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Sinusoidal electromagnon in RMnO3: Indication of anomalous magnetoelectric coupling
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3Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany

(Received 25 October 2011; revised manuscript received 21 December 2011; published 20 March 2012)

The optical spectra in the family of multiferroic manganites RMnO3 is a great puzzle. Current models cannot
explain the fact that two strong electromagnons are present in the noncollinear spin cycloidal phase, with only one
electromagnon surviving the transition into the collinear spin sinusoidal phase. We show that this is a signature of
the presence of anomalous magnetoelectric coupling that breaks rotational invariance in spin space and generates
oscillatory polarization in the ground state.
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I. INTRODUCTION

In multiferroic materials magnetic and electric orders
coexist simultaneously and the coupling between spin and
charge degrees of freedom gives rise to a wide range of
magnetoelectric phenomena.1–3 Recent research has centered
on the origin and symmetry of magnetoelectric coupling.
The crucial question is how the coupling between two spins
depends on electric field:

Hme =
∑
nm

[Jnm(E)Ŝn · Ŝm + Dnm(E) · Ŝn × Ŝm

+ Ŝn · Anm(E) · Ŝm]. (1)

Here Ŝn and Ŝm are spins at lattice sites Rn and Rm, and the
electric field E can be either internal, i.e., from the electric
polarization in the material, or external, as is the case of inci-
dent light. The first two interactions in the right-hand side of
Eq. (1) are well understood. The first one, exchange interaction
J , is electric-field dependent because atomic positions are
modulated by E (the phenomena of magnetostriction). The
second one, the Dzyaloshinskii-Moriya (DM) interaction, is
first order in spin-orbit coupling and is antisymmetric under
spin interchange. The third and final interaction, the anomalous
tensor A, is instead symmetric under spin interchange; it is
known to originate from second-order spin-orbit effects,4 but
is usually believed to be weak or hard to probe. Nevertheless,
its electric-field dependence has not been studied.

Most interesting effects take place when one of the coupling
coefficients depends linearly on electric field. For instance,
simple models based on electronic5 or lattice mediated
polarization6 predict that the DM vector is electric-field depen-
dent according to Dnm ∝ E × (Rn − Rm); this gives rise to the
phenomena of magnetically induced ferroelectricity observed
in a large class of materials, the cycloidal multiferroics.5–8

In addition, the linear magnetoelectric effect makes mag-
netic excitations electrically dipole active. This gives rise to the
electromagnon, the quasiparticle of the multiferroic state.9–18

The observation of electromagnons in optical experiments
provide invaluable clues on the symmetry and magnitude of
the magnetoelectric coupling present in Eq. (1). Moreover,
the ability to launch, detect, and control magnons electrically
also holds promise for novel applications in information
processing.19,20

The observation of magnetically induced ferroelectricity7

and electromagnons10 in the class of perovskite manganites
RMnO3 has made this material the prototype for studies of
strong magnetoelectric effects. Here R is a rare-earth ion,
such as Dy, Tb, Gd or their mixture, e.g., GdxTb1−x . In the
RMnO3 family, spins are typically ordered with a period
incommensurate with the lattice.7,14 Below the first Néel
temperature (T = 39 K in DyMnO3), the ground state of the
Mn spins forms the collinear sinusoidal density wave depicted
in Fig. 1(a). At even lower temperature (19 K in DyMnO3),
another phase transition takes place where the Mn spins order
noncollinearly in the cycloid ground state shown in Fig. 1(b).

The detection of electromagnons in the cycloidal phase of
RMnO3 led to a surprising observation. Optical experiments
showed that two quite strong electromagnons are observed
in the cycloidal phase, provided the electric field of light
was directed along the crystallographic direction â.13,15,21

This remained true even when the cycloid plane was flipped,
leading to the conclusion that the DM interaction D could
not explain the origin of the observed strong electromagnon
resonances (but in recent experiments a weak electromagnon
resonance consistent with the DM model was observed22).
This is a surprising conclusion in view of the fact that the DM
interaction is known to be responsible for ferroelectricity in
these materials.

Optical experiments have also produced a puzzling
observation: the lower-energy electromagnon, unlike the
higher-energy one, survives also in the collinear sinusoidal
phase. This is observed, e.g., in DyMnO3 [Fig. 3(a) of
Ref. 21], Gd0.7Tb0.3MnO3 [Figs. 2(a) and 2(b) of Ref. 23],
and Eu1−xYxMnO3 [Fig. 5(b) of Ref. 24], but in TbMnO3 no
electromagnons are discernible in the sinusoidal phase (Fig.
3 of Ref. 12).

Currently, there exists a consensus that the high-energy
electromagnon originates from magnetostriction, the first term
in Eq. (1).13,16,17 However, no consensus exists on the origin
of the low-energy electromagnon. Two quite different models
were proposed for its explanation. In Ref. 16, we showed that
magnetostriction plus spin-orbit coupling is able to explain
the origin of both electromagnons even when the cycloid
ground state is purely harmonic. In Ref. 17, Mochizuki,
Furukawa, and Nagaosa showed that pure magnetostriction
plus cycloid anharmonicity (created by single-ion anisotropy
and an interaction biquadratic in spin, without a tensor A) is
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FIG. 1. (Color online) Schematics of low-temperature phases of
RMnO3: (a) collinear sinusoidal phase and (b) noncollinear cycloidal
phase.

able to explain the two electromagnons of the cycloid phase,
suggesting that anharmonicity plays a vital role (similar results
for BiFeO3 were proposed in Ref. 25). But neither of the two
above-mentioned models is able to explain the optical activity
of the low-energy electromagnon in the sinusoidal phase.

II. MODEL FOR RMnO3

Here we present a model of electromagnon excitations that
can explain the optical experiments in both the sinusoidal and
in the cycloidal phases. Our model Hamiltonian consists of
spin and phonon couplings, H = HS + Hph + H (1)

me + H (2)
me .

Here HS describes exchange interactions and single-ion
anisotropies,

HS =
∑
n,m

Jn,mŜn · Ŝm + Da

∑
n

(Ŝn · â)2 − Db

∑
n

(Ŝn · b̂)2.

(2)
We assume Da > 0 and Db > 0, favoring alignment along the
b̂ direction. The spins are coupled by exchange interactions
Jn,m, with nearest-neighbor interactions in the ab plane
denoted by J0, next-nearest-neighbor interaction along b̂
denoted by J2b, and interaction along the ĉ direction denoted
by Jc. The interaction J0 < 0 is ferromagnetic, while J2b > 0
and Jc > 0 are both antiferromagnetic.

At sufficiently low temperatures, provided that the sta-
bility condition J2b > −J0/2 is satisfied, the competition
between the nearest-neighbor ferromagnetic exchange and
the antiferromagnetic next-nearest-neighbor exchange favors
incommensurate spin ordering. Between the first and second
Néel temperatures the spins order in a sinusoidal density wave,

S0(R,T ) = ±S(T ) cos(Q · R + φ)b̂, (3)

with S(T ) a temperature-dependent amplitude [see Eq. (3.14)
in Ref. 26 for its dependence on model parameters]. The
magnitude of the sinusoidal wave vector Q is given by
cos(Qb/2) = −J0/(2J2b). The upper sign in Eq. (3) corre-
sponds to ab layer spins with the integer c coordinate, while
the lower sign applies to spins in the neighboring ab layers a
distance c/2 above and below them.

Our phonon Hamiltonian is

Hph = 1

2
m∗ ∑

n

(
ẋ2

n + ω2
0 x2

n

) − e∗ ∑
n

xn · E, (4)

where ω0 is the (bare) phonon frequency, m∗ is the effective
mass, xn is the relative displacement between anions and
cations in the nth unit cell, e∗ is the Born charge, and E is
the electric field of light.

We divide the linear magnetoelectric couplings in our model
into two separate terms, H (1)

me and H (2)
me . The first interaction,

H (1)
me = e∗ ∑

n

xa
n

[
gc

(
Ŝc

1,n − Ŝc
1,n+b

)(
Ŝc

2,n + Ŝc
2,n+a

)

+ gb

(
Ŝb

1,n − Ŝb
1,n+b

)(
Ŝb

2,n + Ŝb
2,n+a

)
+ (1 → 3,2 → 4)

]
, (5)

does not give rise to electromagnons in a collinear ground
state, but is necessary to explain the origin of the low-frequency
electromagnon in the cycloidal phase.16 The second interaction
is instead given by

H (2)
me = e∗ ∑

n

xa
n

{[
gbc

(
Ŝb

1,n − Ŝb
1,n+b

)(
Ŝc

2,n + Ŝc
2,n+a

)

+ gab

(
Ŝa

1,n − Ŝa
1,n+b

)(
Ŝb

2,n + Ŝb
2,n+a

) + (1 ↔ 2)
]

+ (1 → 3,2 → 4)
}
, (6)

where gab and gbc are coupling constants that can be obtained
by microscopic calculation (e.g., using density functional
theory). Like Eq. (5), this spin-symmetric interaction is also
invariant under the Pbnm space-group operations of RMnO3,
and is therefore consistent with lattice symmetry. Both
interactions represent anomalous magnetoelectric coupling,
with particular forms of the anomalous tensor A [Eq. (1)].
A generalization of Moriya’s theory4 to allow for magne-
tostriction effects shows that such interactions can originate
from cross-coupling between spin-orbit and magnetostriction
effects. However, a full microscopic theory is still needed to
confirm this expectation.

III. ELECTROMAGNON SPECTRA

We adopt the molecular field approximation and expand the
Hamiltonian H by keeping only terms quadratic in the fluctu-
ation operators, e.g., δŜ2

c , δŜaδPa , δP 2
a , etc. We parametrize

the spin excitations δ Ŝ = Ŝ − S0 by δ Ŝi,n = ŝa
i,nâ ± ŝc

i,nĉ,
and compute the equations of motion using the canonical
commutation relations, [ŝc

j,n,ŝ
a
k,m] = iδjkδnmŜb

k . In addition,
we also adopted the random phase approximation (RPA), i.e.,
we made the substitution Ŝb

k → 〈Ŝb
k 〉 = S0(Rk,T ) · b̂ in the

commutator above. Such an approximation is expected to hold
when the fluctuation effects are not too large (i.e., we are
sufficiently far from the Néel temperature).

After some manipulation the coupled equations of motion
for spins and polarization are given by

(
ω2 − �2

C,q

)(
sα

1q + sα
2q + sα

3q + sα
4q

) = �C,q�q, (7a)(
ω2 − �2

C,q + k0

)(
sα

1q − sα
2q + sα

3q − sα
4q

) = �C,q + k0�q+k0 ,

(7b)(
ω2 − �2

EC,q

)(
sα

1q + sα
2q − sα

3q − sα
4q

) = 0, (7c)(
ω2 − �2

EC,q+k0

)(
sα

1q − sα
2q − sα

3q + sα
4q

) = 0, (7d)

where α = a,c. Here sα
iq is the momentum representation of

the spin fluctuation sα
in. Equations (7a) and (7b) are related by

a shift in momentum space, q ↔ q + k0, where k0 = 2π/b

is the Brillouin zone edge for magnons. Such a relation-
ship corresponds to the fact that “antiphase’fluctuations of
neighboring spins with wave vector q are equivalent to
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q0 2π/b(2π/b – 2Q)
|

FIG. 2. (Color online) Typical dispersion curves for magnon wave
vector q along b̂ in the sinusoidal phase: cyclon (black solid) and
extra cyclon (red dashed). In the sinusoidal state, only the low-energy
electromagnon (filled circle) is activated, through H (2)

me [Eq. (6)].
In the cycloidal state, H (1)

me [Eq. (5)] activates also the zone-edge
electromagnon (hollow square).

“in-phase’fluctuations at q + 2π/b. They describe a mode
here referred to as a cyclon, with dispersion �C,q . Similarly,
Eqs. (7c) and (7d) share the same momentum shift relationship,
but describe a different mode referred to as an extra cyclon.
The cyclon and extra-cyclon dispersions are shown in Fig. 2.
We note that the cyclon has a gap proportional to Db, while
the extra cyclon has a gap proportional to (2Jc + Db).

Equations (7a) and (7b) show that H (2)
me couples only a

single electromagnon, the cyclon at q = k0 − 2Q, to the polar
phonon. This takes place through dynamic magnetoelectric
coupling �C,q�q with

�q = �ab
q − �bc

q , �bc
q = �ab

q (gab → gbc), (8)

�ab
q = gabS(T )2v0 sin

(
Qb

2

)
δP a

0

h̄
[e−2iφδq−k0+2Q

− e2iφδq−k0−2Q + e−2iφδq+k0+2Q − e2iφδq+k0−2Q].

(9)

Optical experiments such as transmissivity or reflectivity probe
the frequency dependence of the dielectric function ε(ω). After
a linear response calculation we obtain

ε(ω) = Sem

�2
C,k0−2Q − �2 − ω2

+ Sph

ω2
0 + �2 − ω2

+ ε∞. (10)

Hence ε(ω) can be written as two Lorentzians, with poles at
downshifted magnon and upshifted phonon frequencies. The
pole at the magnon frequency shows that the cyclon at q =
k0 − 2Q is actually an electromagnon, with spectral weight
given by

Sem = 4πχ0ω
2
0�

2

ω2
0 − �2

C,k0−2Q

. (11)

Here χ0 = e∗2/(m∗v0ω
2
0) is the zero-frequency susceptibility,

with v0 the unit-cell volume. The frequency shift � is
calculated to be

�2 ≈ S(T )2e∗2(gbc − gab)2 tan2
(

Qb

2

)
�2

C,k0−2Q

2m∗(ω2
0 − �2

C,k0−2Q)
[
sin4

(
Qb

2

) + cos4
(

Qb

2

)]
J2b

,

(12)

apart from smaller terms of order (gab − gbc)gab. Since the
magnitude of the frequency shift � is the same for the magnon
and the phonon, we confirm the oscillator strength sum rule
Sem + Sph = 4πχ0ω

2
0.

IV. ADDITIONAL CONSEQUENCE OF ANOMALOUS
MAGNETOELECTRIC INTERACTION:

INCOMMENSURATE OSCILLATORY POLARIZATION

In addition to the sinusoidal electromagnon, the couplings
described by Eqs. (5) and (6) have an important observational
consequence: they lead to an incommensurate oscillatory po-
larization (IOP) with wave vector 2Q.16 Minimizing Eqs. (4)–
(6) with respect to the polar phonon displacement xn and
plugging in the cycloidal spin order, we get

e∗xn

v0
= 4χ0S

2 sin

(
Qb

2

)
{(gb − gc) sin [Qb(2n + 1)]

− gbc cos [Qb(2n + 1)] + gbc} â. (13)

Note how gbc generates a combination of static and oscillatory
polarization along the â direction.

When the system goes into the sinusoidal phase, this
polarization changes discontinuously to

e∗xn

v0
= 4χ0S(T )2 sin

(
Qb

2

)
gb sin [(2n + 1)Qb]â. (14)

Such an oscillatory polarization can be detected by x-ray
scattering. Indeed, Kimura et al. detected an oxygen oscillation
with wave vector 2Q in both the cycloidal and sinusoidal
phases [see blue dots in Fig. 1(c) of Ref. 7]. Just like our
prediction, the x-ray intensity in Ref. 7 showed an apparent
discontinuity in oxygen displacements in the transition from
cycloidal to sinusoidal phase.

Table I shows how a combination of optical and x-ray
scattering experiments are capable of measuring the magneto-
electric coupling constants individually, and even cross-check
some of them. For instance, for DyMnO3, we obtain from the
measured electromagnon spectral weights21 and x-ray diffrac-
tion intensities27 in the sinusoidal and cycloidal phases the
values of gb ∼ 170 erg/(cm esu), gc ∼ −40 erg/(cm esu), and

TABLE I. This table relates our predictions for optical and x-ray
experiments to the anomalous magnetoelectric coupling parameters
gα and gαβ introduced in this paper (α,β = a,b,c are crystallo-
graphic directions). The first column refers to measurements of
electromagnon spectral weight using far-IR optical experiments,
and the second column refers to the measurement of magnetically
induced lattice distortions using x-ray spectroscopy. Each experiment
has different magnetoelectric signatures, depending on whether the
ground state is cycloidal or sinusoidal. All parameters can be
measured individually and, in addition, parameters gb and gc can
be cross-checked.

Electromagnons (far-IR) Atomic disp. (x-ray)

(gb − gc)2 (gb − gc)Cycloidal
(gb + gc)2 gbc

Sinusoidal (gbc − gab)2 gb
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gab ∼ 100 erg/(cm esu) � gbc. In TbMnO3, the sinusoidal
electromagnon could not be observed experimentally.12 Since
the specific magnetoelectric properties of RMnO3 vary with
ion R, we think that a likely explanation is that gab,gbc �
gb,gc, i.e., H (2)

me is much weaker than H (1)
me in TbMnO3.

V. DISCUSSION AND CONCLUSION

We now consider the justification of our model and other
possibilities for the activation of the electromagnon in the
collinear sinusoidal phase. First, we note that the presence of
DM interaction in principle also predicts an electromagnon
in the collinear sinusoidal state.28,29 However, this scenario
is ruled out by the experiments where the electromagnon
is activated with E along â only. In addition to the DM
interaction, there are no other linear magnetoelectric couplings
antisymmetric under the exchange of spins that would be
allowed by lattice symmetry.

The anharmonic cycloid model of Mochizuki, Furukawa,
and Nagaosa17 would give rise to no electromagnon activity
in the sinusoidal phase. One possibility for the activation
of sinusoidal electromagnons in this scenario would be to
include additional single-ion anisotropy so that the spins in
the ground state are tilted off the b̂ axis.30 However, in this
case, both high- and low-energy electromagnons get activated.
We found no scenario where deformation of the sinusoidal
ground state activates the low-energy electromagnon without
activating the high-energy one. Furthermore, we note that
thermal magnetic fluctuations31 cannot play a role in the
activation of the electromagnons. This can be seen in the
experiments, since the resonance spectral weight does not
increase at Néel temperatures where magnetic fluctuations are
enhanced.

Concerning other possible symmetry-allowed magneto-
electric interactions, we note that the other couplings quadratic
in spin do not couple electric field linearly to magnons.
More specifically, terms of the form xa

nSa
i Sa

j , xa
nSc

i S
c
j , and

xa
nSa

i Sc
j lead to contributions that are third order in fluctuation

operators, and the term xa
nSb

i S
b
j does not couple polarization

to magnons. Hence in the collinear sinusoidal state only
the couplings linear in Sb considered in the present work
[Eq. (6)] can be responsible for the electromagnons in collinear
sinusoidal state.

Moreover, Sirenko et al.32 have suggested a scenario
based on f-level orbital excitations of the rare-earth ion R.
Ligand field splitting involving f-levels could get admixed
with magnons, leading to an excitation quite similar to the
electromagnon described in our work. A natural way to
discern between these two distinct scenarios is to measure the
correlation between x-ray and optical measurements described
in Table I. If our electromagnon scenario is correct, the
predicted incommensurate oscillatory polarization will appear
in the form of atomic displacements with wavevector 2Q in the
same phases where the electromagnon is observed. In case the
f-level scenario is taking place, the x-ray study should reveal
instead the onset of f-level orbital ordering.

In conclusion, we showed that anomalous magnetoelectric
coupling gives a natural explanation for the origin of elec-
tromagnons in both the cycloidal and sinusoidal phases of
RMnO3. It remains an open question to study, e.g., through
ab initio methods, the microscopic mechanism of anomalous
magnetoelectric coupling.
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