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Abstract

Metal-catalyst-free chemical vapour deposition (CVD) of large area uniform

nanocrystalline graphene on oxidised silicon substrates is demonstrated. The

material grows slowly, allowing for thickness control down to monolayer

graphene. The as-grown thin films are continuous with no observable pin-

holes, and are smooth and uniform across whole wafers, as inspected by

optical-, scanning electron-, and atomic force microscopy. The sp2 hybridised

carbon structure is confirmed by Raman spectroscopy. Room temperature

electrical measurements show ohmic behaviour (sheet resistance similar to

exfoliated graphene) and up to 13% of electric-field effect. The Hall mo-

bility is ∼40 cm2/Vs, which is an order of magnitude higher than previ-

ously reported values for nanocrystalline graphene. Transmission electron
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microscopy, Raman spectroscopy and transport measurements indicate a

graphene crystalline domain size ∼10 nm. The absence of transfer to an-

other substrate allows avoiding of wrinkles, holes and etching residues which

are usually detrimental to device performance. This work provides a broader

perspective of graphene CVD and shows a viable route towards applications

involving transparent electrodes.
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1. Introduction

Graphene, a single-atomic plane of sp2 hybridised carbon atoms, is a

remarkable material with extraordinary electrical and optical properties by

virtue of its unique band structure. The experimentally measured conduc-

tance indicates high and approximately equal mobilities for holes and elec-

trons. Graphene is transparent; it absorbs πα ≈2.3% of white light, where

α is the fine-structure constant [1]. It is expected that graphene will play

a crucial role in future nanoelectronics [2] and optoelectronics [3]. Tradi-

tionally, graphene is produced by mechanical exfoliation of graphite [4], a

process intrinsically limited to the formation of small flakes (typically a few

µm in size) unsuitable for most industrial applications. To date, techniques

which are capable of producing large area graphene include epitaxial growth

and chemical vapour deposition (CVD). The epitaxial technique where SiC

substrates are heated to high temperatures to sublimate the Si, leaving the

C to form one or more graphene layers [5], is costly due to the quality- and

size requirements on the substrates. On the other hand, CVD technique

is cost-efficient and scalable. It is compatible with existing semiconductor

technologies and is far more realistic for use in industrial processes [6]. In

the CVD of graphene, metals such as Cu [7] or Ni [8] are commonly used

as catalysts. However, since they are electrically conducting, transfer of the

synthesised graphene onto insulators is required for most applications. Wrin-

kles, holes and metal etching residues are inevitable during such transfers and

often result in decreased device performance or even failure. For practical

applications, a reliable large scale deposition of graphene directly on insula-

tors is highly desirable. Recent advances in a metal-free growth of graphene
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include: CVD (or molecular beam epitaxy (MBE)) on sapphire [9, 10], ZnS

[11], BN [12], GaN [13], Si3N4 [14], MgO [15], and HfO2 [14], etc. Graphene

produced without metal catalysts is nanocrystalline, and therefore the carrier

mobility is low (typically ∼1 cm2/Vs) [9], and thus unsuitable for transistors.

Nevertheless, they are very promising for other important applications such

as transparent electrodes [16] and sensors.

In particular, the direct synthesis of graphene on standard dielectric SiO2

is one of the important goals which the semiconductor industry is pursuing

[17]. This, however, has been widely found to be extremely difficult. The

process is usually reported as irreproducible yielding discontinuous graphene

with unknown electrical properties [17–20]. On the other hand, the formation

of graphitic carbon on SiO2 has been known for several decades [21, 22], but

has thus far been overlooked with regard to graphene synthesis. In this let-

ter, we have explored the potential of this effect and demonstrated that large

area uniform nanocrystalline graphene can be grown directly on oxidised Si

substrates by CVD without using any metal catalysts. The growth con-

ditions are very different from those of metal-catalysed CVD of graphene.

The thickness of graphene is controllable by changing the deposition time

and/or precursor partial pressure. The thin films are wrinkle-free, have no

observable pinholes, and are uniform across entire wafers, as inspected by

optical, scanning electron- and atomic force microscopy (SEM and AFM).

Raman spectra confirm the sp2 hybridised carbon structure. Room temper-

ature electrical characterisation reveals ohmic behaviour and electric-field

effect. Transmission electron microscopy (TEM), Raman spectroscopy and

transport measurements all imply a crystalline domain size ∼10 nm. The
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carrier mobility is ∼40 cm2/Vs, which is an order of magnitude higher than

previously reported for graphene grown on sapphire [9]. The transfer-free

fabrication reported here demonstrates a significant step towards large scale

graphene synthesis on dielectric materials and its exploitation in future ap-

plications involving transparent electrodes.

2. Experimental

The CVD is performed in a home-built atmospheric-pressure hot-wall

quartz tube furnace. CH4 is used as a carbon precursor gas, mixed with

auxiliary reduction- (H2) and carrier (Ar) gases. 300-nm-thick SiO2 thin

films are grown by a standard wet oxidation of Si wafers (using oxyhydro-

gen at 1050 oC). These substrates are heated to 1000 oC (at a rate of ∼30

oC/min) under H2 (50 sccm) and Ar (1000 sccm) atmosphere and kept at

1000 oC for 3 min. Then, 300 sccm CH4 is introduced to initiate the forma-

tion of graphene. Typical growth time is 30-60 min. After the deposition,

the CH4 flow is stopped, leaving other gases to flow for further 3 min to

remove residual reaction gases before allowing the chamber to naturally cool

to room temperature (∼20 oC/min) in the same H2+Ar atmosphere. The

nanocrystalline graphene can also be deposited directly on SiO2 by using

other hydrocarbon precursors such as C2H2, showing the generality of the

process (for details, see Supporting Information).

3. Results and Discussion

The graphene thin films directly grown on SiO2 are very uniform over

large areas with no visible wrinkles, which can be confirmed by SEM (see
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Fig. 1). However, there are some particles on the surface, most likely due

to the co-deposition of nanographite during growth. Considering that the

deposition rate is low, the thickness of the graphene on SiO2 can easily be

controlled while keeping high uniformity across large substrates simply by

tuning the growth time. For TEM analysis, the samples are first coated with

polymer (e. g. PMMA) support and subsequently immersed in diluted HF

acid to separate the graphene from SiO2/Si substrates. After rinsing, the thin

films are transferred to Cu TEM grids with a holey carbon network followed

by removal of the polymer by acetone. Fig. 2 shows high-resolution TEM

images of the graphene grown for 30 min. The graphene is continuous and

uniform. Nanographite is occasionally found (indicated by arrows in Fig. 2

(b)), where the layered structure of the particles is visible. In Fig. 2 (a),

at the rippled/folded free-standing edge of the films, layer-by-layer structure

is observed. Fig. 2 (c) shows a typical convergent beam electron diffraction

pattern obtained from almost every place in the sample, which is a signature

clearly indicating the hexagonal lattice structure from single-layer graphene.

However, we notice that if the electron beam is moved over a distance of a

few nm or if the beam spot is bigger than ∼10 nm, diffraction patterns like

Fig. 2 (d) are observed. The mixed monolayer graphene signals imply that

the beam is either at domain boundaries or covers several domains. Fig. 2

provides a direct evidence of the CVD monolayer graphene and indicates a

nanocrystalline grain size of ∼10 nm.

Optical micrographs of the as-grown graphene are shown in Fig. 3 (a)

and (b), corresponding to the growth time of 30 and 60 min, respectively.

The left section of each image shows a transferred graphene grown by stan-
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dard Cu-catalysed CVD for comparison [23]. As is generally acknowledged

[6, 7, 16, 18, 19, 23–25], and also confirmed by our Raman measurements (see

Fig. 4 (a)), the graphene grown on Cu is primarily monolayer. In Fig. 3 (a),

the two samples have almost equal colour and contrast. Thus, it is reasonable

to conclude that the graphene grown on SiO2 is composed of primarily mono-

layer crystallites in this figure, in agreement with the TEM observation. The

inset of Fig. 5 (a) shows the AFM-height profile across a step in the thin film,

revealing a step height ∼2 nm. Typically, a monolayer graphene fabricated

by mechanical exfoliation has the AFM-measured thickness of ∼0.8 nm on

SiO2, whereas after lithographic processing this thickness often increases to

∼1.5-2 nm [26, 27], also in agreement with our data. However, according to

Fig. 1 and Fig. 2, the coexistence of a number of few-layer graphene flakes (or

nanographite) indicates that Fig. 3 is a macroscopically average effect of these

flakes as well as the grain boundaries. Longer growth time leads to thicker

graphene. The contrast of the samples grown during 30, 45 (not shown), and

60 min are compared with the Cu-grown graphene in Fig. 3 (c). Here, the

contrast is defined as (Bsub−Bgr)/Bsub, where Bgr and Bsub are the average

brightness of the graphene and the substrate (uncovered areas in Fig. 3 (a)),

respectively. Not unexpectedly, increasing the amount of CH4 in the growth

chamber for a fixed deposition time also results in a thicker graphene. In the

extreme case of 30 min CVD at 1000 sccm CH4 and 50 sccm H2 (as compared

to our regular recipe of 300 sccm CH4, 50 sccm H2 and 1000 sccm Ar in the

Experimental) we obtain thick nanocrystalline graphite films (not shown).

Note that the as-synthesised films retain a metallic luster even for hundreds

of layers [14]. Fig. 3 is obtained by an optical microscope (Olympus) and the
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data are thus not quantitatively accurate enough to be an evidence of mono-

layer graphene. However, since the thickness variation in SiO2 on different

chips is in the order of only ∼1 nm, Fig. 3 is sufficient for a convenient estima-

tion. We have performed variable angle spectroscopic ellipsometry (VASE)

to obtain more rigorous optical information.0 The nanocrystalline graphene

grown for 30 min shows qualitatively similar results as for what have been

reported recently on exfoliated and Cu-grown monolayer graphene [28, 29].

Nanocrystalline graphene deposited using a similar recipe on single crystal

SiO2 (quartz) also shows similar properties to standard graphene, as mea-

sured by transmission spectroscopy.0

Graphitisation is a complex physicochemical phenomenon and the de-

tailed mechanism is not yet understood. Here, we propose two possible

scenarios of the CVD of our nanocrystalline graphene. The first mecha-

nism is a self-assembly of nanographene flakes resulting from pyrolysis of

CH4 [14]. At 1000 oC, most of CH4 molecules decompose. The released

carbon atoms readily arrange themselves in aromatic rings and planar sp2

hybridised graphitic layers forming nanographene crystallites up to ∼10 nm

in size. Under usual conditions, the nanographene chaotically aggregates into

bigger porous lumps with rough surfaces such as carbon black [30, 31]. In

our case, a hot flat substrate forces the nanographene to orient itself parallel

to the substrate thereby initiating the growth of textured thin films. The

high substrate temperature and presence of H2 favour larger crystallites at

the surface as they are thermodynamically more stable, while the smaller

0Sun J et al. Unpublished.
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ones (thin-film nuclei) are easier to decompose or react with H2. However,

the small crystallites may survive at lower temperature, hereby breaking the

self-assembly process that results in the ordered structure of the thin film.

Indeed, at the lower-temperature zones of the CVD reactor tube we only ob-

serve porous deposits reminiscent of soot. We anticipate that this mechanism

would permit growing continuous nanocrystalline graphene on virtually any

dielectric substrate that withstands ∼1000 oC [14]. The second mechanism

of the CVD of graphene on SiO2 might be of catalytic nature. The catalytic

graphitisation by SiO2 powder was observed previously [21]. It is explained

by the formation and decomposition of surface carbide intermediates [21] and

is presumably related to the fact that Si can catalyse graphitisation [32]. In

our experiments on bare Si, nanocrystalline graphene can indeed be easily

obtained at merely 700 oC (see Supporting Information).

The Raman spectra of graphene grown on Cu and nanocrystalline graphene

grown on SiO2 are shown in Fig. 4. The G and 2D bands located at ∼1591

cm−1 and ∼2683 cm−1, respectively, are clearly seen for all samples. These

two peaks are characteristic spectral features of graphitic sp2 hybridised ma-

terials. The well-defined peaks differentiate the as-produced nanocrystalline

graphene from amorphous carbon (a-C) [33]. Typically, the Raman spectra

of a-C have very broad G and D bands merged together, and the 2D band is

absent, as summarized by two groups [34, 35]. In fact, atomically thin a-C

films have only recently been made by bombarding graphene with electron

beam [36]. In Fig. 4 (a), the 2D-to-G peak-height ratio is ∼2 and the full

width at half maximum (FWHM) of the symmetric 2D peak is ∼37 cm−1.

This implies that the Cu-grown graphene is indeed a high-quality monolayer
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[7]. In comparison, the SiO2-grown graphene has higher D peaks at about

1350 cm−1, as seen in Fig. 4 (b). The G+D band (high-order Raman signals)

at ∼2941 cm−1 [37, 38] is also detected. Raman D band is a fingerprint of

disorder in the sp2 network of carbon materials. The ∼10 µm laser spot

in our Raman measurements covers numerous graphene domains with ran-

dom in-plane orientations resulting in a strong D peak. By analysing the

ID/IG intensity ratio, disorder in the graphene monolayer can be (roughly)

quantified. Using the model proposed by Lucchese et al. [33, 39], the av-

erage distance between defects is estimated to be 7-8 nm, i. e. consistent

with the graphene grain size of ∼10 nm determined by TEM and transport

measurements (see below).

Hall bar structures are patterned on the as-synthesised thin films by con-

ventional photolithography using S1813 photoresist. As electrode materials,

5 nm Cr and 45 nm Au are deposited by evaporation. A typical optical

micrograph of the completed device is shown in the inset of Fig. 5 (b). All

electrical measurements shown in this figure are performed at room tem-

perature in air without sample annealing. Voltage V is applied between

the two horizontal contacts (1, 4) while recording the current I. The other

electrodes permit four-terminal measurements over 4×4 µm2 of the active

area of the device. The transport properties are similar for all devices on

the same chip, highlighting the reproducibility of the synthesis process and

the uniformity of the thin films. Fig. 5 (a) plots the I-V curves of devices

made from samples grown during various times. Linear (ohmic) behaviour

is observed for all samples, including the contact resistances to metal elec-

trodes. The sheet resistances Rs obtained in the four-probe measurements
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are 13.3, 6.8, and 5.4 kΩ/� for the samples grown during 30, 45, and 60 min,

respectively, i. e. Rs decreases as the film thickness increases. The value

for the 30-min-grown sample is larger than but comparable to that of the

Cu-produced monolayer graphene [25]. Fig. 5 (b) depicts the field effect in

the graphene. Back-gate voltage Vg is applied to the conducting underlying

Si substrate, which is capacitively coupled to the thin films via 300-nm-thick

SiO2. For the 30-min-grown sample, Rs varies by approximately 13% under

±20 V gate voltages, while a weaker field effect is seen in samples grown for

longer times. The Dirac point is not observed at this Vg range, possibly due

to the charge doping effects from the photoresist [40]. Recently, it is found

that high-temperature annealing can reduce the distance between exfoliated

graphene flakes and SiO2 substrates, thereby increasing the coupling between

them, and leading to heavy hole doping and severe mobility degradation [27].

This can account for our reduced gating performance, since the graphene is

synthesised in a long-time high-temperature process.

The Hall measurements have been carried out on the device shown in the

inset of Fig. 5 (b). At both room- and low temperatures, the Hall mobil-

ity is ∼40 cm2/Vs, an order of magnitude improvement compared with the

previously reported best result for nanocrystalline graphene thin films [9].

The value is also in good agreement with the mobility extracted from the

gate measurements shown in Fig. 5 (b) [41, 42]. Based on the Hall-effect and

magnetoresistance studies, independent estimation of the graphene grain size

can be obtained. The results are shown in Fig. 6 where the magnetoconduc-

tance (MC) ∆σ(B) = R−1
s (B)−R−1

s (0) is presented for several temperatures

from 3.8 to 290 K. In these experiments, Rs and the Hall resistance RH
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have been determined by taking the symmetric- and antisymmetric compo-

nents of the voltage V25 across contacts 2 and 5 while applying the current

I = 1-10 µA between contacts 1 and 4: Rs = [V25(B) + V25(−B)]/2I and

RH = [V25(B)− V25(−B)]/2I (see Fig. 5). The MC is positive and non-zero

even at room temperature. The negative magnetoresistance is characteristic

for many disordered materials [43], and in particular, for carbon-based sys-

tems [44–47]. Negative magnetoresistance is usually explained by the weak

localisation of carriers with some peculiarities which are characteristic for

graphene [44, 48] (and references therein). The electron mean free path l

in our thin films is clearly small, because e. g. Rs is close to the quantum

resistance RQ at low temperature meaning that kF l . 1, where kF is the

Fermi wave vector. Then, the electron localisation is rather strong and the

conductivity can be described by the variable-range hopping model [49] with

ln(σ(T )) v T−1/3 in the two-dimensional case. This is consistent with Rs(T )

shown in the inset of Fig. 6. It has been argued that the weak-localisation

analysis can be used even in the case kF l . 1 [45]. Indeed, our ∆σ(B)-

data can be fitted very well by the weak-localisation equation: ∆σ(B) =

e2[3F (4eL2
1B/~) − F (4eL2

0B/~)]/(2πh), where F (x) = ψ(0.5 + 1/x) + ln(x)

and ψ(x) is the digamma function, with two cumulative fitting parameters,

L0 and L1, which are the characteristic singlet and triplet dephasing lengths,

also including spin effects [45, 48] (see Fig. 6). Both L0 and L1 are about

10-11 nm at low temperature decreasing to 6-7 nm at room temperature.

However, the accuracy of experimental σ(B) is not sufficient to firmly ex-

tract the spin-related components of L0 and L1.
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4. Summary

We have demonstrated that atomically thin nanocrystalline carbon films

can be fabricated on standard SiO2 dielectric by direct CVD without metallic

catalysts. The uniform morphology of the graphene is observed by optical

microscopes as well as SEM, AFM and TEM. The sp2 C network is con-

firmed by Raman measurements. The growth mechanisms of the thin films

are briefly discussed. The as-deposited graphene shows ohmic behaviour

and electric-field effect at room temperature. The disorder-induced nega-

tive magnetoresistance is observed. TEM, Raman and transport analysis all

agree with the graphene nanocrystallites being in the size range of ∼10 nm.

We anticipate that our results will stimulate further investigation on the use

of oxides in the CVD of graphene. The transfer-free process detailed here

favours the industrialisation of graphene technology and hints at a promising

future in a wide variety of applications such as transparent electrodes and

other applications relying on cheap and chemically stable ultrathin conduct-

ing coatings.

5. Supplementary data

Supplementary data associated with this article can be found, in the

online version, at doi:. It includes details of nanocrystalline graphene grown

on SiO2/Si and Si from C2H2 precursor.

Acknowlegements

We thank J. Svensson (Lund University) and H. Jaksch (Carl Zeiss) for

their generous help. Financial support from the Swedish Research Coun-

cil and the Swedish Foundation for Strategic Research is appreciated. The

13



clean-room processing involves the equipment sponsored by the Knut and Al-

ice Wallenberg Foundation. J. Liu acknowledges the financial support from

the Chalmers area of advances “Production”. T. J. Booth and P. Bøggild

acknowledge financial support from the Danish Research Council.

14



References

[1] Kuzmenko AB, van Heumen E, Carbone F, van der Marel D. Universal

optical conductance of graphite. Phys. Rev. Lett. 2008, 100, 117401.

[2] Schwierz F. Graphene transistors. Nature Nanotechnol. 2010, 5, 487–

496.

[3] Bonaccorso F, Sun Z, Hasan T, Ferrari AC. Graphene photonics and

optoelectronics. Nature Photon. 2010, 4, 611–622.

[4] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubunos SV,

et al. Electric field effect in atomically thin carbon films. Science 2004,

306, 666–669.

[5] Miller DL, Kubista KD, Rutter GM, Ruan M, de Heer WA, First PN, et

al. Observing the quantization of zero mass carriers in graphene. Science

2009, 324, 924–927.

[6] Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. Roll-to-roll

production of 30-inch graphene films for transparent electrodes. Nature

Nanotechnol. 2010, 5, 574–578.

[7] Li X, Cai W, An J, Kim S, Nah J, Yang D, et al. Large-area synthesis of

high-quality and uniform graphene films on copper foils. Science 2009,

324, 1312–1314.

[8] Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale

pattern growth of graphene films for stretchable transparent electrodes.

Nature 2009, 457, 706–710.

15



[9] Jerng SK, Yu DS, Kim YS, Ryou J, Hong S, Kim C, et al. Nanocrys-

talline graphite growth on sapphire by carbon molecular beam epitaxy.

J. Phys. Chem. C 2011, 115, 4491–4494.

[10] Miyasaka Y, Nakamura A, Temmyo J. Graphite thin films consisting of

nanograins of multilayer graphene on sapphire substrates directly grown

by alcohol chemical vapor deposition. Jpn. J. Appl. Phys. 2011, 50,

04DH12.

[11] Wei D, Liu Y, Zhang H, Huang L, Wu B, Chen J, et al. Scalable synthesis

of few-layer graphene ribbons with controlled morphologies by a tem-

plate method and their applications in nanoelectromechanical switches.

J. Am. Chem. Soc. 2009, 131, 11147–11154.

[12] Ding X, Ding G, Xie X, Huang F, Jing M. Direct growth of few layer

graphene on hexagonal boron nitride by chemical vapor deposition. Car-

bon 2011, 49, 2522–2525.

[13] Han W, Zettl A. An efficient route to graphitic carbon-layer-coated gal-

lium nitride nanorods. Adv. Mat. 2002, 14, 1560–1562.

[14] Sun J, Lindvall N, Cole MT, Teo KBK, Yurgens A. Large-area uniform

graphene-like thin films grown by chemical vapor deposition directly on

silicon nitride. Appl. Phys. Lett. 2011, 98, 252107.

[15] Rummeli MH, Bachmatiuk A, Scott A, Borrnert F, Warner JH, Hoffman

V, et al. Direct low-temperature nanographene CVD synthesis over a

dielectric insulator. ACS Nano 2010, 4, 4206–4210.

16



[16] Park H, Rowehl JA, Kim KK, Bulovic V, Kong J. Doped graphene

electrodes for organic solar cells. Nanotechnology 2010, 21, 505204.

[17] Takami T, Ogawa S, Sumi H, Kaga T, Saikubo A, Ikenaga E, et al.

Catalyst-free growth of networked nanographite on Si and SiO2 sub-

strates by photoemission-assisted plasma-enhanced chemical vapor de-

position. e-J. Surf. Sci. Nanotechnol. 2009, 7, 882–890.

[18] Ismach A, Druzgalski C, Penwell S, Zheng M, Javey A, Bokor J, et

al. Direct chemical vapor deposition of graphene on dielectric surfaces.

Nano Lett. 2010, 10, 1542–1548.

[19] Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM. Growth of graphene

from solid carbon sources. Nature 2010, 468, 549–552.

[20] Hofrichter J, Szafranek BN, Otto M, Echtermeyer TJ, Baus M, Majerus

A, et al. Synthesis of graphene on silicon dioxide by a solid carbon source.

Nano Lett. 2010, 10, 36–42.

[21] Oya A, Marsh H. Phenomena of catalytic graphitization. J. Mat. Sci.

1982, 17, 309–322.

[22] Johansson A-S, Carlsson J-O. Crystallinity, morphology and microstruc-

ture of chemical-vapor-deposited carbon films on different substrates.

Thin Solid Films 1995, 261, 52–58.

[23] Sun J, Lindvall N, Cole MT, Angel KTT, Wang T, Teo KBK, et al. Low

partial pressure chemical vapor deposition of graphene on copper. IEEE

Trans. Nanotechnol. 2011, in press, doi: 10.1109/TNANO.2011.2160729.

17



[24] Cao H, Yu Q, Jauregui LA, Tian J, Wu W, Liu Z, et al. Electronic trans-

port in chemical vapor deposited graphene synthesized on Cu: Quantum

Hall effect and weak localization. Appl. Phys. Lett. 2010, 96, 122106.

[25] Li X, Cai W, Jung I, An J, Yang D, Velamakanni A, et al. Synthesis,

characterization, and properties of large-area graphene films. ECS Trans.

2009, 19, 41–52.

[26] Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC. Intrinsic response of

graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

[27] Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrin-

sic graphene surfaces: a systematic study on thermal annealing and

wet-chemical treatment of SiO2-supported graphene devices. Nano Lett.

2011, 11, 767–771.

[28] Kravets VG, Grigorenko AN, Nair RR, Blake P, Anissimova S, Novoselov

KS, et al. Spectroscopic ellipsometry of graphene and an exciton-shifted

van Hove peak in absorption. Phys. Rev. B 2010, 81, 155413.

[29] Nelson FJ, Kamineni VK, Zhang T, Comfort ES, Lee JU, Diebold AC.

Optical properties of large-area polycrystalline chemical vapor deposited

graphene by spectroscopic ellipsometry. Appl. Phys. Lett. 2010, 97,

253110.

[30] Weimer AW, Dahl J, Tamburini J, Lewandowski A, Pitts R, Bingham C,

et al. Thermal dissociation of methane using a solar coupled aerosol flow

reactor. Proceedings of the AIChE Annual Meeting 2000, Los Angeles,

CA, USA.

18



[31] Biscoe J, Warren BE. An X-ray study of carbon black. J. Appl. Phys.

1942, 13, 364–371.

[32] Oya A, Otani S. Catalytic graphitization of carbons by various metals.

Carbon 1979, 17, 131–137.

[33] Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Per-

spectives on carbon nanotubes and graphene Raman spectroscopy. Nano

Lett. 2010, 10, 751–758.

[34] Tamor MA, Vassell WC. Raman “fingerprinting” of amorphous carbon

films. J. Appl. Phys. 1994, 76, 3823–3830.

[35] Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP. Raman spec-

troscopy on amorphous carbon films. J. Appl. Phys. 1996, 80, 440–447.

[36] Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC. From point de-

fects in graphene to two-dimensional amorphous carbon. Phys. Rev.

Lett. 2011, 106, 105505.

[37] Tan P, Tang Y, Deng YM, Li F, Wei YL, Cheng HM. Resonantly en-

hanced Raman scattering and high-order Raman spectra of single-walled

carbon nanotubes. Appl. Phys. Lett. 1999, 75, 1524–1526.

[38] Tan P, Hu C, Dong J, Shen W, Zhang B. Polarization properties, high-

order Raman spectra, and frequency asymmetry between Stokes and

anti-Stokes scattering of Raman modes in a graphite whisker. Phys.

Rev. B 2001, 64, 214301.

19



[39] Lucchese MM, Stavale F, Ferreira EHM, Vilani C, Moutinho MVO,

Capaz RB, et al. Quantifying ion-induced defects and Raman relaxation

length in graphene. Carbon 2010, 48, 1592–1597.

[40] Lara-Avila S, Moth-Poulsen K, Yakimova R, Bjornholm T, Fal’ko V,

Tzalenchuk A, et al. Non-volatile photochemical gating of an epitaxial

graphene/polymer heterostructure. Adv. Mat. 2011, 23, 878–882.

[41] Farmer DB, Chiu H-Y, Lin Y-M, Jenkins KA, Xia F, Avouris P. Utiliza-

tion of a buffered dielectric to achieve high field-effect carrier mobility

in graphene transistors. Nano Lett. 2009, 9, 4474–4478.

[42] Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, et al. Realization

of a high mobility dual-gated graphene field-effect transistor with Al2O3

dielectric. Appl. Phys. Lett. 2009, 94, 062107.

[43] Bergmann G. Weak localization in thin films. Phys. Rep. 1984, 107,

1–58.

[44] Tikhonenko FV, Horsell DW, Gorbachev RV, Savchenko, AK. Weak

localization in graphene flakes. Phys. Rev. Lett. 2008, 100, 056802.

[45] Wang Y, Santiago-Avilés JJ. Large negative magnetoresistance and

strong localization in highly disodered electrospan pregraphitic carbon

nanofiber. Appl. Phys. Lett. 2006, 89, 123119.

[46] Zhang X, Xue QZ, Zhu DD. Positive and negative linear magnetoresis-

tance of graphite. Phys. Lett. A 2004, 320, 471–477.

20
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Figure 1: SEM micrograph of the nanocrystalline graphene grown for 30 min directly on

300 nm SiO2.
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Figure 2: (a) and (b) Plan-view TEM images of the graphene directly grown on SiO2/Si

for 30 min. At the bottom of (a), a layered structure at the free-standing edge is seen, as

graphene tends to roll up at free edges during transfer to TEM grids. In (b), the arrows

indicate co-deposited nanographite. (c) A typical convergent beam electron diffraction pat-

tern showing unique feature from monolayer graphene. (d) A diffraction pattern showing

signals from more than one domain, in correspondence with the nanocrystalline structure.
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Figure 3: (a) and (b) Optical images of the graphene thin films deposited directly on SiO2

(300 nm) from CH4 precursor during 30 and 60 min, respectively. In each micrograph,

the left section is a transferred Cu-grown graphene for comparison of optical contrast. (c)

Average contrast of the graphene images versus deposition time. The dashed line indicates

the contrast of the Cu-catalysed graphene for comparison.
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Figure 4: Raman spectra (514 nm, ×100 objective, 0.5 mW) of graphene grown by CVD.

(a) Typical Raman signatures of Cu-grown graphene (transferred to 300 nm SiO2/Si sub-

strate). (b) Raman spectra of nanocrystalline graphene deposited directly on 300 nm

SiO2/Si for 30, 45, and 60 min. For all the samples, the G and 2D spectral peaks are

clearly observed. Curves have been shifted along the ordinate for clarity.
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Figure 5: (a) The two-probe I-V curves of devices made on samples with various deposition

time. The sheet resistance Rs is calculated from the four-probe configuration. Inset: an

AFM line scan on a device made from the 30-min-grown sample, showing a step height

of ∼2 nm. (b) The field effect in the nanocrystalline graphene. The sheet resistances

(normalised to Rs at zero Vg) are plotted against the gate voltage. Inset: the optical

micrograph of the device layout. The active area is 4 µm×4 µm.
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Figure 6: The magnetoconductance ∆σ(B) at different temperatures indicated. The inset

shows the temperature dependence of the zero-field resistance Rs. The dashed line indi-

cates the quantum resistance RQ = e2/h ≈ 25.8 kΩ. The solid line is the power-low fitting

for T ≥ 50K.
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