for both multipliers.   

 
Figure 6  Comparisons of the anode temperatures calculated using the 

temperature-dependent thermal resistance matrix multiplication method and 

FEM simulation.  The markers show the FEM simulated temperatures, 

whereas the solid lines show the corresponding calculated temperatures.    

 

C. The Harmonic Balance Simulation 

For the harmonic balance simulation, the RF input power is 

swept from 0 mW to 180 mW at the pumping frequency of 

99.5 GHz for the substrateless multiplier and 90 GHz for the 

membrane multiplier.  The DC bias voltage is optimized for 

each RF power level in the electrical model.  A similar 

optimized bias voltage is then applied in the electro-thermal 

simulation.  Since the thermal time constant is much larger 

than one cycle of the input frequency, a thermal capacitance of 

1 nW•s/K is added in parallel to all the thermal resistance 

elements in the model. 

The analysis includes frequency harmonics up to the 8th 

order of the fundamental frequency.  The input and output 

frequency matching circuits are implemented using scattering 

parameters (S-parameters), which are acquired from 3D FEM 

full wave simulations.  Harmonics at higher frequencies are 

shorted to ground.  For the substrateless multiplier, the input 

and output waveguide losses are 0.3 dB and 0.1 dB, 

respectively.  On the other hand, both the input and output 

waveguides are simulated with losses of 0.1 dB for the 

membrane multiplier.  Conductor losses for the matching 

circuits are taken into account in the 3D EM simulation.     

Figure 7 shows the predicted temperatures of each anode as 

a function of RF input power for both multipliers, where the 

hot spots are identified to be at anode 3.  Comparing with the 

substrateless multiplier, the rise in temperature is more 

significant for the membrane multiplier, as the consequence of 

a thinner GaAs substrate.  For an RF input power of 100 mW, 

a temperature-rise of 43 K and 120 K is predicted for the 

substrateless and membrane multiplier, respectively.      

 
Figure 7  The estimated anode junction temperatures as a function of the RF 

input power. 

    A comparison of the circuit electrical performance, with 

and without thermal model, is shown in Figure 8.  

Benchmarking the simulation result with the measurement 

result shows that a better agreement is achieved by taking into 

consideration of the thermal effect.  The result shows that the 

thermal effect is negligible for a lower input power range, e.g. 

40 mW.  There is no significant difference in the simulation 

results with and without the thermal model.  For input power 

beyond 40 mW, the result shows that the electro-thermal 

model provides a better estimate of the multiplier 

performance.   

For the substrateless multiplier, a very good agreement 

between the measurement and electro-thermal simulation 

result is achieved.  For an input power of 150 mW, the 

measured output power is 34.5 mW.  The error in output 

power estimation is ~ 4 % and ~ 13 % for the electro-thermal 

model and electrical model, respectively.  Compared to the 

substrateless multiplier analysis, the membrane multiplier 

analysis shows more discrepancy between the simulated and 

measured circuit performance.  For the electro-thermal model, 

the overestimation of the output power is ~ 17 % for the case 

of a 100 mW input power.  This discrepancy can be attributed 

to the underestimated thermal resistance of the membrane 

multiplier.          

Without considering the thermal effect, the electrical 

performance of the membrane multiplier is expected to be 

better than the substrateless multiplier.  The maximum 

conversion efficiency is predicted to be 27% at an input power 

of 110 mW for the membrane multiplier, and 26% at an input 

power of 130 mW for the substrateless multiplier.  However, 

due to a more significant thermal effect on the membrane 

multiplier, the maximum efficiency is reduced to 23% and the 

RF input power for peak efficiency is down-shifted to 90 mW. 

Figure 8 (c) and (d) shows the instantaneous current-

voltage (I(t)–V(t)) characteristic for the hottest diode, i.e. 

diode 3.  The thermal effect on the current-voltage 

characteristic is also illustrated in this figure.  For a RF input 

power of 150 mW, the diode currents in both multipliers 
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Substrateless Multiplier Membrane Multiplier 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8  (a) and (b) A comparison of the RF output power and the flange-to-flange efficiency between simulation and measurement for both multiplier chips; (c) 

and (d) Thermal effect on the instantaneous current and voltage characteristics for diode 3.   

 

are less than 120 mA.  The current saturations due to 

electron velocity saturation effect [11] are calculated to be 

approximately 180 mA and 280 mA for the substrateless 

and membrane multiplier, respectively.  The peak 

calculated current for the substrateless multiplier is 104 mA 

and the peak calculated velocity is ~ 12 x 106 cm/s.  Thus, it 

can be concluded that the multiplier performance is not 

limited by the current saturation effect up to the input 

power of 150 mW.   

This analysis reveals the impact of the thermal 

management on the electrical performance for high power 

applications.  Thus, the self-consistent electro-thermal 

model is an essential tool for circuit analysis towards 

optimizing the chip design from both electrical and thermal 

aspects. 

V. CONCLUSION 

In this work, we have developed a self-consistent electro-

thermal model for a multi-anode Schottky-based multiplier 

chip.  The methodology and implementation of the model 

presented is straightforward and yet effective to incorporate 

the nontrivial thermal effects on the electrical performance.  

The incorporation of this model in the circuit analysis is 

beneficial for multiplier chip design and further design 

optimization.    

Although the electro-thermal model is developed for the 

steady-state cases (i.e. continuous wave applications) of 

high frequency Schottky diode operations, the model can be 

further extended to pulsed-RF applications.  For 

applications where the diode operating period is 

comparable to the thermal time-constant, a similar model 

can be implemented by incorporation of proper thermal 

capacitances in the thermal network.  In addition, the model 

can also be extended to cover diode chip topologies 

required for array receivers. 
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