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We consider a Bayesian nonparametric approach to a family of
linear inverse problems in a separable Hilbert space setting, with
Gaussian prior and noise distribution. A method of identifying the
posterior distribution using its precision operator is presented. Work-
ing with the unbounded precision operator enables us to use partial
differential equations (PDE) methodology to study posterior con-
sistency in a frequentist sense, and in particular to obtain rates of
contraction of the posterior distribution to a Dirac measure centered
on the true solution. We show how these rates may be optimized
by a choice of the scale parameter in the prior covariance operator.
Our methods assume a relatively weak relation between the prior
covariance operator, the forward operator and the noise covariance
operator; more precisely, we assume that appropriate powers of these
operators induce equivalent norms. We compare our results to known
minimax rates of convergence in the case where the forward operator
and the prior and noise covariances are all simultaneously diagonaliz-
able, and confirm that the PDE method provides the same rates for
a wide range of parameters. An elliptic PDE inverse problem is used
to illustrate the power of the general theory.

1. Introduction. The solution of inverse problems provides a rich source
of applications for the application of the Bayesian nonparametric method-
ology. It encompasses a wide range of applications from partial differential
equations (PDEs) [2], and there is a well-developed theory of classical, non-
statistical, regularization [6]. Despite this, the formulation of many of these
PDE inverse problems using the Bayesian approach is in its infancy [18].
Furthermore, the development of a theory of Bayesian posterior consistency,
analogous to the theory for classical regularization, is under-developed with
the primary contribution being the recent paper [12]. This recent paper pro-
vides a roadmap for what is to be expected regarding Bayesian posterior
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consistency, but is limited in terms of applicability by the assumption of
simultaneous diagonalizability of the three linear operators required to de-
fine Bayesian inversion. Our aim in this paper is to make a significant step
in the theory of Bayesian posterior consistency for linear inverse problems
by developing a methodology which sidesteps the need for simultaneous di-
agonalizability. The central idea underlying the analysis is to work with
precision operators rather than covariance operators, and thereby to enable
use of powerful tools from PDE theory to facilitate the analysis.

Let X be a separable Hilbert space, with norm
∥∥·∥∥ and inner product 〈·, ·〉,

and let A : D(A) ⊂ X → X be a known self-adjoint and positive-definite
linear operator with bounded inverse. We consider the inverse problem to
find u from y, where y is a noisy observation of A−1u. We assume the model,

(1.1) y = A−1u+
1√
n
ξ,

where 1√
n
ξ is an additive noise. We will be particularly interested in the

small noise limit where n→∞.
A popular method in the deterministic approach to inverse problems is

the generalized Tikhonov-Phillips regularization method in which u is ap-
proximated by the minimizer of a regularized least squares functional: define
the Tikhonov-Phillips functional

(1.2) J0(u) :=
1

2

∥∥C− 1
2

1 (y −A−1u)
∥∥2

+
λ

2

∥∥C− 1
2

0 u
∥∥2
,

where Ci : X → X , i = 0, 1, are bounded, possibly compact, self-adjoint
positive-definite linear operators. The parameter λ is called the regulariza-
tion parameter, and in the classical non-probabilistic approach the general
practice is to choose it as an appropriate function of the noise size n−

1
2 ,

which shrinks to zero as n→∞, in order to recover the unknown parameter
u [6].

In this paper we adopt a Bayesian approach for the solution of problem
(1.1), which will be linked to the minimization of J0 via the posterior mean.
We assume that the prior distribution is Gaussian, u ∼ µ0 = N (0, τ2C0),
where τ > 0 and C0 is a self-adjoint, positive-definite, trace class, linear
operator on X . We also assume that the noise is Gaussian, ξ ∼ N (0, C1),
where C1 is a self-adjoint positive-definite, bounded, but not necessarily trace
class, linear operator; this allows us to include the case of white observa-
tional noise. We assume that the, generally unbounded, operators C−1

0 and
C−1

1 , have been maximally extended to self-adjoint positive-definite oper-
ators on appropriate domains. The unknown parameter and the noise are
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considered to be independent, thus the conditional distribution of the ob-
servation given the unknown parameter u is also Gaussian with distribution
y|u ∼ N (A−1u, 1

nC1).
Define λ = 1

nτ2 and let

(1.3) J(u) = nJ0(u) =
n

2

∥∥C− 1
2

1 (y −A−1u)
∥∥2

+
1

2τ2

∥∥C− 1
2

0 u
∥∥2
.

In finite dimensions the probability density of the posterior distribution
with respect to the Lebesgue measure is proportional to exp (−J(u)). This
suggests that, in the infinite-dimensional setting, the posterior is Gaussian
µy = N (m, C), where we can identify the posterior covariance and mean by
the equations

(1.4) C−1 = nA−1C−1
1 A

−1 +
1

τ2
C−1

0

and

(1.5)
1

n
C−1m = A−1C−1

1 y,

obtained by completing the square. We will justify this expressions in Section
4. We define

(1.6) Bλ =
1

n
C−1 = A−1C−1

1 A
−1 + λC−1

0

and observe that the dependence of Bλ on n and τ is only through λ. Since

(1.7) Bλm = A−1C−1
1 y,

the posterior mean also depends only on λ: m = mλ. This is not the case for
the posterior covariance C, since it depends on n and τ separately: C = Cλ,n.
In the following, we suppress the dependence of the posterior covariance on
λ and n and we denote it by C.

Observe that the posterior mean is the minimizer of the functional J ,
hence also of J0, that is, the posterior mean is the Tikhonov-Phillips regu-
larized approximate solution of problem (1.1), for the functional J0.

In [16] and [14], formulae for the posterior covariance and mean are identi-
fied in the infinite-dimensional setting, which avoid using any of the inverses
of the prior, posterior or noise covariance operators. They obtain

(1.8) C = τ2C0 − τ2C0A−1(A−1C0A−1 + λC1)−1A−1C0
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and

(1.9) m = C0A−1(A−1C0A−1 + λC1)−1y,

which are consistent with formulae (1.4) and (1.7) for the finite-dimensional
case. In [16] this is done only for C1 of trace class while in [14] the case
of white observational noise was included. We will work in an infinite-
dimensional setting where the formulae (1.4), (1.7) for the posterior covari-
ance and mean can be justified. Working with the unbounded operator Bλ
opens the possibility of using tools of analysis, and also numerical analysis,
familiar from the theory of partial differential equations.

In our analysis we always assume that C−1
0 is regularizing, that is, we

assume that C−1
0 dominates C−1 in the sense that it induces stronger norms

than A−1C−1
1 A−1. This is a reasonable assumption since otherwise we would

have C−1 ' nA−1C−1
1 A−1. Here ' is used loosely to indicate two operators

which induce equivalent norms; we will make this notion precise in due
course. This would imply that the posterior mean is m ' Ay, meaning
that we attempt to invert the data by applying the, generally discontinuous,
operator A [6, Proposition 2.7].

We study the consistency of the posterior µy in the frequentist setting.
To this end, we consider data y = y† which is a realization of

(1.10) y† = A−1u† +
1√
n
ξ, ξ ∼ N (0, C1),

where u† is a fixed element of X ; that is, we consider observations which are
perturbations of the image of a fixed true solution u† by an additive noise
ξ, scaled by 1√

n
. Since the posterior depends through its mean on the data

and also through its covariance operator on the scaling of the noise and the
prior, this choice of data model gives as posterior distribution the Gaussian

measure µy
†

λ,n = N (m†λ, C), where C is given by (1.4) and

(1.11) Bλm†λ = A−1C−1
1 y†.

We study the behavior of the posterior µy
†

λ,n as the noise disappears (n→∞).
Our aim is to show that it converges in some sense to a Dirac measure
centered on the fixed true solution u†.

As in the deterministic theory of inverse problems, in order to get con-
vergence in the small noise limit, we let the regularization disappear in a
carefully chosen way, that is, we will choose λ = λ(n) such that λ → 0 as
n → ∞. Equation (1.7) suggests that this choice will depend on the sin-
gular behavior of B−1

λ as λ → 0: on the one hand, as λ → 0, B−1
λ becomes
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unbounded; on the other hand, as n→∞, we have more accurate data, sug-
gesting that for the appropriate choice of λ = λ(n) we can get m†λ ' u†. In
particular, we will choose τ as a function of the scaling of the noise, τ = τ(n),
under the restriction that the induced choice of λ = λ(n) = 1

nτ(n)2 , is such

that λ → 0 as n → ∞. The last choice will be made in a way which opti-
mizes the rate of posterior contraction (which is a measure of the desired
convergence of the posterior to the true solution, precisely defined below).
In general there are three possible asymptotic behaviors of the scaling of the
prior τ2 as n→∞, [20], [12]:

i) τ2 →∞; we increase the prior spread, if we know that draws from the
prior are more regular than u†;

ii) τ2 fixed; draws from the prior have the same regularity as u†;
iii) τ2 → 0 at a rate slower than 1

n ; we shrink the prior spread, when we
know that draws from the prior are less regular than u†.

The problem of posterior consistency in this context is also investigated
in [12] and [7]. In [12], sharp convergence rates are obtained in the case where
C0, C1 and A−1 are simultaneously diagonalizable, with eigenvalues decay-
ing algebraically, and in particular C1 = I, that is, the data are polluted
by white noise. In this paper we relax the assumptions on the relations be-
tween the operators C0, C1 and A−1, by assuming that appropriate powers of
them induce comparable norms (see Section 2). In [7], the non-diagonal case
is also examined; the three operators involved are related through domain
inclusion assumptions. The assumptions made in [7] can be quite restric-
tive in practice; our assumptions include settings not covered in [7], and in
particular the case of white observational noise.

In the following section we present our assumptions and their implica-
tions. In Section 3, we reformulate equation (1.7) as a weak equation in an
infinite-dimensional space. In Section 4, we characterize the posterior mea-
sure through its Radon-Nikodym derivative with respect to the prior (The-
orem 4.1) and justify the formulae (1.4), (1.7) for the posterior covariance
and mean (Theorem 4.2). In Section 5, we present operator norm bounds
for B−1

λ , which are the key to the posterior consistency results contained
in Section 6 (Theorems 6.1 and 6.2). In Section 7, we present a nontrivial
example satisfying our assumptions and provide the corresponding rates of
convergence. In Section 8, we compare our results to known minimax rates
of convergence in the case where C0, C1 and A−1 are all diagonalizable in
the same eigenbasis and have eigenvalues that decay algebraically. Finally,
Section 9 is a short conclusion.
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2. Assumptions. In this section we present the setting in which we
formulate our results. First, we define the spaces in which we work, in par-
ticular, we define the Hilbert scale induced by the prior covariance operator
C0. Then we determine the spaces to which draws from the prior, µ0, and
white noise belong. Furthermore, we state our main assumptions, which
concern the connections between the operators C0, C1 and A−1 and present
regularity results for draws from the prior, µ0, and the noise distribution,
N (0, C1).

We start by defining the Hilbert scale which we will use in our analysis. Re-
call that X is an infinite-dimensional separable Hilbert space and C0 : X → X
is a self-adjoint, positive-definite, trace class, linear operator. Since C0 : X →
X is injective and self-adjoint we have that X = R(C0)⊕R(C0)⊥ = R(C0).
This means that C−1

0 : R(C0) → X is a densely defined, unbounded, sym-
metric, positive-definite, linear operator in X . Hence it can be extended to
a self-adjoint operator with domain D(C−1

0 ) := {u ∈ X : C−1
0 u ∈ X}; this is

the Friedrichs extension [13]. Thus, we can define the Hilbert scale (Xt)t∈R,

with Xt :=M‖.‖t [6], where

M :=

∞⋂
k=0

D(C−k0 ),
〈
u, v
〉
t

:=
〈
C−

t
2

0 u, C−
t
2

0 v
〉

and ‖u‖t :=
∥∥C− t20 u

∥∥.
The bounded linear operator C1 : X → X is assumed to be self-adjoint,
positive-definite (but not necessarily trace class); thus C−1

1 : R(C1) → X
can be extended in the same way to a self-adjoint operator with domain
D(C−1

1 ) := {u ∈ X : C−1
1 u ∈ X}. Finally, recall that we assume that

A : D(A) → X is a self-adjoint and positive-definite, linear operator with
bounded inverse, A−1 : X → X .

Let {λ2
k, φk}∞k=1 be orthonormal eigenpairs of C0 in X . Thus, {λk}∞k=1 are

the singular values and {φk}∞k=1 an orthonormal eigenbasis. Since C0 is trace
class we have that

∑∞
k=1 λ

2
k < ∞. In fact we make the following stronger

assumption:

Assumption 2.1. There is a σ0 ∈ (0, 1] such that
∑∞

k=1 λ
2(1−σ)
k < ∞

for all σ < σ0.

We assume that we have a probability space (Ω,F ,P). The expected value
is denoted by E and ξ ∼ µ means that the law of the random variable ξ is
the measure µ.

Let µ0 := N (0, τ2C0) and P0 := N (0, 1
nC1) be the prior and noise distribu-

tions respsectiely. Furthermore, let ν(du, dy) denote the measure constructed
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by taking u and y|u as independent Gaussian random variables N (0, τ2C0)
and N (A−1u, 1

nC1) respectively:

ν(du, dy) = P(dy|u)µ0(du),

where P := N (A−1u, 1
nC1). We denote by ν0(du, dy) the measure constructed

by taking u and y as independent Gaussian random variables N (0, τ2C0) and
N (0, 1

nC1) respectively:

ν0(du, dy) = P0(dy)⊗ µ0(du).

In the following, we exploit the regularity properties of a white noise to
determine the regularity of draws from the prior and the noise distributions.
We consider a white noise to be a draw from N (0, I), that is a random
variable ζ ∼ N (0, I). Even though the identity operator is not trace class in
X , it is trace class in a bigger space X−s, where s > 0 is sufficiently large.

Lemma 2.2. Under the Assumption 2.1 we have:

i) Let ζ be a white noise. Then E
∥∥C s20 ζ∥∥2

<∞ for all s > s0 := 1− σ0.
ii) Let u ∼ µ0. Then u ∈ Xσ µ0-a.s. for every σ < σ0.

Proof.

i) We have that C
s
2
0 ζ ∼ N (0, Cs0), thus E

∥∥C s20 ζ∥∥2
<∞ is equivalent to Cs0

being of trace class. By the Assumption 2.1 it suffices to have s > 1−σ0.

ii) We have E
∥∥C−σ20 u

∥∥2
= E

∥∥C 1−σ
2

0 C−
1
2

0 u
∥∥2

= E
∥∥C 1−σ

2
0 ζ

∥∥2
, where ζ is a

white noise, therefore using part (i) we get the result.

Remark 2.3. Note that as σ0 changes, both the Hilbert scale and the
decay of the coefficients of a draw from µ0 change. The norms ‖·‖t are defined
through powers of the eigenvalues λ2

k. If σ0 < 1, then C0 has eigenvalues that

decay like k
− 1
s0 , thus an element u ∈ Xt has coefficients

〈
u, φk

〉
, that decay

faster than k
− 1

2
− t

2s0 . As σ0 gets larger, that is, as s0 gets closer to zero,
the space Xt for a fixed t > 0, corresponds to a faster decay rate of the
coefficients. At the same time, by the last lemma, draws from µ0 = N (0, C0)
belong to Xσ for all σ < σ0. Consequently, as σ0 gets larger, not only do
draws from µ0 belong to Xσ for larger σ, but also the spaces Xσ for fixed
σ reflect faster decay rates of the coefficients. The case σ0 = 1 corresponds
to C0 having eigenvalues that decay faster than any negative power of k. A
draw from µ0 in that case has coefficients that decay faster than any negative
power of k.
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We now state a number of assumptions regarding interrelations between
the three operators C0, C1 and A−1; these assumptions reflect the idea that

C1 ' Cβ0 and A−1 ' C`0,

for some β ≥ 0, ` > 0, where ' is used in the same manner as in Section 1.
This is made precise by the inequalities presented in the following assump-
tion, where the notation a � b means that there exist constants c, c′ > 0
such that ca ≤ b ≤ c′a.

Assumption 2.4. Suppose there exist β ≥ 0, ` > 0 and constants ci >
0, i = 1, .., 4 such that, for ∆ := 2`− β + 1, we have

1. ∆ > 2s0;

2.
∥∥C− 1

2
1 A−1u

∥∥ � ∥∥C`−β20 u
∥∥, ∀u ∈ Xβ−2`;

3.
∥∥C− ρ20 C

1
2
1 u
∥∥ ≤ c1

∥∥C β−ρ2
0 u

∥∥, ∀u ∈ Xρ−β, ∀ρ < β − s0;

4.
∥∥C s20 C− 1

2
1 u

∥∥ ≤ c2

∥∥C s−β2
0 u

∥∥, ∀u ∈ Xβ−s, ∀s ∈ (s0, 1];

5.
∥∥C− s20 C

− 1
2

1 A−1u
∥∥ ≤ c3

∥∥C 2`−β−s
2

0 u
∥∥, ∀u ∈ Xs+β−2`, ∀s ∈ (s0, 1];

6.
∥∥C η20 A−1C−1

1 u
∥∥ ≤ c4

∥∥C η2 +`−β
0 u

∥∥, ∀u ∈ X2β−2`−η, ∀η ∈ [β − 2`, 1];

where s0 = 1− σ0 ∈ [0, 1) is given by Assumption 2.1.

Notice that, by Assumption 2.4(1) we have 2`− β > −1 which, in combi-
nation with Assumption 2.4(2), implies that〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1u

〉
+ λ
〈
C−

1
2

0 u, C−
1
2

0 u
〉
≤ c
〈
C−

1
2

0 u, C−
1
2

0 u
〉
, ∀u ∈ X1,

capturing the idea that the regularization through C0 is indeed a regular-
ization. In fact the assumption ∆ > 2s0 connects the ill-posedness of the
problem to the regularity of the prior. The value of 2s0 becomes larger when
C0 is less regular in which case we require a bigger value of ∆, which means
a more ill-posed problem.

Lemma 2.5. Under the Assumptions 2.1 and 2.4 we have:

i) u ∈ Xs0+β−2`+ε µ0-a.s. for all 0 < ε < (∆− 2s0) ∧ σ0;

ii) A−1u ∈ D(C−
1
2

1 ) µ0-a.s.;
iii) ξ ∈ Xρ P0-a.s. for all ρ < β − s0;
iv) y ∈ Xρ ν-a.s. for all ρ < β − s0.

Proof.
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i) We can choose an ε as in the statement by the Assumption 2.4(1). By
Lemma 2.2(ii), it suffices to show that s0 + β − 2` + ε < σ0. Indeed,
s0 + β − 2`+ ε = s0 + 1−∆ + ε < 1− s0 = σ0.

ii) Under Assumption 2.4(2) it suffices to show that u ∈ Xβ−2`. Indeed,
by Lemma 2.2(ii), we need to show that β − 2` < σ0, which is true
since s0 ∈ [0, 1) and we assume ∆ > 2s0 ≥ s0, thus 2`− β + 1 > s0.

iii) Noting that ζ = C−
1
2

1 ξ is a white noise, using Assumption 2.4(3), we
have by Lemma 2.2(i)

E‖ξ‖2ρ = E
∥∥C− ρ20 C

1
2
1 C
− 1

2
1 ξ

∥∥2 ≤ cE
∥∥C β−ρ2

0 ζ
∥∥2
<∞,

since β − ρ > s0.
iv) By (ii) we have that A−1u is µ0-a.s. in the Cameron-Martin space

of the Gaussian measures P and P0, thus the measures P and P0 are
µ0-a.s. equivalent [5, Theorem 2.8] and (iii) gives the result.

3. Properties of the Posterior Mean and Covariance. We now
make sense of the equation (1.7) weakly in the space X1, under the assump-
tions presented in the previous section. To do so, we define the operator Bλ
from (1.6) in X1 and examine its properties. In Section 4 we demonstrate
that (1.4) and (1.7) do indeed correspond to the posterior covariance and
mean.

Consider the equation

(3.1) Bλw = r,

where
Bλ = A−1C−1

1 A
−1 + λC−1

0 .

Define the bilinear form B : X1 ×X1 → R,

B(u, v) :=
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉

+ λ
〈
C−

1
2

0 u, C−
1
2

0 v
〉
, ∀u, v ∈ X1.

Definition 3.1. Let r ∈ X−1. An element w ∈ X1 is called a weak
solution of (3.1), if

B(w, v) =
〈
r, v
〉
, ∀v ∈ X1.

Proposition 3.2. Under the Assumptions 2.4(1) and (2), for any r ∈
X−1, there exists a unique weak solution w ∈ X1 of (3.1).



10 S. AGAPIOU, S. LARSSON AND A.M. STUART

Proof. We use the Lax-Milgram theorem in the Hilbert space X1, since
r ∈ X−1 = (X1)∗.

i) B : X1 ×X1 → R is coercive:

B(u, u) =
∥∥C− 1

2
1 A

−1u
∥∥2

+ λ
∥∥C− 1

2
0 u

∥∥2 ≥ λ‖u‖21, ∀u ∈ X
1.

ii) B : X1 × X1 → R is continuous: indeed by the Cauchy-Schwarz in-
equality and the Assumptions 2.4(1) and (2),

|B(u, v)| ≤
∥∥C− 1

2
1 A

−1u
∥∥∥∥C− 1

2
1 A

−1v
∥∥+ λ

∥∥C− 1
2

0 u
∥∥∥∥C− 1

2
0 v

∥∥
≤ c‖u‖β−2`

∥∥v∥∥
β−2`

+ λ‖u‖1
∥∥v∥∥

1
≤ c′‖u‖1

∥∥v∥∥
1
, ∀u, v ∈ X1.

Remark 3.3. The Lax-Milgram theorem defines a bounded operator S :
X−1 → X1, such that B(Sr, v) =

〈
r, v
〉

for all v ∈ X1, which has a bounded
inverse S−1 : X1 → X−1 such that B(w, v) =

〈
S−1w, v

〉
for all v ∈ X1.

Henceforward, we identify Bλ ≡ S−1 and B−1
λ ≡ S. Furthermore, note that

in Proposition 3.2, Lemma 3.4 below, and the three propositions in Section 5,
we only require ∆ > 0 and not the stronger assumption ∆ > 2s0. However,
in all our other results we actually need ∆ > 2s0.

Lemma 3.4. Suppose the Assumptions 2.4(1) and (2) hold. Then the
operator S−1 = Bλ : X1 → X−1 is identical to the operator A−1C−1

1 A−1 +
λC−1

0 : X1 → X−1, where A−1C−1
1 A−1 is defined weakly in Xβ−2`.

Proof. The Lax-Milgram theorem implies that Bλ : X1 → X−1 is
bounded. Moreover, C−1

0 : X1 → X−1 is bounded, thus the operator K :=
Bλ − λC−1

0 : X1 → X−1 is also bounded and satisfies

(3.2)
〈
Ku, v

〉
=
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉
, ∀u, v ∈ X1.

Define A−1C−1
1 A−1 weakly in Xβ−2`, by the bilinear form A : Xβ−2` ×

Xβ−2` → R given by

A(u, v) =
〈
C−

1
2

1 A
−1u, C−

1
2

1 A
−1v
〉
, ∀u, v ∈ Xβ−2`.

By Assumption 2.4(2), A is coercive and continuous in Xβ−2`, thus by the
Lax-Milgram theorem, there exists a uniquely defined, boundedly invertible,
operator T : X2`−β → Xβ−2` such that A(u, v) =

〈
T−1u, v

〉
for all v ∈
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Xβ−2`. We identify A−1C−1
1 A−1 with the bounded operator T−1 : Xβ−2` →

X2`−β. By Assumption 2.4(1) we have ∆ > 0 hence∥∥A−1C−1
1 A

−1u
∥∥
−1
≤ c
∥∥A−1C−1

1 A
−1u

∥∥
2`−β ≤ c

∥∥u∥∥
β−2`

≤ c
∥∥u∥∥

1
, ∀u ∈ X1,

that is, A−1C−1
1 A−1 : X1 → X−1 is bounded. By the definition of T−1 =

A−1C−1
1 A−1 and (3.2), this implies that K = Bλ−λC−1

0 = A−1C−1
1 A−1.

Proposition 3.5. Under the Assumptions 2.1, 2.4(1),(2),(3),(6), there
exists a unique weak solution, m ∈ X1 of equation (1.7), ν(du, dy)-almost
surely.

Proof. It suffices to show that A−1C−1
1 y ∈ X−1, ν(du, dy)-almost surely.

Indeed, by Lemma 2.5(iv) we have that y ∈ Xρ ν(du, dy)-a.s. for all ρ <
β − s0, thus by the Assumption 2.4(6)∥∥C 1

2
0 A
−1C−1

1 y
∥∥ ≤ c∥∥C 1

2
+`−β

0 y
∥∥ <∞,

since 2β − 2`− 1 < β − s0, which holds by the Assumption 2.4(1).

4. Posterior Identification. Suppose that in the problem (1.1) we
have u ∼ µ0 = N (0, C0) and ξ ∼ N (0, C1), where u is independent of ξ. Then
we have that y|u ∼ P = N (A−1u, 1

nC1). Let µy be the posterior measure on
u|y.

In this section we prove a number of facts concerning the posterior mea-
sure µy for u|y. First, in Theorem 4.1 we prove that this measure has density
with respect to the prior measure µ0, identify this density and show that µy

is Lipschitz in y, with respect to the Hellinger metric. Continuity in y will
require the introduction of the space Xs+β−2`, to which u drawn from µ0 be-
longs almost surely. Secondly, in Theorem 4.2, we show that µy is Gaussian
and identify the covariance and mean via equations (1.4) and (1.7). This
identification will form the basis for our analysis of posterior consistency in
the following section.

Theorem 4.1. Under the Assumptions 2.1, 2.4(1),(2),(3),(4),(5), the
posterior measure µy is absolutely continuous with respect to µ0 and

(4.1)
dµy

dµ0
(u) =

1

Z(y)
exp(−Φ(u, y)),

where

(4.2) Φ(u, y) :=
n

2

∥∥C− 1
2

1 A
−1u

∥∥2 − n
〈
C−

1
2

1 y, C−
1
2

1 A
−1u

〉
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and Z(y) ∈ (0,∞) is the normalizing constant. Furthermore, the map y 7→
µy is Lipschitz continuous, with respect to the Hellinger metric: let s = s0+ε,
0 < ε < (∆−2s0)∧σ0; then there exists c = c(r) such that for all y, y′ ∈ Xβ−s

with ‖y‖β−s,
∥∥y′∥∥

β−s ≤ r

dHell(µ
y, µy

′
) ≤ c

∥∥y − y′∥∥
β−s.

Consequently, the µy-expectation of any polynomially bounded function
f : Xs+β−2` → E, where (E,

∥∥ · ∥∥
E

) is a Banach space, is locally Lipschitz
continuous in y. In particular, the posterior mean is locally Lipschitz con-
tinuous in y as a function Xβ−s → Xs+β−2`.

Theorem 4.2. Under the Assumptions 2.1, 2.4, the posterior measure
µy(du) is Gaussian µy = N (m,C), where C is given by (1.4) and m is a
weak solution of (1.7).

The proofs of these two theorems are presented in the next two sections.
Each proof is based on a series of lemmas.

4.1. Proof of Theorem 4.1. In this subsection we prove Theorem 4.1.
We first prove several useful estimates regarding Φ defined in (4.2), for
u ∈ Xs+β−2` and y ∈ Xβ−s, where s ∈ (s0, 1]. Observe that, under the
Assumptions 2.1, 2.4(1),(2),(3), for s = s0 +ε where ε > 0 sufficiently small,
the Lemma 2.5 implies on the one hand that u ∈ Xs+β−2` µ0(du)-almost
surely and on the other hand that y ∈ Xβ−s ν(du, dy)-almost surely.

Lemma 4.3. Under the Assumptions 2.1, 2.4(2),(4),(5), for any s ∈
(s0, 1], the potential Φ given by (4.2) satisfies:

i) for every δ > 0 and r > 0, there exists an M = M(δ, r) ∈ R, such that
for all u ∈ Xs+β−2` and all y ∈ Xβ−s with ‖y‖β−s ≤ r,

Φ(u, y) ≥M − δ‖u‖2s+β−2`;

ii) for every r > 0, there exists a K = K(r) > 0, such that for all
u ∈ Xs+β−2` and y ∈ Xβ−s with ‖u‖s+β−2`, ‖y‖β−s ≤ r,

Φ(u, y) ≤ K;

iii) for every r > 0, there exists an L = L(r) > 0, such that for all u1, u2 ∈
Xs+β−2` and y ∈ Xβ−s with ‖u1‖s+β−2`, ‖u2‖s+β−2`, ‖y‖β−s ≤ r,

|Φ(u1, y)− Φ(u2, y)| ≤ L‖u1 − u2‖s+β−2`;
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iv) for every δ > 0 and r > 0, there exists an c = c(δ, r) ∈ R, such that for
all y1, y2 ∈ Xβ−s with ‖y1‖β−s, ‖y2‖β−s ≤ r and for all u ∈ Xs+β−2`,

|Φ(u, y1)− Φ(u, y2)| ≤ exp
(
δ‖u‖2s+β−2` + c

)
‖y1 − y2‖β−s.

Proof.

i) By first using the Cauchy-Schwarz inequality, then the Assumptions
2.4 (4) and (5), and then the Cauchy with δ′ inequality for δ′ > 0
sufficiently small, we have

Φ(u, y) =
n

2

∥∥C− 1
2

1 A
−1u

∥∥2 − n
〈
C
s
2
0 C
− 1

2
1 y, C−

s
2

0 C
− 1

2
1 A

−1u
〉

≥ −n
∥∥C s20 C− 1

2
1 y

∥∥∥∥C− s20 C
− 1

2
1 A

−1u
∥∥ ≥ −cn‖y‖β−s‖u‖s+β−2`

≥ − cn
4δ′
‖y‖2β−s − cnδ

′‖u‖2s+β−2` ≥M(r, δ)− δ‖u‖2s+β−2`.

ii) By the Cauchy-Schwarz inequality and the Assumptions 2.4(2),(4) and
(5), we have since s > s0 ≥ 0

Φ(u, y) ≤ n

2

∥∥C− 1
2

1 A
−1u

∥∥2
+ n

∥∥C s20 C− 1
2

1 y
∥∥∥∥C− s20 C

− 1
2

1 A
−1u

∥∥
≤ cn

2
‖u‖2β−2` + cn‖y‖β−s‖u‖s+β−2` ≤ K(r).

iii) By first using the Assumptions 2.4 (4) and (5) and the triangle inequal-
ity, and then the Assumption 2.4(2) and the reverse triangle inequality,
we have since s > s0 ≥ 0

|Φ(u1, y)− Φ(u2, y)| =

n

2

∣∣∣∣∥∥C− 1
2

1 A
−1u1

∥∥2 −
∥∥C− 1

2
1 A

−1u2

∥∥2
+ 2
〈
C
s
2
0 C
− 1

2
1 y, C−

s
2

0 C
− 1

2
1 A

−1(u2 − u1)
〉∣∣∣∣

≤ n

2

∣∣∣∣∥∥C− 1
2

1 A
−1u1

∥∥2 −
∥∥C− 1

2
1 A

−1u2

∥∥2
∣∣∣∣+ cn‖y‖β−s‖u1 − u2‖s+β−2`

≤ cn‖u1 − u2‖β−2`

(
‖u1‖β−2` + ‖u2‖β−2`

)
+ cnr‖u1 − u2‖s+β−2`

≤ L(r)‖u1 − u2‖s+β−2`.
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iv) By first using the Cauchy-Schwarz inequality and then the Assump-
tions 2.4(4) and (5), we have

|Φ(u, y1)− Φ(u, y2)| = n

∣∣∣∣〈C s20 C− 1
2

1 (y1 − y2), C−
s
2

0 C
− 1

2
1 A

−1u
〉∣∣∣∣

≤ n
∥∥C s20 C− 1

2
1 (y1 − y2)

∥∥∥∥C− s20 C
− 1

2
1 A

−1u
∥∥

≤ cn‖y1 − y2‖β−s‖u‖s+β−2`

≤ exp
(
δ
∥∥u∥∥2

s+β−2`
+ c
)∥∥y1 − y2

∥∥
β−s.

Corollary 4.4. Under the Assumptions 2.1, 2.4(1),(2),(4),(5)

Z(y) :=

∫
X

exp(−Φ(u, y))µ0(du) > 0,

for all y ∈ Xβ−s, s = s0 + ε where 0 < ε < (∆− 2s0) ∧ σ0. In particular, if
in addition the Assumption 2.4(3) holds, then Z(y) > 0 ν-almost surely.

Proof. Fix y ∈ Xβ−s and set r = ‖y‖β−s. Gaussian measures on separa-
ble Hilbert spaces are full [5, Proposition 1.25], hence since by Lemma 2.5(i)
µ0(Xs+β−2`) = 1, we have that µ0(BXs+β−2`(r)) > 0. By Lemma 4.3(ii),
there exists K(r) > 0 such that∫

X
exp(−Φ(u, y))µ0(du) ≥

∫
B
Xs+β−2` (r)

exp(−Φ(u, y))µ0(du)

≥
∫
B
Xs+β−2` (r)

exp(−K(r))µ0(du) > 0.

Recalling that, under the additional Assumption 2.4(3), by Lemma 2.5(iv)
we have y ∈ Xβ−s ν-almost surely for all s > s0, completes the proof.

We are now ready to prove Theorem 4.1:

Proof. [Theorem 4.1] Recall that ν0 = P0(dy)⊗µ0(du) and ν = P(dy|u)µ0(du).
By the Cameron-Martin formula [3, Corollary 2.4.3], since by Lemma 2.5(ii)

we have A−1u ∈ D(C−
1
2

1 ) µ0-a.s., we get for µ0-almost all u

dP
dP0

(y|u) = exp(−Φ(u, y)),
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thus we have for µ0-almost all u

dν

dν0
(y, u) = exp(−Φ(u, y)).

By [9, Lemma 5.3] and Corollary 4.4 we have the relation (4.1).
For the proof of the Lipschitz continuity of the posterior measure in y,
with respect to the Hellinger distance, we apply [18, Theorem 4.2] for Y =
Xβ−s, X = Xs+β−2`, using Lemma 4.3 and the fact that µ0(Xs+β−2`) = 1,
by Lemma 2.5(i).

4.2. Proof of Theorem 4.2. We first give an overview of the proof of
Theorem 4.2. Let y|u ∼ P = N (A−1u, 1

nC1) and u ∼ µ0. Then by Proposition
3.5, there exists a unique weak solution, m ∈ X1, of (1.7), ν(du, dy)-almost
surely. That is, with ν(du, dy)-probability equal to one, there exists an m =
m(y) ∈ X1 such that

B(m, v) = by(v), ∀v ∈ X1,

where the bilinear form B is defined in Section 3, and by(v) =
〈
A−1C−1

1 y, v
〉
.

In the following we show that µy = N (m, C), where

C−1 = nA−1C−1
1 A

−1 +
1

τ2
C−1

0 .

The proof has the same structure as the proof for the identification of the
posterior in [17]. We define the Gaussian measure N (mN , CN ), which is
the independent product of a measure identical to N (m, C) in the finite-
dimensional space XN spanned by the first N eigenfunctions of C0, and a
measure identical to µ0 in (XN )⊥. We next show that N (mN , CN ) converges
weakly to the measure µy which as a weak limit of Gaussian measures has
to be Gaussian µy = N (m, C), and we then identify m and C with m, C
respectively.

Fix y drawn from ν and let PN be the orthogonal projection of X to
the finite-dimensional space span{φ1, ..., φN} := XN , where as in Section 2,
{φk}∞k=1 is an orthonormal eigenbasis of C0 in X . Let QN = I − PN . We
define µN,y by

(4.3)
dµN,y

dµ0
(u) =

1

ZN (y)
exp(−ΦN (u, y))

where ΦN (u, y) := Φ(PNu, y) and

ZN (y) :=

∫
X

exp(−ΦN (u, y))µ0(du).
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Lemma 4.5. We have µN,y = N (mN , CN ), where

PNC−1PNmN = nPNA−1C−1
1 y,

PNCNPN = PNCPN , QNCNQN = τ2QNC0Q
N

and PNCNQN = QNCNPN = 0.

Proof. Let u ∈ XN . Since u = PNu we have by (4.3)

dµN,y(PNu) ∝ exp
(
−Φ(PNu; y)

)
dµ0(PNu).

The right hand side is N -dimensional Gaussian with density proportional
to the exponential of the following expression

(4.4) − n

2

∥∥C− 1
2

1 A
−1PNu

∥∥2
+ n

〈
C−

1
2

1 y, C−
1
2

1 A
−1PNu

〉
− 1

2τ2

∥∥C− 1
2

0 PNu
∥∥2
,

which by completing the square we can write as

−1

2

∥∥(C̃N )−
1
2 (u− m̃N )

∥∥2
+ c(y),

where C̃N is the covariance matrix and m̃N the mean. By equating with
expression (4.4), we find that (C̃N )−1 = PNC−1PN and (C̃N )−1m̃N =
nPNA−1C−1

1 y, thus on XN we have that µN,y = N (m̃N , C̃N ). On (XN )⊥,
the Radon-Nikodym derivative in (4.3) is equal to 1, hence µN,y = µ0 =
N (0, τ2C0).

Proposition 4.6. Under the Assumptions 2.1, 2.4(1),(2),(3),(4),(5),
for all y ∈ Xβ−s, s = s0 + ε, where 0 < ε < (∆ − 2s0) ∧ σ0, the measures
µN,y converge weakly in X to µy, where µy is defined in Theorem 4.1. In
particular, µN,y converge weakly in X to µy ν-almost surely.

Proof. Fix y ∈ Xβ−s. Let f : X → R be continuous and bounded. Then
by (4.1), (4.3) and Lemma 2.5(i), we have that∫

X
f(u)µN,y(du) =

1

ZN

∫
Xs+β−2`

f(u)e−ΦN (u,y)µ0(du)

and ∫
X
f(u)µy(du) =

1

Z

∫
Xs+β−2`

f(u)e−Φ(u,y)µ0(du).

Let u ∈ Xs+β−2` and set r1 = max{‖u‖s+β−2`, ‖y‖β−s} to get, by Lemma

4.3(iii), that ΦN (u, y)→ Φ(u, y), since
∥∥PNu∥∥

s+β−2`
≤ ‖u‖s+β−2` ≤ r1. By
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Lemma 4.3(i), for any δ > 0, for r2 =
∥∥y∥∥

β−s, there exists M(δ, r2) ∈ R
such that∣∣∣f(u)e−ΦN (u,y)

∣∣∣ ≤ ∥∥f∥∥∞eδ‖u‖2s+β−2`−M(δ,r2), ∀u ∈ Xs+β−2`,

where the right hand side is µ0-integrable for δ sufficiently small by the
Fernique Theorem [3, Theorem 2.8.5]. Hence, by the Dominated Convergence
Theorem, we have that

∫
X f(u)µN,y(du) →

∫
X f(u)µy(du), as N → ∞,

where we get the convergence of the constants ZN → Z by choosing f ≡
1. Thus we have µN,y ⇒ µy. Recalling, that y ∈ Xβ−s ν-almost surely
completes the proof.

We are now ready to prove Theorem 4.2:

Proof. [Theorem 4.2] By Proposition 4.6 we have that µN,y converge
weakly in X to the measure µy, ν-almost surely. Since by Lemma 4.5, the
measures µN,y are Gaussian, the limiting measure µy is also Gaussian. To
see this we argue as follows. The weak convergence of measures implies the
pointwise convergence of the Fourier transforms of the measures, thus by
Levy’s continuity theorem [11, Theorem 4.3] all the one dimensional pro-
jections of µN,y, which are Gaussian, converge weakly to the corresponding
one dimensional projections of µy. By the fact that the class of Gaussian
distributions in R is closed under weak convergence [11, Chapter 4, Exercise
2], we get that all the one dimensional projections of the µy are Gaussian,
thus µy is a Gaussian measure in X , µy = N (m, C) for some m ∈ X and a
self-adjoint, positive semi definite, trace class linear operator C. It suffices
to show that m = m and C = C.

We use the standard Galerkin method to show that mN → m in X .
Indeed, since by their definition mN solve (1.7) in the N -dimensional spaces
XN , for e = m−mN , we have that B(e, v) = 0, ∀v ∈ XN . By the coercivity
and the continuity of B (see Proposition 3.2)∥∥e∥∥2

1
≤ cB(e, e) = cB(e, z −m) ≤ c

∥∥e∥∥
1

∥∥m− z∥∥
1
, ∀z ∈ XN .

Choose z = PNm to obtain∥∥m−mN
∥∥ ≤ c∥∥m− PNm∥∥

1
,

where as N → ∞ the right hand side converges to zero since m ∈ X1. On
the other hand, by [3, Example 3.8.15], we have that mN → m in X , hence
we conclude that m = m, as required.
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For the identification of the covariance operator, note that by the defini-
tion of CN we have

CN = PNCPN + (I − PN )C0(I − PN ).

Recall that {φk}∞k=1 are the eigenfunctions of C0 and fix k ∈ N. Then, for
N > k and any w ∈ X , we have that∣∣〈w, CNφk〉− 〈w, Cφk〉∣∣ =

∣∣〈w, (PN − I)Cφk
〉∣∣

≤
∥∥(PN − I)w

∥∥∥∥Cφk∥∥,
where the right hand side converges to zero as N → ∞, since w ∈ X . This
implies that CNφk converges to Cφk weakly in X , as N →∞ and this holds
for any k ∈ N. On the other hand by [3, Example 3.8.15], we have that
CNφk → Cφk in X , as N → ∞, for all k ∈ N. It follows that Cφk = Cφk,
for every k and since {φk}∞k=1 is an orthonormal basis of X , we have that
C = C.

5. Operator norm bounds on B−1
λ . The following propositions con-

tain several operator norm estimates on the inverse of Bλ and related quanti-
ties, and in particular estimates on the singular dependence of this operator
as λ→ 0. These are the key tools used in Section 6 to obtain posterior con-
sistency results. In all of them we make use of the interpolation inequality
in Hilbert scales, [6, Proposition 8.19]. Recall that we consider Bλ defined
on X1, as explained in Remark 3.3.

Proposition 5.1. Let η1 = (1−θ1)(β−2`)+θ1, where θ1 ∈ [0, 1]. Under
the Assumptions 2.4(1),(2) and (6) the following operator norm bounds hold:
there is c > 0 independent of θ1 such that∥∥B−1

λ A
−1C−1

1

∥∥
L(X2β−2`−η1 ,Xβ−2`)

≤ cλ−
θ1
2

and ∥∥B−1
λ A

−1C−1
1

∥∥
L(X2β−2`−η1 ,X1)

≤ cλ−
θ1+1

2 .

Proof. Let h ∈ X2β−2`−η1 = Xβ−θ1∆. Then A−1C−1
1 h ∈ X−1. Indeed,

by Assumption 2.4(6) for η = 1,∥∥C 1
2
0 A
−1C−1

1 h
∥∥ ≤ c∥∥C 1

2
+`−β

0 h
∥∥ = c

∥∥C ∆−β
2

0 h
∥∥ = c

∥∥h∥∥
β−∆

≤ c
∥∥h∥∥

β−θ1∆
.
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By Proposition 3.2 for r = A−1C−1
1 h, there exists a unique weak solution of

(3.1), z ∈ X1. By Definition 3.1, for v = z ∈ X1, we get∥∥C− 1
2

1 A
−1z
∥∥2

+ λ
∥∥C− 1

2
0 z

∥∥2
=
〈
C
η1
2

0 A
−1C−1

1 h, C−
η1
2

0 z
〉
.

Using the Assumptions 2.4(2) and (6), and the Cauchy-Schwarz inequality,
we get ∥∥z∥∥2

β−2`
+ λ

∥∥z∥∥2

1
≤ c
∥∥C η12 +`−β

0 h
∥∥∥∥z∥∥

η1
.

We interpolate the norm on z appearing on the right hand side between the
norms on z appearing on the left hand side, then use the Cauchy with ε
inequality, and then Young’s inequality for p = 1

1−θ1 , q = 1
θ1

, to get succes-
sively, for c > 0 a changing constant∥∥z∥∥2

β−2`
+ λ
∥∥z∥∥2

1
≤ c
∥∥C η12 +`−β

0 h
∥∥∥∥z∥∥1−θ1

β−2`
λ−

θ1
2

(
λ

1
2

∥∥z∥∥
1

)θ1
≤ c

2ε

(
λ−θ1

∥∥C η12 +`−β
0 h

∥∥2
)

+
cε

2

(∥∥z∥∥2(1−θ1)

β−2`

(
λ

1
2

∥∥z∥∥
1

)2θ1
)

≤ c

2ε

(
λ−θ1

∥∥C η12 +`−β
0 h

∥∥2
)

+
cε

2

(
(1− θ1)

∥∥z∥∥2

β−2`
+ θ1λ

∥∥z∥∥2

1

)
.

By choosing ε > 0 small enough we get, for c > 0 independent of θ, λ,∥∥z∥∥
β−2`

≤ cλ−
θ1
2

∥∥C η12 +`−β
0 h

∥∥ and
∥∥z∥∥

1
≤ cλ−

θ1+1
2

∥∥C η12 +`−β
0 h

∥∥.
Replacing z = B−1

λ A
−1C−1

1 h gives the result.

Proposition 5.2. Let η2 = (1−θ2)(β−2`)+θ2, where θ2 ∈ [0, 1]. Under
the Assumptions 2.4(1) and (2), the following operator norm bounds hold:
there is c > 0 independent of θ2 such that∥∥B−1

λ C
−1
0

∥∥
L(X2−η2 ,Xβ−2`)

≤ cλ−
θ2
2

and ∥∥B−1
λ C

−1
0

∥∥
L(X2−η2 ,X1)

≤ cλ−
θ2+1

2 .

Proof. Let h ∈ X2−η2 . Then C−1
0 h ∈ X−1, since η2 ≤ 1. By Proposition

3.2 for r = C−1
0 h, there exists a unique weak solution of (3.1), z ∈ X1. By

Definition 3.1, for v = z ∈ X1, we have∥∥C− 1
2

1 A
−1z
∥∥2

+ λ
∥∥C− 1

2
0 z

∥∥2
=
〈
C
η2
2
−1

0 h, C−
η2
2

0 z
〉
,
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and by the Assumption 2.4(2) and the Cauchy-Schwarz inequality, we get∥∥z∥∥2

β−2`
+ λ
∥∥z∥∥2

1
≤ c
∥∥C η22 −1

0 h
∥∥∥∥z∥∥

η2
.

We interpolate the norm on z appearing on the right hand side between
the norms on z appearing on the left hand side to get as in the proof of
Proposition 5.1, for c > 0 independent of θ, λ,∥∥z∥∥

β−2`
≤ cλ−

θ2
2

∥∥C η22 −1

0 h
∥∥ and

∥∥z∥∥
1
≤ cλ−

θ2+1
2

∥∥C η22 −1

0 h
∥∥.

Replacing z = B−1
λ C

−1
0 h gives the result.

Proposition 5.3. Let η3 = (1 − θ3)(β − 2` − s) + θ3(1 − s), where
θ3 ∈ [0, 1] and s ∈ (s0, 1], where s0 ∈ [0, 1) as defined in Lemma 2.2. Under
the Assumptions 2.4(1) and (2), the following norm bounds hold: there is
c > 0 independent of θ3 such that∥∥C− s20 B

−1
λ C

− s
2

0

∥∥
L(Xβ−2`−s,X−η3 )

≤ cλ−
θ3
2

and ∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X1−s,X−η3 )

≤ cλ−
θ3+1

2 .

Furthermore,∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X)

≤ cλ−
2`−β+s

∆ , ∀s ∈ ({β − 2`} ∨ s0, 1].

Proof. Let h ∈ X−η3 = X(1−θ3)∆+s−1. Then h ∈ Xs−1, since ∆ > 0,

thus C−
s
2

0 h ∈ X−1. By Proposition 3.2 for r = C−
s
2

0 h, there exists a unique

weak solution of (3.1), z′ ∈ X1. Since for v ∈ X1−s we have that C
s
2
0 v ∈ X1,

we conclude that for any v ∈ X1−s

〈
C−

1
2

1 A
−1C

s
2
0 z, C

− 1
2

1 A
−1C

s
2
0 v
〉

+ λ
〈
C
s−1

2
0 z, C

s−1
2

0 v
〉

=
〈
C−

s
2

0 h, C
s
2
0 v
〉
,

where z = C−
s
2

0 z′ ∈ X1−s. Choosing v = z ∈ X1−s, we get∥∥C− 1
2

1 A
−1C

s
2
0 z
∥∥2

+ λ
∥∥C s−1

2
0 z

∥∥2
= 〈h, z〉 .

By the Assumption 2.4(2) and the Cauchy-Schwarz inequality, we have∥∥z∥∥2

β−2`−s + λ
∥∥z∥∥2

1−s ≤ c
∥∥h∥∥−η3

∥∥z∥∥
η3
.



POSTERIOR CONSISTENCY OF BAYESIAN INVERSE PROBLEMS 21

We interpolate the norm of z appearing on the right hand side between
the norms of z appearing on the left hand side, to get as in the proof of
Proposition 5.1, for c > 0 independent of θ3, λ and s∥∥z∥∥

β−2`−s ≤ cλ
− θ3

2

∥∥h∥∥−η3
and

∥∥z∥∥
1−s ≤ cλ

− θ3+1
2

∥∥h∥∥−η3
.

Replacing z = C−
s
2

0 B
−1
λ C

− s
2

0 h gives the first two rates.
For the last claim, note that we can always choose {β − 2`} ∨ {s0} < s ≤ 1,
since s0 < 1 and ∆ > 0. Using the first two estimates, for η30 = (1−θ30)(β−
2`− s) + θ30(1− s) = 0, that is θ30 = 2`−β+s

∆ ∈ [0, 1], we have that∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(Xβ−2`−s,X )

≤ cλ−
θ30
2

and ∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X1−s,X )

≤ cλ−
θ30+1

2 .

Let u ∈ X . Then

u =

∞∑
k=1

ukφk =
∑
λ−1
k ≤t

ukφk +
∑
λ−1
k >t

ukφk =: u+ u,

where {φk}∞k=1 are the eigenfunctions of C0 and uk :=
〈
u, φk

〉
. Since 1−s ≥ 0

and β − 2`− s < 0, we have∥∥C− s20 B
−1
λ C

− s
2

0 u
∥∥ ≤ ∥∥C− s20 B

−1
λ C

− s
2

0 u
∥∥+

∥∥C− s20 B
−1
λ C

− s
2

0 u
∥∥

≤ cλ−
θ30+1

2

∥∥u∥∥
1−s + cλ−

θ30
2

∥∥u∥∥
β−2`−s

= cλ−
θ30+1

2

 ∑
λ−1
k ≤t

λ2s−2
k u2

k


− 1

2

+ cλ−
θ30
2

 ∑
λ−1
k >t

λ2s+4`−2β
k u2

k


− 1

2

≤ cλ−
θ30+1

2 t1−s
∥∥u∥∥+ cλ−

θ30
2 tβ−2`−s∥∥u∥∥.

The first term on the right hand side is increasing in t, while the second is
decreasing, so we can optimize by choosing t = t(λ) making the two terms

equal, that is t = λ
1

2∆ , to obtain the claimed rate.
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6. Posterior Consistency. In this section we employ the develop-
ments of the preceding sections to study the posterior consistency of the
Bayesian solution to the inverse problem. That is, we consider a family of
data sets y† = y†(n) given by (1.10) and study the limiting behavior of the

posterior measure µy
†

λ,n = N (m†λ, C) as n → ∞. Intuitively we would hope

to recover a measure which concentrates near the true solution u† in this
limit. Following the approach in [12], [8], [19] and [7], we quantify this idea
as follows: we aim to determine εn such that

(6.1) Ey
†
µy
†

λ,n

{
u :
∥∥u− u†∥∥ ≥Mnεn

}
→ 0, ∀Mn →∞,

where the expectation is with respect to the random variable y† distributed
according to the data likelihood N (A−1u†, 1

nC1). By the Markov inequality
we have

Ey
†
µy
†

λ,n

{
u :
∥∥u− u†∥∥ ≥Mnεn

}
≤ 1

M2
nε

2
n

Ey
†
∫ ∥∥u− u†∥∥2

µy
†

λ,n(du),

so that it suffices to show that

(6.2) Ey
†
∫ ∥∥u− u†∥∥2

µy
†

λ,n(du) ≤ cε2
n.

In addition to n−1, there is a second small parameter in the problem, namely
the regularization parameter, λ, and we will choose a relationship between
n and λ in order to optimize the convergence rates εn. We will show that de-
termination of optimal convergence rates follows directly from the operator
norm bounds on B−1

λ derived in the previous section, which concern only λ
dependence; relating n to λ then follows as a trivial optimization. Thus, the
λ dependence of the operator norm bounds in the previous section forms
the heart of the posterior consistency analysis.

We now present our convergence results. In Theorem 6.1 and Corollary
6.4 we study the convergence of the posterior mean to the true solution
in a range of norms, while in Theorem 6.2 and Corollary 6.5 we study the
concentration of the posterior near the true solution as described in (6.1).
The proofs of the two theorems are provided later in the current section.

Theorem 6.1. Let u† ∈ X1. Under the Assumptions 2.1 and 2.4, we

have that, for the choice τ = τ(n) = n
θ2−θ1−1

2(θ1−θ2+2) and for any θ ∈ [0, 1]

Ey
†∥∥m†λ − u†∥∥2

η
≤ cn

θ+θ2−2
θ1−θ2+2 ,
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where η = (1 − θ)(β − 2`) + θ. The result holds for any θ1, θ2 ∈ [0, 1],

chosen so that E(κ2) < ∞, for κ = max
{∥∥ξ∥∥

2β−2`−η1

∥∥u†∥∥
2−η2

}
, where

ηi = (1− θi)(β − 2`) + θi, i = 1, 2.

Theorem 6.2. Let u† ∈ X1. Under the Assumptions 2.1 and 2.4, we

have that, for τ = τ(n) = n
θ2−θ1−1

2(θ1−θ2+2) , the convergence in (6.1) holds with

εn = n
θ0+θ2−2

2(θ1−θ2+2) , θ0 =

{
2`−β

∆ , if β − 2` ≤ 0
0, otherwise.

The result holds for any θ1, θ2 ∈ [0, 1], chosen so that E(κ2) < ∞ for,

κ = max
{∥∥ξ∥∥

2β−2`−η1
,
∥∥u†∥∥

2−η2

}
, where ηi = (1− θi)(β− 2`) + θi, i = 1, 2.

Remark 6.3. i) In order to have convergence in the PDE method we

need E
∥∥u†∥∥2

2−η2
<∞ for a θ2 ≤ 1. If we have the a-priori information

that u† ∈ Xγ, then we need to have γ ≥ 2−η2 = 1+(1−θ2)∆ for some
θ2 ∈ [0, 1]. This means that the minimum requirement for convergence
is γ ≥ 1 which is compatible to our assumption u† ∈ X1. On the other
hand, since in order to have the optimal rate (which corresponds to
choosing θ2 as small as possible) we need to choose θ2 = ∆+1−γ

∆ , if
γ > 1 + ∆ then the right hand side is negative so we have to choose
θ2 = 0, hence we cannot achieve the optimal rate. We say that the
method saturates at γ = 1 + ∆ which reflects the fact that the true
solution has more regularity than the method allows us to exploit in
order to obtain faster convergence rates.

ii) In order to have convergence we also need E
∥∥ξ∥∥2

2β−2`−η1
< ∞ for a

θ1 ≤ 1. By Lemma 2.5(iii), it suffices to have θ1 >
s0
∆ . This means that

we need ∆ > s0, which holds by the Assumption 2.4(1), in order to be
able to choose θ1 ≤ 1. On the other hand, since ∆ > 0 and σ0 ≥ 1, we
have that s0

∆ ≥ 0 thus we can always choose θ1 in an optimal way, that
is, we can always choose θ1 = s0+ε

∆ where ε > 0 is arbitrarily small.
Note that for the convergence in (6.1), the effect of ε is absorbed in
the sequence Mn →∞.

iii) If we want draws from µ0 to be in Xγ then we need σ0 > γ. Since
the minimum requirement for the method to give convergence is γ ≥ 1
while σ0 ≤ 1 this means that we can never have draws exactly match-
ing the regularity of the prior. On the other hand if we want an un-
dersmoothing prior (which according to [12] in the diagonal case gives
asymptotic coverage equal to 1) we need σ0 ≤ γ, which we always have
since γ ≥ 1 and σ0 ≤ 1. This, as discussed in Section 1, gives an



24 S. AGAPIOU, S. LARSSON AND A.M. STUART

explanation to the observation that in both of the above theorems we
always have τ → 0 as n→∞.

The following two corollaries are a direct consequence of the last remark:

Corollary 6.4. Assume u ∈ Xγ, where γ ≥ 1 and let η = (1− θ)(β −
2`) + θ, where θ ∈ [0, 1]. Under the Assumptions 2.1 and 2.4, we have the
following optimized rates of convergence, where ε > 0 is arbitrarily small:

i) if γ ∈ (1,∆ + 1], for τ = τ(n) = n
− γ−1+s0+ε

2(∆+γ−1+s0+ε)

Ey
†∥∥m†λ − u†∥∥2

η
≤ cn−

∆+γ−1−θ∆
∆+γ−1+s0+ε ;

ii) if γ > ∆ + 1, for τ = τ(n) = n
− ∆+s0+ε

2(2∆+s0+ε)

Ey
†∥∥m†λ − u†∥∥2

η
≤ cn−

(2−θ)∆
2∆+s0+ε ;

iii) if γ = 1 and θ ∈ [0, 1) for τ = τ(n) = n
− s0+ε

2(∆+s0+ε)

Ey
†∥∥m†λ − u†∥∥2

η
≤ cn−

(1−θ)∆
∆+γ−1+s0+ε .

If γ = 1 and θ = 1 then the method does not give convergence;

Corollary 6.5. Assume u ∈ Xγ, where γ ≥ 1. Under the Assumptions
2.1 and 2.4, we have the following optimized rates for the convergence in
(6.1), where ε > 0 is arbitrarily small:

i) if γ ∈ [1,∆ + 1] for τ = τ(n) = n
− γ−1+s0+ε

2(∆+γ−1+s0+ε)

εn =

{
n
− γ

2(∆+γ−1+s0) , if β − 2` ≤ 0

n
− ∆+γ−1

2(∆+γ−1+s0) , otherwise;

ii) if γ > ∆ + 1 for τ = τ(n) = n
− ∆+s0+ε

2(2∆+s0+ε)

εn =

{
n
− ∆+1

2(2∆+s0) , if β − 2` ≤ 0

n
− ∆

2∆+s0 , otherwise.

Note that, since the posterior is Gaussian, the left hand side in (6.2) is
the Square Posterior Contraction

(6.3) SPC = Ey
†∥∥m†λ − u†∥∥2

+ tr(Cλ,n),
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which is the sum of the mean integrated squared error (MISE) and the pos-
terior spread. Let u† ∈ X1. By Lemma 3.4, the relationship (1.10) between

u† and y† and the equation (1.11) for m†λ, we obtain

Bλm†λ = A−1C−1
1 y† = A−1C−1A−1u† +

1√
n
A−1C−1ξ

and Bλu† = A−1C−1A−1u† + λC−1
0 u†,

where the equations hold in X−1, since by a similar argument to the proof
of Proposition 3.5 we have m†λ ∈ X

1. By subtraction we get

Bλ(m†λ − u
†) =

1√
n
A−1C−1

1 ξ − λC−1
0 u†.

Therefore

(6.4) m†λ − u
† = B−1

λ

(
1√
n
A−1C−1

1 ξ − λC−1
0 u†

)
,

as an equation in X1. Using the fact that the noise has mean zero and the
relation (1.6), equation (6.4) implies that we can split the square posterior
contraction into three terms

(6.5) SPC =
∥∥λB−1

λ C
−1
0 u†

∥∥2
+ E

∥∥ 1√
n
B−1
λ A

−1C−1
1 ξ
∥∥2

+
1

n
tr(B−1

λ ),

provided the right hand side is finite. A consequence of the proof of Theorem
4.2 is that B−1

λ is trace class. Note that for ζ a white noise, we have that

tr(B−1
λ ) = E

∥∥B− 1
2

λ ζ
∥∥2

= E
〈
ζ,B−1

λ ζ
〉

= E
〈
C

s
2
0 ζ, C

− s
2

0 B
−1
λ C

− s
2

0 C
s
2
0 ζ
〉

≤
∥∥C− s20 B

−1
λ C

− s
2

0

∥∥
L(X )

E
∥∥C s20 ζ∥∥2

,

which for s > s0 since by Lemma 2.2 we have that E
∥∥C s20 ζ∥∥2

<∞, provides
the bound

(6.6) tr(B−1
λ ) ≤ c

∥∥C− s
2

0 B
−1
λ C

− s
2

0

∥∥
L(X )

,

where c > 0 is independent of λ. If q, r are chosen sufficiently large so that∥∥C−q0 u†
∥∥ <∞ and E

∥∥Cr0ξ∥∥2
<∞ then we see that

(6.7)

SPC ≤ c
(∥∥λB−1

λ C
q−1
0

∥∥2

L(X )
+

1

n

∥∥B−1
λ A

−1C−1
1 C

−r
0

∥∥2

L(X )
+

1

n

∥∥C− s20 B
−1
λ C

− s
2

0

∥∥
L(X )

)
,
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where c > 0 is independent of λ and n. Thus identifying εn in (6.1) can be
achieved simply through properties of the inverse of Bλ and its parametric
dependence on λ.

In the following, we are going to study convergence rates for the square
posterior contraction, (6.5), which by the previous analysis will secure that

Ey
†
µy
†

λ,n

{
u :
∥∥u− u†∥∥ ≥ εn}→ 0,

for ε2
n → 0 at a rate almost as fast as the square posterior contraction.

This suggests that the error is determined by the MISE and the trace of
the posterior covariance, thus we optimize our analysis with respect to these
two quantities. In [12] the situation where C0, C1 and A are diagonalizable
in the same eigenbasis is studied, and it is shown that the third term in
equation (6.5) is bounded by the second term in terms of their parametric
dependence on λ. The same idea is used in the proof of Theorem 6.2.

We now provide the proofs of Theorem 6.1 and Theorem 6.2.

Proof. [Theorem 6.1] Since ξ has zero mean, we have by (6.4)

E
∥∥m†λ − u†∥∥2

β−2`
= λ2

∥∥B−1
λ C

−1
0 u†

∥∥2

β−2`
+

1

n
E
∥∥B−1

λ A
−1C−1

1 ξ
∥∥2

β−2`

and

E
∥∥m†λ − u†∥∥2

1
= λ2

∥∥B−1
λ C

−1
0 u†

∥∥2

1
+

1

n
E
∥∥B−1

λ A
−1C−1

1 ξ
∥∥2

1
.

Using Propositions 5.1 and 5.2, we get

E
∥∥m†λ−u†∥∥2

β−2`
≤ cE(κ2)(λ2−θ2 +

1

n
λ−θ1) = cE(κ2)(nθ2−2τ2θ2−4+nθ1−1τ2θ1)

and

E
∥∥m†λ−u†∥∥2

1
≤ cE(κ2)(λ1−θ2+

1

n
λ−θ1−1) =

cE(κ2)

λ
(nθ2−2τ2θ2−4+nθ1−1τ2θ1).

Since the common parenthesis term, consists of a decreasing and an increas-
ing term in τ , we optimize the rate by choosing τ = τ(n) = np such that
the two terms become equal, that is, p = θ2−θ1−1

2(θ1−θ2+2) . We obtain,

E
∥∥m†λ − u†∥∥2

β−2`
≤ cE(κ2)n

θ2−2
θ1−θ2+2 and E

∥∥m†λ − u†∥∥2

1
≤ cE(κ2)n

θ2−1
θ1−θ2+2 .

By interpolating between the two last estimates we obtain the claimed rate.
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Proof. [Theorem 6.2] Recall equation (6.5)

SPC =
∥∥λB−1

λ C
−1
0 u†

∥∥2
+ E

∥∥ 1√
n
B−1
λ A

−1C−1
1 ξ
∥∥2

+
1

n
tr(B−1

λ ).

The idea is that the third term is always dominated by the second term.
Combining equation (6.6) with Proposition 5.3, we have that

1

n
tr(B−1

λ ) ≤ c
1

n
λ−

2`−β+s
∆ , ∀s ∈ ({β − 2`} ∨ {s0}, 1].

i) Suppose β−2` ≤ 0, so that by interpolating between the rates provided
by Proposition 5.1 and 5.2 we get for θ0 = 2`−β

∆ ∈ [0, 1]

E
∥∥ 1√

n
B−1
λ A

−1C−1
1 ξ
∥∥2 ≤ 1

n
E
∥∥ξ∥∥2

2β−2`−η1
λ−θ1−θ0

and ∥∥λB−1
λ C

−1
0 u†

∥∥2 ≤ c
∥∥u†∥∥2

2−η2
λ2−θ2−θ0 .

Note that θ1 is chosen so that E
∥∥ξ∥∥2

2β−2`−η1
<∞, that is, by Lemma

2.5(iii), it suffices to have θ1 >
s0
∆ . Noticing that by choosing s arbi-

trarily close to s0, we can have 2`−β+s
∆ arbitrarily close to 2`−β+σ0

∆ , and

since θ1 + θ0 >
2`−β+s0

∆ , we deduce that the third term in equation
(6.5) is always dominated by the second term. Combining, we have
that

SPC ≤ cE(κ2)

λθ0
(λ2−θ2 +

1

n
λ−θ1) =

cE(κ2)

λθ0
(nθ2−2τ2θ2−4 + nθ1−1τ2θ1).

ii) Suppose β − 2` > 0. Using the Propositions 5.1 and 5.2 we have that∥∥λB−1
λ C

−1
0 u†

∥∥2 ≤ c
∥∥λB−1

λ C
−1
0 u†

∥∥2

β−2`
≤ c
∥∥u†∥∥2

2−η2
λ2−θ2

and

E
∥∥ 1√

n
B−1
λ A

−1C−1
1 ξ
∥∥2 ≤ cE

∥∥ 1√
n
B−1
λ A

−1C−1
1 ξ
∥∥2

β−2`

≤ c 1

n
E
∥∥ξ∥∥2

2β−2`−η1
λ−θ1 ,

where as before θ1 > s0
∆ . The third term in equation (6.5) is again

dominated by the second term, since on the one hand θ1 >
s0
∆ and on

the other hand, since β−2` > 0, we can always choose {β−2`}∨{s0} <
s ≤ 1∧{s0+β−2`} to get 2`−β+s

∆ ≤ s0
∆ . Combining the three estimates

we have that

SPC ≤ cE(κ2)(nθ2−2τ2θ2−4 + nθ1−1τ2θ1).
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In both cases, the common term in the parenthesis consists of a decreasing
and an increasing term in τ , thus we can optimize by choosing τ = τ(n) = np

making the two terms equal, that is, p = θ1−θ2+1
2θ2−2θ1−4 , to get the claimed

rates.

7. Example. In this section we present a nontrivial example satisfying
Assumptions 2.1 and 2.4.

Let Ω ⊂ Rd, d = 1, 2, 3 be a bounded and open set. We define A0 := −∆,
where ∆ is the Dirichlet Laplacian which is the Friedrichs extension of the
classical Laplacian defined on C2

0 (Ω), that is, A0 is a self-adjoint operator
with a domainD(A0) dense in L2(Ω) [13]. For ∂Ω sufficiently smooth we have
D(A0) = H2(Ω) ∩ H1

0 (Ω). It is well known that A0 has a compact inverse
and that it possesses an eigensystem {ρ2

k, ek}∞k=1, where the eigenfunctions
{ek} form a complete orthonormal basis of L2(Ω) and the eigenvalues ρ2

k

behave asymptotically like k
2
d [1].

We study the Bayesian inversion of the operator A := A0 +Mq where
Mq : L2(Ω) → L2(Ω) is the multiplication operator by a nonnegative func-
tion q ∈ W 2,∞(Ω). Note that by the Hölder inequality the operator Mq is
bounded. We assume that the observational noise is white, so that C1 = I,
and we set the prior covariance operator to be C0 = A−2

0 .
The operator C0 is trace class. Indeed, let λ2

k = ρ−4
k be its eigenvalues.

Then they behave asymptotically like k−
4
d and

∑∞
k=1 k

− 4
d < ∞ for d < 4.

Furthermore, we have that
∑∞

k=1 λ
2(1−σ)
k ≤ c

∑∞
k=1 k

− 4(1−σ)
d < ∞, provided

σ < 1− d
4 , that is, the Assumption 2.1 is satisfied with

σ0 =


3/4, d = 1
1/2, d = 2
1/4, d = 3.

We define the Hilbert scale induced by C0 = A−2
0 , that is, (Xs)s∈R, for

Xs :=M
∥∥.∥∥

s , where

M =

∞⋂
k=0

D(A2k
0 ),

〈
u, v
〉
s

:=
〈
As0u,As0v

〉
and ‖u‖s :=

∥∥As0u∥∥.
Observe, X0 = X = L2(Ω).

Our aim is to show that C1 ' Cβ0 and A−1 ' C`0, where β = 0 and ` = 1
2 ,

in the sense of the Assumptions 2.4. We have ∆ = 2`− β + 1 = 2. Since for
d = 1, 2, 3 we have 0 < s0 < 1, the Assumption 2.4(1) is satisfied. Moreover,
note that since C1 = I the Assumptions 2.4(3) and (4) are trivially satisfied.
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We now show that Assumptions 2.4 (2), (5), (6) are also satisfied. In this
example the three assumptions have the form

2.
∥∥(A0 +Mq)

−1u
∥∥ � ∥∥A−1

0 u
∥∥, ∀u ∈ X−1;

5.
∥∥As0(A0 +Mq)

−1u
∥∥ ≤ c3

∥∥As−1
0 u

∥∥, ∀u ∈ Xs−1, ∀s ∈ (s0, 1];

6.
∥∥A−η0 (A0 +Mq)

−1u
∥∥ ≤ c4

∥∥A−η−1
0 u

∥∥, ∀u ∈ X−η−1, ∀η ∈ [−1, 1].

Observe that Assumption (5) is implied by Assumption (6).

Lemma 7.1. The operator (A0 +Mq)
−1A0 is bounded when considered

as an operator (i) X → X , (ii) X−1 → X−1 and (iii) X1 → X1.

Proof.

i) (A0 +Mq)
−1A0 = (I + A−1

0 Mq)
−1, where A−1

0 : X → X is compact
and Mq : X → X is bounded thus K := A−1

0 Mq : X → X is compact.
Hence, by the Fredholm Alternative [10, §27, Theorem 9], it suffices to
show that −1 is not an eigenvalue of K. Indeed, if there exists u ∈ X
such that A−1

0 Mqu = −u, then Mqu = −A0u, therefore u satisfies
(A0 +Mq)u = 0. Since A0 +Mq is positive-definite we have that
u = 0, thus −1 is not an eigenvalue of K.

ii) The claim is equivalent to the inequality∥∥A−1
0 (A0 +Mq)

−1u
∥∥ ≤ c∥∥A−2

0 u
∥∥, ∀u ∈ X−2.

Put v = (A0 + Mq)
−1u and note that we want to estimate w =

A−1
0 v, where v satisfies A0v +Mqv = u, or multiplying by A−2

0 , w +
A−2

0 MqA0w = A−2
0 u. The operator K = A−2

0 MqA0 is compact in X .
Indeed, since A−1

0 is compact, it suffices to show that A−1
0 MqA0 is

bounded in X . By duality for u ∈ X we have∥∥A−1
0 MqA0u

∥∥ = sup
‖φ‖=1

〈
A−1

0 MqA0u, φ
〉

= sup
‖φ‖=1

〈
u,A0MqA−1

0 φ
〉

≤ ‖u‖ sup
‖φ‖=1

∥∥A0MqA−1
0 φ

∥∥ ≤ c‖u‖∥∥q∥∥
W 2,∞(Ω)

,

since∥∥A0MqA−1
0 φ

∥∥ =
∥∥∆MqA−1

0 φ
∥∥ =

∥∥(∆q)A−1
0 φ+2(∇q)(∇A−1

0 φ)+q∆A−1
0 φ

∥∥
≤
∥∥q∥∥

W 2,∞(Ω)
(
∥∥A−1

0 φ
∥∥+

∥∥∇A−1
0 φ

∥∥+
∥∥φ∥∥) ≤ c

∥∥q∥∥
W 2,∞(Ω)

∥∥φ∥∥.
Note that −1 cannot be an eigenvalue of K since in that case we would
have A−2

0 MqA0u = −u for some u ∈ X \ {0} thus MqA0u = −A2
0u
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and setting ψ = A0u we would get A0ψ+Mqψ = 0 thus since A0+Mq

is positive-definite ψ = 0 and since A0 is positive-definite u = 0. By
the Fredholm Alternative we have that (I + K)−1 is bounded in X ,
hence

∥∥w∥∥ ≤ ∥∥(I +K)−1
∥∥
L(X )

∥∥A−2
0 u

∥∥ or equivalently∥∥A−1
0 (A0 +Mq)

−1u
∥∥ ≤ c∥∥A−2

0 u
∥∥, ∀u ∈ X−2.

iii) The claim is equivalent to the inequality∥∥A0(A0 +Mq)
−1u

∥∥ ≤ c‖u‖, ∀u ∈ X .
Put v = (A0 +Mq)

−1u and note that we want to estimate w = A0v,
where v satisfies A0v +Mqv = u or equivalently w +MqA−1

0 w = u.
The operator K = MqA−1

0 is compact in X , since A−1
0 is compact

and Mq is bounded in X . Note that −1 cannot be an eigenvalue of
K since if there exists a u ∈ X \ {0} such that MqA−1

0 u = −u, then
setting A−1

0 u = ψ we have that Mqψ = −A0ψ thus since A0 +Mq is
positive-definite we have ψ = 0 and since A−1

0 is positive-definite we
have u = 0. By the Fredholm Alternative we conclude that (I +K)−1

is bounded in X , hence
∥∥w∥∥ ≤ ∥∥(I + K)−1

∥∥
L(X )
‖u‖ or equivalently

that ∥∥A0(A0 +Mq)
−1u

∥∥ ≤ c‖u‖, ∀u ∈ X .
By direct application of [15][Theorem 4.36 and Theorem 1.18] we have

the following interpolation result:

Proposition 7.2. The couple (X0, X1) is an interpolation couple and
for every θ ∈ [0, 1] we have (X0, X1)θ,2 = Xθ. Furthermore, the couple
(X0, X−1) is also an interpolation couple and for every θ ∈ [0, 1] we have
(X0, X−1)θ,2 = X−θ.

Proposition 7.3. The Assumptions 2.4 are satisfied for this example.

Proof. We need to show that the Assumptions 2.4(2) and (6) hold.

i) We first prove Assumption 2.4(2). By (i) of the last lemma we have∥∥(A0 +Mq)
−1u

∥∥ ≤ c∥∥A−1
0 u

∥∥, ∀u ∈ X−1.

We need to show that
∥∥(A0 +Mq)

−1u
∥∥ ≥ c∥∥A−1

0 u
∥∥, ∀u ∈ X−1 which

is equivalent to
∥∥A−1

0 (A0 +Mq)u
∥∥ ≤ c‖u‖, ∀u ∈ X . Indeed,∥∥A−1

0 (A0 +Mq)u
∥∥ ≤ ‖u‖+

∥∥A−1
0 (qu)

∥∥ ≤ (1 +
∥∥q∥∥∞)‖u‖,

since A−1
0 is bounded and by the Hölder inequality.
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ii) For the proof of Assumption 2.4(6) it suffices to show that L := (A0 +
Mq)

−1A0 ∈ L(Xη), ∀η ∈ [−1, 1]. By Lemma 7.1 we have that L ∈
L(X0) ∩ L(X1) and L ∈ L(X0) ∩ L(X−1), thus by [15][Theorem 1.6]
and the last proposition, we get the result.

We can now apply Corollary 6.4 and Corollary 6.5 to get the following
convergence result.

Theorem 7.4. Let u† ∈ Xγ , γ ≥ 1. Then, for τ = τ(n) = n
4−d−4γ+ε
8γ+8+2d+ε ,

the convergence in (6.1) holds with εn = n−e, where

e =

{
2γ

4+d+4γ+ε , if γ < 3
6

16+d+ε , if γ ≥ 3,

for ε > 0 arbitrarily small and where d = 1, 2, 3, is the dimension. Further-
more, for t ∈ [−1, 1], for the same choice of τ , we have E

∥∥m†λ−u†∥∥2

t
≤ cn−h,

where

h =

{
4γ−4t

4+d+4γ+ε , if γ < 3
12−4t

16+d+ε , if γ ≥ 3.

8. The Diagonal Case. In the case where C0, C1 and A, are all di-
agonalizable in the same eigenbasis our assumptions are trivially satisfied,
provided ∆ > 2s0. In [12], sharp convergence rates are obtained for the
convergence in (6.1), in the case where the three relevant operators are si-
multaneously diagonalizable and have spectra that decay algebraically. The
rates in [12] agree with the minimax rates provided the scaling of the prior
is optimally chosen, [4]. In the next figure, we have in green the rates of
convergence predicted by Corollary 6.5 and in blue the sharp convergence
rates from [12], plotted against the regularity of the true solution, u† ∈ Xγ ,
in the case where β = ` = 1

2 and C0 has eigenvalues that decay like k−2. In
this case s0 = 1

2 ,∆ = 3
2 , so that ∆ > 2s0.

As explained in Remark 6.3, the minimum regularity for our method
to work is γ = 1 and our rates saturate at γ = 1 + ∆, that is, in this
example at γ = 2.5. We note that for γ ∈ [1, 2.5] our rates agree with the
sharp rates obtained in [12], for γ > 2.5 our rates are suboptimal and for
γ < 1 the method fails. The discrepancies can be explained by the fact that
in Proposition 5.2, the choice of θ2 which determines both the minimum
requirement on the regularity of u† and the saturation point, is the same
for both of the operator norm bounds. This means that on the one hand
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to get convergence of the term
∥∥λB−1

λ C
−1
0 u†

∥∥ in equation (6.5) in the proof
of Theorem 6.2, we require conditions which secure the convergence in the
stronger X1-norm and on the other hand the saturation rate for this term
is the same as the saturation rate in the weaker Xβ−2`-norm.

9. Conclusions. We have presented a method of identifying the pos-
terior distribution in a conjugate Gaussian Bayesian linear inverse problem
setting (Section 4). We used this identification to examine the posterior
consistency of the Bayesian approach in a frequentist sense (Section 6). We
provided convergence rates for the convergence of the expectation of the
mean error in a range of norms (Theorem 6.1, Corollary 6.4). We also pro-
vided convergence rates for the square posterior contraction (Theorem 6.2,
Corollary 6.5). Our methodology assumed a relation between the prior co-
variance, the noise covariance and the forward operator, expressed in the
form of norm equivalence relations (Assumptions 2.4). We considered Gaus-
sian noise which can be white. In order for our methods to work we required
a certain degree of ill-posedness compared to the regularity of the prior (As-
sumption 2.4(1)) and for the convergence rates to be valid a certain degree
of regularity of the true solution. In the case where the three involved op-
erators are all diagonalizable in the same eigenbasis, when the problem is
sufficiently ill-posed and for a range of values of γ, the parameter expressing
the regularity of the true solution, our rates agree with the sharp (minimax)
convergence rates obtained in [12] (Section 8).

The methodology presented in this paper is extended to drift estimation
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for diffusion processes in [17]. Future research includes the extension to an
abstract setting which includes both the present paper and [17] as special
cases. Other possible directions are the consideration of nonlinear inverse
problems, the use of non-Gaussian priors and/or noise and the extension of
the credibility analysis presented in [12] to a more general setting.
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[14] M. S. Lehtinen, L. Päivärinta, and E. Somersalo, Linear inverse problems for gen-
eralised random variables, Inverse Problems 5 (1989), no. 4, 599–612. MR1009041
(91g:65129)

[15] Alessandra Lunardi, Interpolation theory, second ed., Appunti. Scuola Normale Supe-
riore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New
Series)], Edizioni della Normale, Pisa, 2009. MR2523200 (2010d:46103)

[16] A. Mandelbaum, Linear estimators and measurable linear transformations on a
Hilbert space, Z. Wahrsch. Verw. Gebiete 65 (1984), no. 3, 385–397. MR731228
(85h:62030)

[17] Y. Pokern, A. M. Stuart, and J. H. van Zanten, Posterior consistency via precision
operators for bayesian nonparametric drift estimation in sdes, (2012).

34

http://www.ams.org/mathscinet-getitem?mr=2192832
http://www.ams.org/mathscinet-getitem?mr=1045629
http://www.ams.org/mathscinet-getitem?mr=1642391
http://www.ams.org/mathscinet-getitem?mr=1642391
http://www.ams.org/mathscinet-getitem?mr=2421941
http://www.ams.org/mathscinet-getitem?mr=2244975
http://www.ams.org/mathscinet-getitem?mr=1408680
http://www.ams.org/mathscinet-getitem?mr=1790007
http://www.ams.org/mathscinet-getitem?mr=2358638
http://www.ams.org/mathscinet-getitem?mr=2358638
http://www.ams.org/mathscinet-getitem?mr=0243367
http://www.ams.org/mathscinet-getitem?mr=1464694
http://www.ams.org/mathscinet-getitem?mr=1892228
http://www.ams.org/mathscinet-getitem?mr=1009041
http://www.ams.org/mathscinet-getitem?mr=1009041
http://www.ams.org/mathscinet-getitem?mr=2523200
http://www.ams.org/mathscinet-getitem?mr=731228
http://www.ams.org/mathscinet-getitem?mr=731228


POSTERIOR CONSISTENCY OF BAYESIAN INVERSE PROBLEMS 35

[18] A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010),
451–559. MR2652785

[19] A. W. van der Vaart and J. H. van Zanten, Rates of contraction of posterior distri-
butions based on Gaussian process priors, Ann. Statist. 36 (2008), no. 3, 1435–1463.
MR2418663 (2009i:62068)

[20] A. W. van der Vaart and J. H. van Zanten, Bayesian inference with rescaled Gaus-
sian process priors, Electron. J. Stat. 1 (2007), 433–448 (electronic). MR2357712
(2009a:62156)

Mathematics Institute
University of Warwick
Coventry CV4 7AL, UK
E-mail: s.agapiou@warwick.ac.uk

A.M.Stuart@warwick.ac.uk

Mathematical Sciences
Chalmers University of Technology
and University of Gothenburg
SE-412 96 Gothenburg, Sweeden
E-mail: stig@chalmers.se

http://www.ams.org/mathscinet-getitem?mr=2652785
http://www.ams.org/mathscinet-getitem?mr=2418663
http://www.ams.org/mathscinet-getitem?mr=2357712
http://www.ams.org/mathscinet-getitem?mr=2357712
mailto:s.agapiou@warwick.ac.uk
mailto:A.M.Stuart@warwick.ac.uk
mailto:stig@chalmers.se

	1 Introduction
	2 Assumptions
	3 Properties of the Posterior Mean and Covariance
	4 Posterior Identification
	4.1 Proof of Theorem ??
	4.2 Proof of Theorem ??

	5 Operator norm bounds on B-1
	6 Posterior Consistency
	7 Example
	8 The Diagonal Case
	9 Conclusions
	Bibliography
	References
	Author's addresses



