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The contrast source inversion (CSI) algorithm was introduced for microwave imaging in 1997 and has since proven to be one of
the most successful algorithms for nonlinear microwave tomography. In the CSI algorithm, the nonlinear integral equation, which
must be solved to extract the constitutive electromagnetic parameters of the object under test from the microwave measurements,
is represented by two linear equations, known as the data and the object equations. In this paper, the data equation in the CSI
algorithm is reformulated using the so-called log-phase formulation. In this formulation, the measured data is represented by
the change in the logarithm of the amplitude and the change in the unwrapped phase. This formulation has previously been
applied for nonlinear tomography within the framework of a Gauss-Newton based algorithm for detection of breast cancer. Here,
significant improvements have been observed compared to the more commonly used real-imaginary formulation. The modified
CSI algorithm is tested on both simulated data and on a measurement of a breast. It is shown that for imaging setups with large
differences in the measured signals, the new formulation of the data equation significantly improves the performance of the CSI
algorithm.

1. Introduction

As far back as the late 1940s, researchers have reported on the
contrast in constitutive electromagnetic parameters between
healthy and cancerous breast tissue in the microwave region
[1–5]. This contrast implies that the presence of a tumor
will cause an incident electromagnetic field to scatter,
thereby making it feasible to detect breast cancer by use
of microwave imaging. Different approaches have been
suggested for microwave imaging of the breast, with radar-
based [6, 7] and tomographic approaches [8–10] being
the most widespread. In the radar-based approaches, the
position of point scatterers inside the breast is sought for
by application of techniques inspired by those used in more
classic radar applications. When using the tomographic
approaches, one seeks to reconstruct the distribution of the
constitutive electromagnetic parameters, that is, permittivity
and conductivity, inside the breast.

Apart from the possible presence of a cancerous tumor in
the breast, the different healthy tissue types in the breast will

also cause scattering of the incident microwaves. This implies
that the imaging problem is nonlinear and ill posed, making
the use of microwave tomographic imaging a challenging
task.

In 1997, the contrast source inversion (CSI) algorithm
was introduced as a means for solving nonlinear tomo-
graphic microwave imaging problems [11]. In this algorithm,
the electromagnetic inverse problem is formulated as a
minimization problem using two coupled equations, known
as the data and the object equations. In the data equation, the
scattering objects are represented using the so-called contrast
sources (from which the name contrast source inversion
originates), while the object equation relates the physical
contrast in constitutive parameters to the contrast sources.
By iteratively solving the two equations, in turn updating
the distribution of contrast sources and the distribution
of constitutive parameters, the actual distribution of the
constitutive parameters in the object under test can be
reconstructed. Since its introduction, the algorithm has been
successfully applied for microwave imaging in a number of
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different applications [12–15], including biomedical [16–
18].

Apart from microwave imaging, the CSI algorithm
has also been successfully applied in other areas, such as
ultrasound, elastodynamics, and electrode logging [19–21].

One of the characteristic trades of the CSI algorithm is
that it does not require the explicit solution of the forward
scattering problem. This is different from the widely used
Newton-based algorithms, in which each iteration of the
algorithm requires the solution of the forward scattering
problem [8, 9, 22, 23]. Since solving the forward scattering
problem is most often a computationally expensive task, this
feature is often considered one of the strongest arguments for
using the CSI algorithm.

A number of modifications have previously been sug-
gested for the CSI algorithm. These have most often been
related to the regularization of the problem and include the
use of a total variation term both as additive and multiplica-
tive regularization [16, 24], the use of different algorithms for
calculating the updates of the contrast sources and contrast
[25], and other changes to the regularization scheme used
in the algorithm [26]. In addition to this, multifrequency
versions of the algorithm have been published [12].

While a large amount of literature has been published
on different regularization schemes, the weighting of the
measured data and reformulation of the scattering problem
have received little attention. The authors of this paper have
previously shown how the use of the so-called log-phase
formulation, introduced in [22], improves the performance
of Newton-based imaging algorithms [27–29], both in 2D
and 3D. In the log-phase formulation, the cost function
to be minimized in the imaging algorithm is formulated
using the logarithm of the change in amplitude and the
unwrapped change in the phase of the measured complex
S-parameters. The improvement observed when using this
formulation is in part caused by the fact that the log-
phase formulation emphasizes relative changes, putting more
weight on measurements made with antennas on opposite
sides of the object under investigation, and in part by the use
of the unwrapped phase, which implies that the algorithm is
capable of handling phase changes of more than ±π.

In this paper, a CSI algorithm, in which the data
equation is reformulated using the log-phase formulation,
is presented. In Section 2, the algorithm is presented, and
in Section 3, the performance of the algorithm is illustrated
by reconstructions of both simulated and measured data.
The time notation e−iωt, with i being the imaginary unit, is
assumed throughout this paper.

2. Algorithm

The algorithm presented in this paper is based on the
CSI algorithm introduced in [24, Sec. 3], that is, the CSI
algorithm using the Polak-Ribiére algorithm for updating the
distribution of both the contrast sources and the contrast.
Here, the algorithm will be derived for a two-dimensional,
transverse magnetic imaging setup. This simplifies the
expressions in that the electric fields can be expressed as

scalars, and that the computational burden is considerably
smaller than for a full three-dimensional inversion.

The CSI algorithm is based on the electric field integral
equation which relates the known incident field Einc trans-
mitted by the imaging system and the unknown total field
Etot through the equation

Etot
j (r) = Einc

j (r) + k2
bg

∫
D
G(r, r′)Etot

j (r′)χ(r′)dr′. (1)

In this expression, G is the Green’s function for the
background medium, r and r′ are position vectors, and the
integration is performed over the imaging domain D which
is assumed to completely enclose the object under investi-
gation. The subscript j indicates that different antennas are
used to irradiate the domain, yielding one distribution of the
electric field for each transmitting antenna.

The background medium has the squared complex wave
number k2

bg given by

k2
bg = ω2μ0εbg + iωμ0σbg, (2)

with εbg and σbg being the permittivity and conductivity,
respectively, of the background medium. The contrast χ in
(1) is given by

χ(r) = k2(r)
k2

bg − 1
, (3)

wherein k2(r) is the squared complex wave number at the
position r. Hence, the contrast is zero if the permittivity
and conductivity at a given position is equal to that of the
background and nonzero at positions where an object with
different constitutive parameters is present.

The expression in (1) contains the total field Etot both
on the left-hand side of the equation and in the integral on
the right-hand side, leading to a nonlinear inversion problem
with respect to the unknown distribution of the contrast χ.
By introducing the contrast sources wj as

wj(r) = Etot
j (r)χ(r), (4)

the integral equation (1) can be rewritten as

Etot
j (r) = Einc

j (r) + k2
bg

∫
D
G(r, r′)wj(r′)dr′. (5)

In this way, the nonlinear equation in (1) can be expressed as
two coupled equations: one is the so-called data equation (5)
which provides an expression for the linear relation between
the contrast sources in the imaging domain and total field,
Etot
j (r), which can be measured by the receiving antennas of

the imaging system.
The other equation is the so-called object equation which

can be found by rewriting the expression in (4) as

wj(r) = χ(r)
(
Einc
j (r) + k2

bg

∫
D
G(r, r′)wj(r′)dr′

)
(6)

and provides a relation between the contrast sources and the
actual contrast of the object in the imaging domain. This
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expression is seen to be nonlinear with respect to wj , which
appears on both the left- and right-hand side of the equation.

In the CSI algorithm, these two equations are solved
iteratively in turn, thereby minimizing the cost function [24,
(1)]

F =
∑

j

∥∥∥ f j −GSwj

∥∥∥2

S∑
j ‖ f j‖2

S

+ β

∑
j

∥∥∥χEinc
j + χGDwj −wj(r)

∥∥∥2

D∑
j

∥∥∥χEinc
j

∥∥∥2

D

.

(7)

Here, f j is the measured data, and the subscripts S and
D indicate the norms over the receiving antennas and the
imaging domain, respectively. The operators GS and GD are
the integral operators in (5) and (6), respectively, which
map the influence of the contrast sources in the imaging
domain to the measured data (S) and the influence from
the contrast sources to the physical contrast in the imaging
domain (D). Finally, the summations are to be performed
over all transmitters, and β is a normalization factor given in
[24, (11)].

This concludes the description of the basic CSI algorithm
in this paper. The reader is referred to [24] and the paper
in which the CSI algorithm was first introduced [11] for the
complete details on the algorithm.

The new algorithm differs from that presented in [24]
only in the way the measured data is represented. In the
original algorithm, the data is used in its real-imaginary
form, and the elements in the data equation are based on
the difference between the signals measured for an empty
measurement system and the signals measured with an object
inserted. Expressed in terms of measured S parameters, the
data f j can be written as

f j = S
obj
j − S

empty
j . (8)

Herein S
empty
j and S

obj
j are the S parameters measured with an

empty system and the S parameters measured with an object
inserted in the imaging system, respectively.

In the new algorithm, the data equation is transformed
from the real-imaginary formulation to the log-phase for-
mulation [22]. This implies that the values of f j in the new
algorithm are given as

f
log
j = log S

obj
j − log S

empty
j

= log
∣∣∣S

obj
j

∣∣∣− log
∣∣∣Sempty

j

∣∣∣ + i
(
∠S

obj
j −∠S

empty
j

)
,

(9)

with ∠ indicating the unwrapped phase. When the natural
logarithm is used, as is the case in this paper, the phase in this
expression will be given in radians, while the real part will
be the difference in the natural logarithm of the amplitude
of the signals measured with and without the object in the
imaging system.

The use of the log-phase formulation results in a
nonlinear data equation (9) as opposed to the linear data
equation (5) encountered when using the real-imaginary
formulation. This implies that the input to the Polak-Ribiére

algorithm, used to calculate the updates, must be changed
slightly from those used in [24].

Following the notation in [24], the operator G
log
S is

introduced as the operator which maps the resulting field
from the contrast sources wj to the receiving antennas
in the log-phase formulation. This operator is most easily
implemented by simply using the standard operator GS

and then adding an additional layer in which the simple
calculation in (9) is performed.

To determine the update directions and step length in
the Polak-Ribiére algorithm, the complex conjugate of the

derivative of the operator G
log
S is needed. If the notation from

[24] is used, the new updates can be determined by using the
operator

G
log
S

∗ = f ′j∣∣∣ f j
∣∣∣2 G

∗
S , (10)

where G∗S is the operator used in [24, (17) and (19)], and f ′j
is the complex conjugate of f j . Otherwise, the updates are
determined in the same way as described in [24, Sec. 3].

In the simple implementation of the algorithm currently
used by the authors, the computational demand of the log-
phase formulation results in an increase of the computation
time per iteration of just under 3%. Hence, the added
computational complexity should not be a limiting factor for
the implementation of the algorithm.

To sum up, the algorithm presented here is identical to
the algorithm presented in [24, Sec. 3] with the exception
that the data equation is formulated using the log-phase
formulation. This results in a slightly different calculation of
the data error and requires that the adjoined operator used
to determine the update direction of the contrast sources in
[24, (17) and (19)] is replaced with the operator in (10).

3. Results

To illustrate the change in the performance of the algorithm
caused by the reformulation of the data equation, three
different imaging setups are presented. The first two are sim-
ulations of circular targets, and the third is a measurement of
a breast with a relatively large tumor in it.

To allow for a comparison of the images, the RMS of the
normalized error is introduced as

ηcomplex =

√√√√√ 1
Npixels

Npixels∑
n=1

∣∣∣∣∣
εctrue,n − εcrecon,n

εctrue,n

∣∣∣∣∣
2

, (11)

where the complex permittivity εc is given by

εc = ε + i
σ

ω
, (12)

Npixels is the number of pixels in the imaging domain, and
εctrue,n and εcrecon,n are the true and reconstructed values of the
complex permittivity in the individual pixels, respectively.
Since the true distribution of the complex permittivity is
not known for the patient measurement, the RMS of the
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Figure 1: Schematic of the measurement system and simulation
setup. The black dots indicate the positions of the antennas which
are positioned in a circle with a radius of 7.62 cm. The light-gray
area illustrates the circular imaging domain with a radius of 7.25 cm
in which the object to be imaged (dark-gray area) is completely
enclosed.

normalized error will only be calculated for the simulated
data sets.

Throughout this section, the CSI algorithm is set to
terminate when the value of the cost function (7) reaches
a value of 0.002. This value has been chosen ad hoc on the
basis of a large number of image reconstructions performed
with the imaging setup used in this paper. For other imaging
systems, a different value may provide better results.

3.1. Imaging System. The imaging setup considered in this
paper is described in [30] and consists of 16 monopole
antennas positioned in a circular setup with a radius of
7.62 cm. A schematic of the system is shown in Figure 1 and
a photo is shown in Figure 2. The system is currently being
used for breast imaging at Thayer School of Engineering at
Dartmouth College and operates in the frequency domain,
typically at a frequency between 500 MHz and 1700 MHz. To
maximize the coupling between the antennas and the interior
of the breast, the imaging system is filled with a coupling
liquid consisting of a mixture of glycerin and water.

When used for breast imaging, the patient is lying in
a prone position with her breast suspended down into the
center of the imaging system, and the antennas are moved
vertically to seven different positions to image the entire
length of the suspended breast. A thorough description of
the system can be found in [30] and the references therein.

3.2. Simulation 1: Small Object. In the first of the simulated
setups, the system is simulated at a frequency of 1.5 GHz,
and the background has a relative permittivity of 20 and a
conductivity of 0.8 S/m. These parameters of the permittivity
and conductivity are similar to those found in a typical

Figure 2: Photo of the measurement system. During patient
examinations, the patient is to lie prone on top of the system with
her breast suspended through an aperture in the top of the system.
Data is collected for seven different planes along the length of the
breast. This is done by moving the circular antenna array vertically
along the suspended breast.

mixture of the glycerin-water coupling liquid used in the
actual system.

A single cylindrical target is inserted into this back-
ground. The target has a radius of 1 cm and a relative
permittivity of 60 and a conductivity of 1.2 S/m and is located
at (x1, y1) = (1 cm, 0). Gaussian noise simulating a noise
floor 130 dB below the level of the transmitted signal has
been added to the simulated data. This corresponds to what
is observed in the measurement system [30].

The inversion results are shown in Figure 3 wherein
the dashed lines indicate the position of the scatterer. In
all three examples presented in this paper, the imaging
domain is divided into Npixels = 4149 square pixels with a
side length of 2 mm. With the real-imaginary formulation,
the CSI algorithm reaches the threshold value of the cost
function after 421 iterations, while the algorithm using
the log-phase formulation uses 954 iterations to reach the
threshold. As mentioned above, the time used pr. iteration is
approximately the same for the two different formulations,
implying that the total calculation time for the log-phase
formulation is approximately 2.3 times longer than that of
the real-imaginary formulation.

The results obtained with the two different formulations
are seen to be very similar, with the real-imaginary formula-
tion reaching a slightly higher value of the permittivity in the
center of the object. The log-phase formulation, on the other
hand, yields slightly less artifacts in the background although
this is not easy to see in the images.

In both of the formulations, the algorithm has trouble
reconstructing the conductivity of the object. This is some-
thing which is often seen in microwave imaging, for example,
[9, 17, 18, 23, 29].

The RMS of the normalized error for both the real-
imaginary and the log-phase formulations is found to be
0.10. This corresponds well with the fact that the images
reconstructed with the two different formulations look
almost identical.
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Figure 3: Reconstruction of the simulated measurement of a single target. The dashed lines indicate the position of the scatterer. The two
formulations give very similar results—something which is also reflected in the values of the normalized errors.

3.3. Simulation 2: Large Object. In the second setup, a
second circular scatterer, surrounding the one modeled in
the first setup, is included in the simulation. This scatterer
has a radius of 5 cm, is positioned with its center at
(x2, y2) = (0, 1 cm), and has a relative permittivity of 10 and
a conductivity of 0.4 S/m. Apart from the presence of this
second scatterer, the simulation parameters are identical to
those used in the first simulation.

The new object causes a large change in the measured
signals. The phase of the signals measured with receivers on
the opposite side of the imaging system from the transmitter
changes more than 270 degrees when the object is inserted,
and the amplitudes change more than 18 dB. For the first
simulated imaging case, described above, the corresponding
values are a maximum change in phase of just over 50 degrees
and a change in amplitude of approximately 7 dB.

The results obtained using the two different formulations
are shown in Figure 4. In these images, a clear difference is
seen between the results obtained with the real-imaginary
formulation and the results obtained with the log-phase
formulation. In the permittivity images, the algorithm using
the real-imaginary formulation is unable to reconstruct the

position of the small object while it captures the circular
shape of the large outer region. The log-phase formulation,
on the other hand, captures the position and size of the small
object much better and also have a permittivity value closer
to that of the real value for the large circular scatterer. As
with the first simulation, the conductivity images bear little
resemblance with the actual object.

Using the real-imaginary formulation, the threshold
value of the cost function was reached after 383 iterations
while it took 994 iterations with the log-phase formulation.
As a result, the log-phase formulation used approximately
2.6 times as long to reach a result as the real-imaginary
formulation.

The RMS of the normalized error is 0.55 for the log-phase
formulation and 1.24 for the real-imaginary formulation.
This corresponds well with the fact that using the log-phase
formulation results in images which, by visual inspection,
seem to be in better agreement with the actual distributions.

3.4. Patient Measurement. To further investigate the perfor-
mance of the algorithm using the log-phase formulation,
it has been used for imaging the breast of a patient who
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Figure 4: Reconstruction of the simulation no. 2. The dashed lines indicate the positions of the large and the small scatterers. A significant
improvement is seen in the permittivity image when the log-phase formulation is used in the algorithm.

had a tumor in her breast. The tumor was positioned
relatively close to the chest wall of the patient at a 10
o’clock position when viewing en face. The measurement
was performed at 1500 MHz, and the coupling liquid (back-
ground of the reconstruction) had a relative permittivity
of 13.8 and a conductivity of 1.0 S/m. To get a reference
image, the Gauss-Newton-based algorithm described in [22]
has also been applied for reconstructing images of the
data.

In Figure 5, the images reconstructed from the data
collected with the antennas positioned at the first of the
seven imaging planes, closest to the chest wall, are shown.
The imaging plane closest to the chest wall of the patient is
usually the hardest to image since the cross-section of the
breast is larger here than further away from the chest wall.
Also, the effects of the presence of the chest wall implies
that the assumption of the problem being two dimensional
is compromised, leading to increased errors stemming from
the two-dimensional modeling of the three-dimensional
imaging problem. The measured signals change with as much
as 38 dB in amplitude and 280 degrees in phase when the
breast is inserted in the imaging system compared to the

measurement with the empty system, indicating that the
imaging problem is highly nonlinear.

In Figure 5, the images reconstructed using the real-
imaginary formulation are shown in (a) and (b), the images
reconstructed using the log-phase formulation are shown in
(c) and (d), and in (e) and (f), the results obtained using
the Gauss-Newton algorithm are shown. For this imaging
setup, the threshold value of the cost function was reached
after 539 iterations with the algorithm using the log-phase
formulation, while the algorithm using the real-imaginary
formulation did not converge within the first 2000 iterations,
at which point it was terminated.

In the images obtained using the log-phase formulation
in the CSI algorithm and in the images obtained using the
Gauss-Newton algorithm, the tumor is clearly visible in the
permittivity images. Also, an increase in the reconstructed
conductivity can be seen in the vicinity of the tumor,
although the features in the conductivity images are more
blurred than those in the permittivity images.

The images reconstructed with the real-imaginary for-
mulation in the CSI algorithm show no clear contours.
In the permittivity image, a ring of relatively low-valued
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Figure 5: Reconstructions of a patient measurement. The results obtained using the CSI algorithm with the real-imaginary formulation
are shown in (a) and (b), and the results obtained with the log-phase formulation are shown in (c) and (d). The results obtained using the
Gauss-Newton algorithm described in [22] are shown in (e) and (f).

artifacts shows the outline of the breast, but otherwise little
useful information can be extracted from the image. In the
conductivity image, high-valued artifacts can be seen along
the rim of the imaging domain, close to the position of the

antennas, but the image does not provide much information
about the internal structure of the breast.

The results shown here and above for the second simu-
lated data set clearly illustrate the improved performance of
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the CSI algorithm, when the data equation is reformulated
using the log-phase formulation.

4. Discussion

In addition to the test cases shown here, the two different
formulations of the CSI algorithm have been applied to a
number of other simulations and patient measurements. For
the patient measurements, the results are all similar to the
one shown here, with the log-phase formulation yielding
results very similar to those of the reference Gauss-Newton
algorithm. The real-imaginary formulation, on the other
hand, most often yields useless results, except for a few of the
imaging planes positioned at the center of the breast. Here,
the observed changes in amplitude and phase are low or
moderate, and the two-dimensional modeling of the imaging
problem is a better approximation than it is closer to the
chest wall or nipple, where effects stemming from the three-
dimensional nature of the imaging problem complicate the
imaging problem.

Similar results are obtained for the simulations, where
the use of the real-imaginary formulation yields good results
in fewer iterations than the log-phase formulation for objects
which results in only low or modest changes in the amplitude
and phase of the measured signals. For imaging setups
with larger changes in the measured signals, the log-phase
formulation is capable of reconstructing satisfactory images
of setups where the real-imaginary formulation fails to
converge.

The reason for the improved performance of the CSI
algorithm when using the log-phase formulation is believed
to be the same as what has previously been observed when
using the log-phase formulation in the context of a Newton-
based algorithm [22, 29]. Here, it was found that the log-
phase formulation outperforms the real-imaginary formu-
lation in part because it puts more weight on those mea-
surements where there is a large relative difference between
the measurement of the object and the measurement of the
empty system, whereas the real-imaginary formulation puts
more weight on those measurements where the absolute
change is large. This implies that the log-phase formulation
compensates for any overall difference in the signal level,
which might be present between two receive/transmit pairs.
For example, a receive/transmit pair with the receiver
positioned next to the transmitter will in general result in
a higher signal level than and a receive/transmit pair with
the receiver positioned on the opposite side of the imaging
system from the transmitter, simply because of the distance
between the antennas.

In the imaging setups presented in this paper, this implies
that the measurements with the receivers positioned on the
opposite side of the imaging system, which holds more
information about the scatterer, are given more weight than
those made with antennas positioned next to each other, thus
leading to better images. A similar effect can be obtained by
manually excluding antenna pairs, as illustrated in [31, 32].

Another reason for the improved performance of the log-
phase formulation is that it utilizes the unwrapped phase of

the signals. The phase can be unwrapped in different ways,
as described in [22, 29], but the result is that the algorithm
is better at handling imaging problems in which the phase
change between the empty measurement and the object
measurement is more than ±π [28]. This corresponds well
with the results in the previous section where the log-phase
formulation has shown a clear improvement over the real-
imaginary formulation in the reconstruction of the images
of simulation 2 and the patient measurements in which the
changes in the phase are also greater.

In this paper, the CSI algorithm has been set to terminate
based on a threshold value of the cost function (7). A
different approach would have been to simply terminate the
algorithms after a fixed number of iterations, such as in
[18, 24]. For comparison of the convergence rate between the
two different formulations, however, the use of a threshold
value is more convenient.

From the results in the previous section, it is noted
that the CSI algorithm implemented with the log-phase
algorithm requires a significant higher number of iterations
to converge than the CSI algorithm implemented with the
real-imaginary formulation. At least for those cases where the
real-imaginary formulation actually does converge. Prelimi-
nary investigations indicate that, as a result of this, the Polak-
Ribiére update step used in the current implementation
of the algorithm is not as well suited for the log-phase
formulation as it is for the real-imaginary formulation.

A contributing factor to the slower convergence of the
algorithm using the log-phase formulation and the poorer
performance of the Polak-Ribiére update algorithm could
be that the data equation is nonlinear when the log-phase
formulation is used. As mentioned in Section 2, this is
different from the real-imaginary formulation, which results
in a linear data equation.

To remedy the slower convergence of the log-phase
formulation, an algorithm in which the update is calculated
by solving a set of linear equations formulated as a matrix
equation, using an overregularized solution, has been tested.
This approach is similar to that presented in [25] and resulted
in an algorithm in which the log-phase formulation generally
converged in fewer iterations than the real-imaginary formu-
lation and both formulations converged in fewer iterations
than for the Polak-Ribiére algorithm. However, even though
this algorithm resulted in both formulations converging
in fewer iterations, the overall computation time increased
compared to the simple update used in this paper due to
the complexity of the update algorithm. Hence, the original
Polak-Ribiére update algorithm was kept in this paper. The
authors are, however, optimistic that by finding a more
suitable update algorithm, this drawback of the log-phase
formulation can be significantly reduced.

Finally, it should be noted that, in this paper, the most
simple form of the CSI algorithm has been used in order
to emphasize the change in the performance caused by the
reformulation of the data equation. The new formulation
of the algorithm can, of course, be combined with the
extensions to the CSI algorithm which has already been
published, such as the use of the multiplicative total-
variation regularization [16] or multiple frequencies [12].
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5. Conclusions

In this paper, a modified contrast source inversion (CSI)
algorithm was introduced. The modification consisted of
using the log-phase formulation for the data equation.
This formulation has previously been applied in Gauss-
Newton type algorithms and has been shown to improve the
performance of the algorithm when reconstructing images of
high-contrast targets.

For imaging setups with large differences in the measured
signals, the test cases in this paper showed a clear improve-
ment of the quality of the images when the formulation of the
CSI algorithm was changed from the more commonly used
real-imaginary formulation to the log-phase formulation.

Of special interest is the ability of the log-phase algorithm
to reconstruct data from actual measurements. In this paper,
it was shown that the CSI algorithm using the log-phase
formulation is indeed capable of reconstructing images from
measurements. And that the results are comparable to the
images reconstructed with the Gauss-Newton-based imaging
algorithm previously applied by the authors.

One drawback of the current implementation of the log-
phase formulation in the CSI algorithm is that the algorithm
is considerably slower to converge than when the real-
imaginary formulation is used. To remedy this, alternatives
to the Polak-Ribiére algorithm have been sought for. So far,
a more efficient algorithm has not been found, but based
on the initial work, the authors remain optimistic that a
more suitable update algorithm can be implemented, thereby
reducing the number of iterations needed to reach a solution
with the log-phase formulation of the algorithm.
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