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Abstract. The Feldspar project aims to develop a domain specific lan-
guage for Digital Signal Processing algorithm design. From functional
descriptions, imperative code (currently C) is generated. The project
partners are Ericsson, Chalmers and ELTE, Budapest. The background
and motivation for the project have been documented elsewhere [3]. We
aim to raise the level of abstraction at which algorithm developers and
implementors work, and to generate, from Feldspar descriptions, the kind
of code that is currently written by hand.

These lecture notes first give a brief introduction to Feldspar and the
style of programming that it encourages. Next, we document the imple-
mentation of Feldspar as a domain specific language (DSL), embedded
in Haskell. The implementation is built using a library called Syntac-
tic that was built for this purpose, but also designed to be of use to
other implementors of embedded domain specific languages. We show
the implementation of Feldspar in sufficient detail to give the reader an
understanding of how the use of the Syntactic library enables the modu-
lar construction of an embedded DSL. For those readers who would like
to apply these techniques to their own DSL embedded in Haskell, further
instructions are given in section 5.

The programming examples are available in the CEFP directory of the
Feldspar package, version 0.5.0.1:

http://hackage.haskell.org/package/feldspar-language-0.5.0.1

The code can be fetched by running:

> cabal unpack feldspar-language-0.5.0.1

All code is written in Haskell, and has been tested using the Glasgow
Haskell Compiler (GHC), version 7.0.2, and the packages

– syntactic-0.8

– feldspar-language-0.5.0.1

– feldspar-compiler-0.5.0.1

http://hackage.haskell.org/package/feldspar-language-0.5.0.1


1 Programming in Feldspar

Feldspar is domain specific language for DSP algorithm design, embedded in
Haskell. It currently generates sequential C code for individual functions and it is
this Data Path part that is presented here. The part of Feldspar that coordinates
and deploys these kernels in parallel is still under development.

The aim of this part of the notes is to give the reader a brief introduction to
programming algorithmic blocks in Feldspar. We first present the core language,
which is a purely functional C-like language deeply embedded in Haskell. Next,
we show how the constructs of the Vector library bring the user closer to a Haskell-
like style of programming. The Vector library is built upon the core, via a shallow
embedding. The combination of shallow and deep embedding is characteristic of
the Feldspar implementation, and has proved fruitful. It is discussed further in
section 2.1. Finally, we illustrate the use of Feldspar in exploring a number of
implementations of the Fourier Transform. Our aim in designing Feldspar was to
build an embedded language that makes programming DSP algorithms as much
like ordinary Haskell programming as possible, while still permitting the gener-
ation of efficient C code. As we shall see in the sections on implementation, the
main emphasis in the design has been on gaining modularity, and on making the
language easily extensible. The most noticeable sacrifice has been the omission
of recursion in Feldspar. Feldspar users can make use of Haskell’s recursion in
program definitions, but such recursion must be completely unrolled during code
generation.

1.1 The Core of Feldspar

The basis of Feldspar is a core language with some familiar primitive functions
on base types, and a small number of language constructs. A program in the
core language has type Data a, where a is the type of the value computed by the
program. Primitive constructs have types similar to their Haskell counterparts,
but with the addition of the Data constructor to the types.

For example, the Haskell functions

(==) : : Eq a ⇒ a → a → a
(&&) : : Bool → Bool → Bool
exp : : Floating a ⇒ a → a

are matched by the Feldspar functions

(==) : : Eq a ⇒ Data a → Data a → Data a
(&&) : : Data Bool → Data Bool → Data Bool
exp : : Floating a ⇒ Data a → Data a



The point to remember is that the type Bool, for instance, indicates a Haskell
value, while Data Bool indicates a Feldspar one.

Feldspar functions are defined using Haskell’s function abstraction:

square : : Data WordN → Data WordN
square x = x∗x

WordN is meant to represent an unsigned integer whose bit-width is determined
by the target platform. However, in the current implementation, WordN is im-
plemented as a 32-bit word. We also provide the following two aliases:

type Length = WordN
type Index = WordN

The conditional construct in Feldspar is similar to that in C. For instance, the
function f below doubles its input if it is odd.

f : : Data Int32 → Data Int32
f i = ( testBit i 0) ? (2∗ i , i )

Applying the eval function gives

∗Main> eval ( f 3)
6
∗Main> eval ( f 2)
2

The abstract syntax tree of the function can be drawn using drawAST f:

*Main> drawAST f
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|
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|
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| |

| +- var:0

| |

| ‘- 0

|
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| |
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| |

| ‘- 2

|

‘- var:0



and the result is a lambda function of one variable (numbered 0).

The generated C code (resulting from the call icompile f) is

=============== Source ================
#include ”feldspar c99 .h”
#include ”feldspar array .h”
#include <stdint .h>
#include <str ing .h>
#include <math.h>
#include <stdbool .h>
#include <complex .h>

/∗
∗ Memory information
∗
∗ Local : none
∗ Input : signed 32−bit integer
∗ Output : signed 32−bit integer
∗
∗/

void test ( struct array ∗ mem, int32 t v0 , int32 t ∗ out)
{

i f ( testBit fun int32 (v0 , 0))
{

(∗ out) = (v0 << 1);
}
else
{

(∗ out) = v0 ;
}

}

The additional mem parameter that appears in all generated C code is not used
in the code body in this case. We will return to it in a later example. The
remaining two parameters correspond to the input and output of the Feldspar
function. (We will not in future show the #includes that appear in all generated
C functions.)

Core Arrays Arrays play a central role in the Digital Signal Processing do-
main, and so they pervade Feldspar. Core arrays come in parallel and sequential
variants, but we will concentrate on the parallel version here. Core parallel arrays
are created with the parallel function:

para l l e l : : Type a ⇒ Data Length → (Data Index → Data a) → Data [a ]

The type Data [a] is the type of core arrays. The two parameters to parallel give
the length of the array, and a function from indices to values.



arr1n : : Data WordN → Data [WordN]
arr1n n = para l l e l n (λ i → ( i+1))

∗Main> eval (arr1n 6)
[1 ,2 ,3 ,4 ,5 ,6]

evens : : Data WordN → Data [WordN]
evens n = para l l e l n (∗2)

∗Main> eval (evens 6)
[0 ,2 ,4 ,6 ,8 ,10]

Feldspar core arrays become blocks of memory in the generated C code. Although
the current version of Feldspar generates sequential C code for the parallel con-
struct, the key attribute of parallel is that it is a data parallel construct, in
that the values at different indices are independent of each other. This opens
for future exploitation of parallelism, and also for optimisations based on array
fusion.

append : : Type a ⇒ Data [a ] → Data [a ] → Data [a ]

getLength : : Type a ⇒ Data [a ] → Data Length

setLength : : Type a ⇒ Data Length → Data [a ] → Data [a ]

getIx : : Type a ⇒ Data [a ] → Data Index → Data a

setIx : : Type a ⇒ Data [a ] → Data Index → Data a → Data [a ]

Fig. 1. Functions on core arrays

The types of the remaining functions on core arrays are shown in Figure 1
These functions have the expected semantics. For example, the following function
squares each element of its input array:

squareEach : : Data [WordN] → Data [WordN]
squareEach as = para l l e l (getLength as) (λ i → square ( getIx as i ))

The resulting C code is



/∗
∗ Memory information
∗
∗ Local : none
∗ Input : unsigned 32−bit integer array
∗ Output : unsigned 32−bit integer array
∗
∗/
void test ( struct array ∗ mem, struct array ∗ v0 , struct array ∗ out)
{

uint32 t len0 ;

len0 = getLength(v0) ;
for (uint32 t v1 = 0; v1 < len0 ; v1 += 1)
{

at(uint32 t , out , v1) = (at(uint32 t , v0 , v1) ∗ at(uint32 t , v0 , v1)) ;
}
setLength(out , len0 ) ;

}

The array inputs have been represented by structs of the form

struct array
{

void∗ buffer ; /∗ pointer to the buffer of elements ∗/
int32 t length ; /∗ number of elements in the array ∗/
int32 t elemSize ; /∗ s ize of elements in bytes ; (−1) for nested arrays ∗/
uint32 t bytes ; /∗ The number of bytes the buffer can hold ∗/

};

and the at macro indexes into the actual buffer.

For completeness, we also introduce the sequential construct:

sequential : : (Type a , Syntax s) ⇒
Data Length → s → (Data Index → s → (Data a , s ))
→ Data [a ]

Sequential arrays are defined by a length, an initial state and a function from
index and state to a value (for that index) and a new state. For instance, the
following program computes successive factorials:

sfac : : Data WordN → Data [WordN]
sfac n = sequential n 1 g

where
g ix st = ( j , j )

where j = ( ix + 1) ∗ st

∗Main> eval ( sfac 6)
[1 ,2 ,6 ,24 ,120 ,720]



Loops The two important remaining constructs in the core language are the
for and while loops1:

forLoop : : Syntax a ⇒ Data Length → a → (Data Index → a → a) → a

whileLoop : : Syntax a ⇒ a → (a → Data Bool) → (a → a) → a

The loop forLoop n i f takes a number of iterations, n, an initial state, i , and a
function f from index and state to a new state. Thus, fib n computes the nth

Fibonacci number.

f ib : : Data Index → Data Index
f ib n = f s t $ forLoop n (1 ,1) $ λ i (a ,b) → (b, a+b)

This example also illustrates that it is possible, in Feldspar, to have ordinary
Haskell tuples both in patterns and in expressions, due to the overloading pro-
vided by the Syntax class.

void test ( struct array ∗ mem, uint32 t v0 , uint32 t ∗ out)
{

struct s uint32 t uint32 t e0 ;
struct s uint32 t uint32 t v2 ;

e0 .member1 = 1;
e0 .member2 = 1;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

v2 .member1 = e0 .member2;
v2 .member2 = (e0 .member1 + e0 .member2) ;
e0 = v2 ;

}
(∗ out) = e0 .member1;

}

In the current version of Feldspar, tuples become structs when compiled into C.
In programs, such as fib , where tuples are just used to group state variables, it
would make more sense to compile them into separate variables. This behavior
is planned for future versions.

In similar style, the integer log base 2 function can be computed using a while
loop:

intLog : : Data WordN → Data WordN
intLog n = f s t $ whileLoop (0 ,n)

(λ( ,b) → (b > 1))
(λ(a ,b) → (a+1, b ‘ div ‘ 2))

1 There are also monadic versions of these loops, but we will not consider this extension
of the language in this introduction



The Feldspar user has access to the constructs of the core language, and this
gives fine control over the generated C code when this is required. However, our
intention is to raise the level of abstraction at which programmers work, and to
do this, we must move away from the low level primitives in the core.

1.2 Above the Core: Vectors

The core constructs of Feldspar are augmented by a number of additional li-
braries, implemented as shallow embeddings. This eases experiments with lan-
guage design, without demanding changes to the backends. Here, we illustrate
this idea using the library of Vectors, which are symbolic or virtual arrays. Vec-
tors are intended both to give a user experience resembling the look and feel of
Haskell list programming and to permit the generation of decent imperative array
processing code. We call vectors symbolic because they do not necessarily result
in the use of allocated memory (arrays) in the generated C code. A program that
uses the vector library should import it explicitly using import Feldspar .Vector.

Vectors are defined using an ordinary Haskell type:

−− Symbolic vector
data Vector a

= Empty
| Indexed
{ segmentLength : : Data Length
, segmentIndex : : Data Index → a
, continuation : : Vector a
}

A vector is defined, for its first segment, by a segment length and by a function
from indices to values (as we saw in core parallel arrays). However, it also has a
continuation vector (possibly empty) corresponding to its remaining segments.
The overall length of a vector (given by the function length) is the sum of the
lengths of its segments. Such segmented vectors are used in order to allow efficient
vector append. Note, however, that taking the sum of a segmented array results
in one for loop per segment.



tstLApp n = sum (squares n ++ squares (n+2))

void test ( struct array ∗ mem, uint32 t v0 , uint32 t ∗ out
{

uint32 t len0 ;
uint32 t v2 ;
uint32 t v4 ;

len0 = (v0 + 2);
(∗ out) = 0;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

uint32 t v5 ;

v5 = (v1 + 1);
v2 = ((∗ out) + (v5 ∗ v5)) ;
(∗ out) = v2 ;

}
for (uint32 t v3 = 0; v3 < len0 ; v3 += 1)
{

uint32 t v6 ;

v6 = (v3 + 1);
v4 = ((∗ out) + (v6 ∗ v6)) ;
(∗ out) = v4 ;

}
}

We will, in the remainder of these notes, only use vectors whose continuation is
Empty. Such single segment vectors are built using the indexed function.

For example, W k
n = e−2πik/n (also known as a twiddle factor) is a primitive nth

root of unity raised to the power of k. For a given n, we can place all the powers
from zero to (n-1) of Wn into a vector tws as follows:

tw : : Data WordN → Data WordN → Data (Complex Float)
tw n k = exp (−2 ∗ pi ∗ iun it ∗ i2n k / i2n n)

tws n = indexed n (tw n)

Here, i2n converts from an integer to a floating-point number.

In the following calls to the tws function, the reader is encouraged to examine
the results for interesting patterns. How do tws 4 and tws 8 relate and why?



∗Main> tws 2
[1.0 :+ 0.0 , (−1.0) :+ 8.742278e−8]
∗Main> eval (tws 4)
[1.0 :+ 0.0 , (−4.371139e−8) :+ (−1.0),
(−1.0) :+ 8.742278e−8, 1.1924881e−8 :+ 1.0]
∗Main> eval (tws 8)
[1.0 :+ 0.0 , 0.70710677 :+ (−0.70710677),
(−4.371139e−8) :+ (−1.0), (−0.70710677) :+ (−0.70710677),
(−1.0) :+ 8.742278e−8,(−0.70710665) :+ 0.7071069,
1.1924881e−8 :+ 1.0 , 0.707107 :+ 0.70710653]

To make a program that takes an integer as input and returns the corresponding
array of twiddle factors, we simply call icompile tws. Because the output of the
program is a vector, an array will indeed be manifest in memory in the resulting
C code.

void test ( struct array ∗ mem, uint32 t v0 , struct array ∗ out)
{

f loat complex v2 ;

v2 = complex fun float (( f loat )(v0) , 0.0 f ) ;
for ( uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

at( f loat complex , out , v1) = cexpf (((0.0 f+0.0 f i )
− (( complex fun float (( f loat )(v1) , 0.0 f ) ∗

(0.0 f+6.2831854820251465 f i )) / v2 ))) ;
}
setLength(out , v0 ) ;

}

But if we (somewhat perversely) sum the vector, then the resulting C code does
not have a corresponding array:

void test ( struct array ∗ mem, uint32 t v0 , f loat complex ∗ out)
{

f loat complex v3 ;
f loat complex v2 ;

v3 = complex fun float (( f loat )(v0) , 0.0 f ) ;
(∗ out) = (0.0 f+0.0 f i ) ;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

v2 = ((∗ out) + cexpf (((0.0 f+0.0 f i ) −
(( complex fun float (( f loat )(v1) , 0.0 f ) ∗
(0.0 f+6.2831854820251465 f i )) / v3)))) ;

(∗ out) = v2 ;
}

}

Mapping a function over a vector behaves as we expect:



squares : : Data WordN → Vector1 WordN
squares n = map square ( 1 . . . n)

∗Main> eval (squares 4)
[1 ,4 ,9 ,16]

f l ipB i t : : Data Index → Data Index → Data Index
f l ipB i t i k = i ‘ xor ‘ ( bit k)

f l i p s : : Data WordN → Vector1 WordN → Vector1 WordN
f l i p s k = map (λe → f l i pB i t e k)

∗Main> eval $ f l i p s 2 (0. . .15)
[4 ,5 ,6 ,7 ,0 ,1 ,2 ,3 ,12 ,13 ,14 ,15 ,8 ,9 ,10 ,11]

∗Main> eval $ f l i p s 3 (0. . .15)
[8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7]

The function flips k flips bit number k of each element of a vector.

The type Vector1 a is shorthand for Vector (Data a). The (1... n) construction
builds the vector from 1 to n. This could also have been done using the vector

function and a Haskell list:

∗Main> eval (vector [1 . .3 : :WordN])
[1 ,2 ,3]

Indexing into a vector is done using the infix (!) function. So, for example, the
head of a vector is its zeroth element.

head : : Syntax a ⇒ Vector a → a
head = (!0)

The API of the Vector library is much inspired by Haskell’s standard list-processing
functions, with functions like map, zip, take, drop splitAt and zipWith.

Composing vector operations results in fusion: intermediate data structures are
fused away in the resulting generated code. One might expect the following
function to produce code with two or even three loops, but it has only one:

sumSqVn : : Data WordN → Data WordN
sumSqVn n = fold (+) 0 $ map square ( 1 . . . n)



void test ( struct array ∗ mem, uint32 t v0 , uint32 t ∗ out)
{

uint32 t v2 ;

(∗ out) = 0;
for (uint32 t v1 = 0; v1 < v0 ; v1 += 1)
{

uint32 t v3 ;

v3 = (v1 + 1);
v2 = ((∗ out) + (v3 ∗ v3)) ;
(∗ out) = v2 ;

}
}

This code embodies one of the main aims of Feldspar. We want to write code
that looks a lot like Haskell, but to generate efficient imperative code, of a
quality acceptable within our domain. The key to succeeding in this is to make
the language only just expressive enough for our domain! Now is the point to
remember that we have no recursion in the embedded language. This pushes
us towards a style of functional programming that relies heavily on familiar list
functions like map, fold and zipWith, but in variants that work on vectors.

In return for limited expressiveness, the user is given very strong guarantees
about fusion of intermediate vectors (and users should, in general, be program-
ming using vectors rather than core arrays). In Feldspar, a vector may become
manifest in generated code only in the following circumstances

1. when it is explicitly forced using the function force2

2. when it is the input or output of a program

3. when it is accessed by a function outside the vector library API, for example,
a conditional or a for loop

These are strong guarantees, and they permit us to advocate a purely functional
programming style, even when performance is important. When performance
and memory use are over-riding concerns, we have the option of resorting to
monads and mutable arrays (see [15]). Our hope, which we will try to confirm in
an up-coming case study of part of an LTE uplink processing chain, is that some
key kernels will have to be finely tuned for performance and memory use, but
that the combination of such kernels will still be possible in a modular data-flow
style that uses higher order functions to structure programs.

Although we have shown only the Vector library, Feldspar contains a variety of li-
braries implemented similarly as shallow embeddings. Examples include a clone
of the Repa library [14] and libraries for building filters and stream process-
ing functions. Work is also ongoing on dynamic contract checking for Feldspar,

2 A vector can also be explicitly forced using the function desugar (see section 4.3), but
this function is mostly for internal use.



and on improving feedback to users by trying to relate points in the generated
code with points in the source (a notoriously difficult problem for embedded
languages).

1.3 Case Study: Programming Transforms

Discrete Fourier Transform The discrete Fourier Transform (DFT) can be
specified as

Xk = Σn−1
j=0 xjW

jk
n

where W j
n is an nth root of unity raised to the power of j that we saw earlier,

and encoded in the function tw n j . Using vectors and summation, it is straight-
forward to translate the above specification of DFT into Feldspar.

dft : : Vector1 (Complex Float) → Vector1 (Complex Float)
dft xs = indexed n (λk → sum (indexed n (λj → xs ! j ∗ tw n ( j∗k))))

where
n = length xs

It is also clear that there are n summations, each of n elements, giving the well
known O(n2) complexity of the operation.

Fast Fourier Transforms Any algorithm that gives O(n log n) complexity in
computing the same result as the DFT is known as a Fast Fourier Transform
or FFT. That one can make such a reduction in complexity is due to the rich
algebraic properties of the W k

n terms – the so-called twiddle factors, and to the
sharing of intermediate computations. FFT plays a central role in Digital Signal
Processing, where it is one of the most used algorithmic blocks. There are many
different FFT algorithms, suited to different circumstances, see reference [10] for
an entertaining and informative tutorial.

Radix 2 Decimation in Frequency FFT The best known (and simplest)
FFT algorithms are those due to Cooley and Tukey [8]. In the radix two, Dec-
imation in Frequency (DIF) algorithm, for input of length N , the even and
odd-numbered parts of the output are each computed by a DFT with N/2 in-
puts. The inputs to those two half-sized DFTs can be computed by N/2 2-input
DFTs. This decomposition can be used recursively, giving huge savings in the
cost of implementing the algorithm.

We will visualise FFT algorithms by showing how small 2-input, 2-output DFT
components are composed, and by indicating where multiplication by twiddle
factors happen, see Figure 2. In this style, the structure of the radix 2 DIF FFT
is visualised in figure 3.
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Fig. 2. Introducing the style used to visualise FFT algorithms. The vertical lines are
2-input DFT components, with inputs on the left and outputs on the right. They are
drawn linking the elements of the array on which they operate. Thus, the arrange-
ment of vertical lines to the left of the triangle indicates that DFTs are performed
between array elements 0 and 8, 1 and 9 and so on. The triangle is intended to suggest
multiplication by twiddle factors of increasing powers. A triangle of height n indicates
multiplication by W 0

2n, W 1
2n, and so on, up to Wn−1

2n . The first of these is indicated by
zero blobs, and the last by 7.
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Fig. 3. An illustration of the radix 2 DIF FFT algorithm (for 16 inputs). The box on
the right indicates the application of the bit reversal permutation. From left to right,
the groups of 2-input DFTs (indicated by the vertical lines) correspond to bfly 3,
bfly 2, bfly 1 and bfly 0 in the Feldspar code.



The components of the FFT Let us set about describing the components
of the DIF algorithm in Feldspar. Consider first the butterflies, which are made
of small (2-input) DFTs. To describe multiple small DFTs, each operating on
pairs of values 2k apart, we might be tempted to first construct a component
that works on 2(k+1) inputs and then to realise a combinator that allows this
component to be applied repeated to sub-parts of an input array. This is how
we would have described the construction in Lava (our earlier work on hardware
description in Haskell [5]) and indeed the aforementioned paper contains such
descriptions of FFT algorithms. Here, we choose a slightly different approach
(inspired by our recent work on data-parallel GPU programming in Haskell [7]).
We take the repeated application of a function on sub-parts of the input array
of a given size to be the default! So, for example, we don’t define vector reverse
as taking a vector and returning its reverse, but rather revp k, which reverses
sub-parts of its inputs, each of length 2k.

premap : : (Data Index → Data Index) → Vector a → Vector a
premap f (Indexed l i x f Empty) = indexed l ( i x f ◦ f )

revp : : ( Bits a) ⇒ Data Index → Vector1 a → Vector1 a
revp k = premap ( ‘ xor ‘ (2ˆk − 1))

∗Main> eval (revp 3 (0. . .15))
[7 ,6 ,5 ,4 ,3 ,2 ,1 ,0 ,15 ,14 ,13 ,12 ,11 ,10 ,9 ,8]
∗Main> eval (revp 2 (0. . .15))
[3 ,2 ,1 ,0 ,7 ,6 ,5 ,4 ,11 ,10 ,9 ,8 ,15 ,14 ,13 ,12]

We assume here that if a function like revp k is applied to an input then that
input must be of length 2(k+j), for j a natural number. (We could check this
and return an appropriate error message.)

So now we would like to make (repeated) butterflies, each consisting of inter-
leaved 2-input DFTs:

bfly : : Data Index → Vector1 (Complex Float)
→ Vector1 (Complex Float)

bf ly k as = indexed ( length as) i x f
where

i x f i = ( testBit i k) ? (b−a , a+b)
where

a = as ! i
b = as ! ( f l ipB i t i k)

Each individual group of butterflies is of length 2k+1 For any index i into the
output array, we examine bit k of the index to determine if this output is to
be given by an addition or a subtraction. If the bit is high, there should be a
subtraction, and as! i , which we call a, should be subtracted from its partner, b

which is at a lower index because its index differs from that of a only in bit k.



Note that the bfly function is a judicious mixture of core functions (including
bit manipulations) and vector operations. It is perhaps the explicit indexing into
vectors that feels least Haskell-like, but it reflects the mathematics and seems
also to bring brevity.

For the multiplication by twiddle factors of increasing power, which takes place
only on the second half of the input array, it is again bit k of index i that decides
whether or not a multiplication should happen. In calculating the twiddle factor,
it is i ‘mod‘ (2ˆk) that gives the required increasing powers ranging from 0 to
2k − 1.

twids0 : : Data Index → Vector1 (Complex Float)
→ Vector1 (Complex Float)

twids0 k as = indexed ( length as) i x f
where

i x f i = ( testBit i k) ? ( t∗(as ! i ) , as ! i )
where

t = tw (2ˆ(k+1)) ( i ‘mod‘ (2ˆk))

A first recursive FFT Now we are in a position to compose our first recursive
FFT. Remember that the variable that is recursed over must be a Haskell level
variable, known at (this first) compile time. For each sub-block of length 2n,
we perform the interleaved butterflies and then the multiplication by twiddles
factors. The recursive call that corresponds to two half-size transforms is simply
a call of the recursive function with a parameter that is one smaller. We must
be careful to convert Haskell values to Feldspar ones (using the value function)
where necessary.

f f t r0 : : Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t r0 0 = id
f f t r0 n = f f t r0 n’ ◦ twids0 vn ’ ◦ bfly vn ’

where
n’ = n − 1
vn ’ = value n’

This recursive construction demands that the bit-reversal permutation be ap-
plied to its output array if it is to produce exactly the same results as the original
dft funtion that is now our specification (see [10] for further discussion of this).
For blocks of length 2k, bit reversal should reverse the k least significant bits of
the binary representation of each index of the array, leaving all other bits alone.

∗Main> eval $ bitRev 4 (0. . .15)
[0 ,8 ,4 ,12 ,2 ,10 ,6 ,14 ,1 ,9 ,5 ,13 ,3 ,11 ,7 ,15]
∗Main> eval $ bitRev 3 (0. . .15)
[0 ,4 ,2 ,6 ,1 ,5 ,3 ,7 ,8 ,12 ,10 ,14 ,9 ,13 ,11 ,15]
∗Main> eval $ bitRev 2 (0. . .15)
[0 ,2 ,1 ,3 ,4 ,6 ,5 ,7 ,8 ,10 ,9 ,11 ,12 ,14 ,13 ,15]



For completeness, we give a possible implementation, inspired by the bithacks
web site, see http://graphics.stanford.edu/~seander/bithacks.html. How-
ever, we also encourage the reader to investigate ways to implement this function.
In addition, we note that such permutations of FFT inputs or outputs will some-
times in reality not be performed, but instead the block following the FFT may
adjust its access pattern to the data accordingly.

oneBitsN : : Data Index → Data Index
oneBitsN k = complement (shiftLU (complement 0) k)

b i t r : : Data Index → Data Index → Data Index
bi t r n a = let mask = (oneBitsN n) in

(complement mask .&. a) . | . rotateLU ( reverseBits (mask .&. a)) n

bitRev : : Data Index → Vector a → Vector a
bitRev n = premap ( bi t r n)

Finally, we have a first full FFT implementation:

f f t0 : : Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t0 n = bitRev (value n) ◦ f f t r0 n

We can compare to the small example simulation of an FFT written in Lava
shown in reference [5]. Doing so, we find that we have here made a different (and
we think reasonable) assumption about the order of elements of an array, so that
some calls of reverse are required if we are to mimic the calculation in the Lava
paper.

dt4 = zipWith (+. ) ( vector [1 ,2 ,3 ,1 : : Float ]) (vector [4 ,−2,2 ,2])

∗Main> eval dt4
[1.0 :+ 4.0 ,2.0 :+ (−2.0),3.0 :+ 2.0 ,1.0 :+ 2.0]

∗Main> eval ( reverse ( f f t0 2 ( reverse dt4)))
[1.0 :+ 6.0,(−1.0000007) :+ (−6.0),(−3.0) :+ 2.0000002,7.0 :+ 6.0]

Of course, much more extensive testing should be employed, including checking
that the composition with an inverse FFT is close enough to the identity. This
is beyond the scope of thse notes.

An iterative FFT From the recursive description of fft0 , it is not difficult to
infer a corresponding iterative description:

f f t1 : : Data Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t1 n as = bitRev n $ forLoop n as (λk → twids0 (n−1−k) ◦ bfly (n−1−k))

http://graphics.stanford.edu/~seander/bithacks.html


The observant reader may wonder why we didn’t just add the multiplication by
the twiddle factors directly into the definition of bfly , which would allow us to
define the entire FFT as

f f t2 : : Data Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t2 n as = bitRev n $ forLoop n as (λk → bfly2 (n−1−k))

where
bfly2 k as = indexed ( length as) i x f

where
i x f i = ( testBit i k) ? ( t∗(b−a) , a+b)

where
a = as ! i
b = as ! ( f l ipB i t i k)
t = tw (2ˆ(k+1)) ( i ‘mod‘ (2ˆk))

This is indeed quite a short and readable FFT definition. However, this kind
of manual merging of components is not always desirable. There are two main
reasons for this. The first is that it can be easier to replace individual components
with modified versions if the components are kept separate and can be modified
in isolation. (This kind of modularity is a typical benefit of working in a purely
functional language.) The second is that keeping components separate allows
easier experiments with new ways of combining them (and such experiments
are particularly relevant in the context of FFT, which is known to have many
interesting decompositions).

Playing with twiddle factors We would like, eventually, to avoid unnecessary
recomputation of twiddle factors. This takes two steps. First, we modify the code
so that all stages compute twiddle factors that have the same subscript. Next,
we force computation of an array of these twiddle factors, which later parts of
the program can access, avoiding recomputation.

Let us consider the component twids0 in isolation (and later we will look at new
ways of combining the resulting components). One of the important algebraic
properties of the twiddle factors is the following: W k

n = W 2k
2n . (You may have

had an inkling of this when you examined the values of tws 2, tws 4 and tws 8

earlier.) This fact gives us the opportunity to change the twids0 program so that
all twiddle factors used in an entire FFT have the same subscript (rather than
having different subscripts for each different parameter k in different stages of
the computation).

Defining twids1 as follows means that twids1 j k has the same behaviour as
twids0 k, as long as j is strictly greater than k.



twids1 : : Data Index → Data Index → Vector1 (Complex Float)
→ Vector1 (Complex Float)

twids1 n k as = indexed ( length as) i x f
where

i x f i = ( testBit i k) ? ( t ∗ (as ! i ) , as ! i )
where

t = tw (2ˆn) (( i ‘mod‘ (2ˆk)) .<<. (n−1−k) )

This is because we have multiplied both parameters of tw by 2n−1−k (the first
by relacing 2k+1 by 2n and the second by shifting left by 2n−1−k bits).

Forcing computation of twiddle factors Now, all stages of the 2n-input FFT
use tw (2ˆn) when calculating twiddle factors. We can compute the 2n−1 twiddle
factors needed before starting the FFT calculation, using the force function to
ensure that they get stored into an array ts. Then the call of tw (2ˆn) is simply
replaced by ts !. This approach avoids repeated computation, which can be the
downside of fusion.

twids2 : : Data Index → Data Index → Vector1 (Complex Float)
→ Vector1 (Complex Float)

twids2 n k as = indexed ( length as) i x f
where

ts = force $ indexed (2ˆ(n−1)) (tw (2ˆn))
i x f i = ( testBit i k) ? ( t ∗ (as ! i ) , as ! i )

where
t = ts ! (( i ‘mod‘ (2ˆk)) .<<. (n−1−k))

The resulting FFT is then

f f t3 : : Data Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t3 n as = bitRev n $ forLoop n as (λk → twids2 n (n−1−k) ◦ bfly (n−1−k))

and it gives C code that starts as follows:



void test ( struct array ∗ mem, uint32 t v0 , struct array ∗ v1 , struct array ∗
out)
{

uint32 t v13 ;
f loat complex v14 ;
uint32 t len0 ;
uint32 t v24 ;
uint32 t v25 ;
uint32 t len2 ;

v13 = (v0 − 1);
v14 = complex fun float (( f loat )((1 << v0)) , 0.0 f ) ;
len0 = (1 << v13) ;
for (uint32 t v6 = 0; v6 < len0 ; v6 += 1)
{
at( f loat complex,&at( struct array ,mem,0) ,v6) =
cexpf (((0.0 f+0.0 f i ) − (( complex fun float (( f loat )(v6) , 0.0 f ) ∗
(0.0 f+6.2831854820251465 f i )) / v14))) ;

}
setLength(&at( struct array ,mem,0) , len0 ) ;

Note how one of the C arrays in the mem parameter is used to store the twid-
dle factors, for use by the remainder of the program. This is the role of that
parameter: to provide storage for local memory in the function. Our generated
functions do not themselves perform memory allocation for the storage of arrays.
The necessary memory must be given to them as the first input. For the twiddlle
factor array, another option would be simply to pass it as an input to the FFT
function.

  

  

tt

Fig. 4. An illustration of radix 2 DIT FFT algorithm (for 16 inputs). This diagram
was (literally) produced from that for the DIF algorithm by flipping it vertically.



Radix 2 Decimation in Time FFT The final FFT that we will program in
Feldspar is the Decimation in Time (DIT) radix two variant of the algorithm.
One can think of it as being almost the result of running the data-flow graph
that we just built for the DIF algorithm backwards. That is, we start with the
bit reversal, then twid2 n 0, then bfly 0, then twids2 n 1 and so on. Note that we
do twiddle multiplications before butterflies in this case.

f f t4 : : Data Index → Vector1 (Complex Float) → Vector1 (Complex Float)
f f t4 n as = forLoop n (bitRev n as) (λk → bfly k ◦ twids2 n k)

The resulting C code is reproduced in the Appendix. It is reasonably satisfac-
tory, but contains one annoying array copy inside the outer loop of the main
FFT calculation. This copying could be avoided by using ping-ponging between
two arrays, perhaps using a specially designed for loop. This would be easy to
arrange, and is the approach used in the Obsidian embedded language for GPU
programming [7] (although there all loops are unrolled). To get completely sat-
isfactory performance, we would need to make an in place implementation using
monads. The structure of the bflys component is well prepared for this, since
each 2-input DFT has its inputs and outputs at the same indices.

The duality between the decimation in frequency (DIF) and in time (DIT) vari-
ants can be seen by examining the definitions of fft2 and fft4 and by studying
the diagrams illustrating these constructions (Figures 3 and 4).

Many FFT algorithms remain to be explored. Readers wishing to experiment
with Feldspar will find a wealth of interesting algorithms to program in the
FFT survey in reference [10]. We should be clear that DSP algorithm designers
most likely expect to be provided with fast FFT components, rather than to
have to write them. However, FFT algorithms can help us to develop useful
programming idioms. The development of new programming idioms is part of
our current research on Feldspar. We welcome input (and code snippets) from
the readers of this document.

This concludes your introduction to programming in Feldspar.

Exercise 1. Implement Batcher’s bitonic sort in Feldspar [4]. See http://www.

iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm.
Note that the Radix 2 DIF FFT (as shown in Figure 3) has recursive structure
similar to Batcher’s bitonic merger. If you ignore the blobs in that diagram,
and consider the vertical lines to be 2-input, 2-output comparators, you have
exactly the bitonic merger. So you may find some inspiration in the bfly and
fft1 functions.

http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/bitonic/bitonicen.htm


2 Implementation

The development of Feldspar has not only focused on the problem of making a
language for the embedded signal processing domain. Feldspar has also served
as a workbench for experimenting with different implementation techniques for
embedded languages in general. This has been partly motivated by the fact that
there are several partners involved in the project, and we need a very flexible
design in order to make collaboration easier. In this part we will look at the
general implementation techniques that have emerged out of Feldspar, and show
an implementation of Feldspar based on the general techniques.

2.1 Overview

A convenient way to implement a domain-specific language (DSL) is to embed it
within an existing language [13]. Often, the constructs of the embedded language
are then represented as functions in the host language. In a shallow embedding,
the language constructs themselves perform the interpretation of the language
[12]. In a deep embedding, the language constructs produce an intermediate
representation of the program. This representation can then be interpreted in
different ways.

In general, shallow languages are more modular, allowing new constructs to be
added independently of each other. In a deep implementation, each construct has
to be represented in the intermediate data structure, making it much harder to
extend the language. Embedded languages (both deep and shallow) can usually
be interpreted directly in the host language. This is, however, rather inefficient.
If performance is an issue, code generation can be employed, and this typically
done using a deep embedding [11].

The design of Feldspar tries to combine the advantages of shallow and deep
implementations. The goal is to have the modularity and extensibility of a shal-
low embedding, while retaining the advantages of a deep embedding in order
to be able to generate high-performance code. A nice combination was achieved
by using a deeply embedded core language and building high-level interfaces
as shallow extensions on top of the core. The low-level core language is purely
functional, but with a small semantic gap to machine-oriented languages, such
as C. Its intention is to be a suitable interface to the code generator, while being
flexible enough to support any high-level interfaces.

The architecture of Feldspar’s implementation is shown in figure 5. The deeply
embedded core language consists of an intermediate representation (the “Core
expression” box) and a user interface (“Core language”). Additionally, the user
interface consists of a number of high-level libraries with shallow implementation
(their meaning is expressed in terms of the core language constructs). The most
prominent high level library is the vector library (section 4.3). There are also
some more experimental libraries for synchronous streams, bit vectors, etc. The
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Fig. 5. Feldspar architecture

user’s program generates a core expression, the internal data structure used as
interface to the back ends. At the moment, there is only one back end – a code
generator producing C code.

This architecture gives us certain kinds of modularity, as indicated in figure 5:
high-level interfaces and back ends can be added independently of everything
else. However, the core language expression type has, so far, been hard-coded in
the implementation. This has made the implementation quite inflexible when it
comes to changing the core language.

2.2 Early Implementations

data Expr a where
Value : : Storable a ⇒ a → Expr a
Function : : String → (a → b) → Expr (a → b)
Application : : Expr (a → b) → Data a → Expr b
Variable : : Expr a
IfThenElse : : Data Bool → (a :� b) → (a :� b) → (Data a → Expr b)
While : : (a :� Bool) → (a :� a) → (Data a → Expr a)
Paral le l : : Storable a ⇒ Data Int → ( Int :� a) → Expr [a ]

data a :� b = Lambda (Data a → Data b) (Data a) (Data b)

data Data a = Typeable a ⇒ Data (Ref (Expr a))

Fig. 6. Previous core language representation

The implementation style of the initial Feldspar versions is described in reference
[2]. There, the core language expressions are defined using the data type in
figure 6. Ignoring some details, this is a standard abstract syntax tree, where
each constructor corresponds to a specific language construct. It is worth noting
the (:�) type, which captures the notion of variable binding. For example, the



second argument of Parallel is a representation of a function λi → body, where
body is an expression of the element at index i.

Even though the definition in figure 6 is quite simple, it lacks the desired mod-
ularity. We do have the ability to extend the library with new high-level types
by providing a translation to Data a:

frontEnd1 : : MyType1 a → Data a
frontEnd2 : : MyType2 a → Data a
. . .

(A more general translation mechanism is provided by the Syntactic class de-
scribed in section 3.3.) We can also add any number of back ends:

backEnd1 : : Data a → Back1

backEnd2 : : Data a → Back2

. . .

But adding a constructor to Expr/Data requires editing the module containing
their definition as well as the modules of all back ends to handle the new con-
structor.

Most of the constructors in the Expr type are general language constructs that
are likely to be useful in other languages than Feldspar. This is especially true
for variable binding, which is a tricky concept that gets reimplemented over
and over again in various embedded languages. If we managed to make the
language definition more modular, it should also be possible to put the most basic
constructs in a library so that they can be reused in many different language
implementations.

We have developed a library, Syntactic [1], that provides the extensibility and
reuse described above. Section 3 introduces the Syntactic library, and section 4
gives an overview of how Feldspar is implemented using Syntactic.

3 Syntactic Library

When implementing deeply embedded DSLs in Haskell, a syntax tree is typically
defined using an algebraic data type [11,2]. As an example, consider a small
expression language with support for literals and addition:

data Expr1 a
where

Lit1 : : Num a ⇒ a → Expr1 a
Add1 : : Num a ⇒ Expr1 a → Expr1 a → Expr1 a

Expr1 a is a generalized algebraic data type (GADT) [16] whose parameter a is
used to denote the type of the value computed by the expression. It is easy to



add a user friendly interface to this language by adding smart constructors and
interpretation functions.

lit1 : : Int → Expr1 Int
lit1 x = Lit1 x

add1 : : Expr1 Int → Expr1 Int → Expr1 Int
add1 x y = Add1 x y

eval1 : : Expr1 Int → Int
eval1 (Lit1 x) = x
eval1 (Add1 x y) = eval1 x + eval1 y

(In this case, the smart constructors only serve to hide implementation details
and constraining the type, but in later implementations they will also take care
of some tedious wrapping.)

The eval1 function is just one possible interpretation of the expressions; we can
easily extend the implementation with, say, pretty printing or any kind of pro-
gram analysis. This can be done even without changing any existing code. How-
ever, adding a new construct to the language is not so easy. If we would like to
extend the language with, say, multiplication, we would need to add a constructor
to the Expr1 type as well as adding a new case to eval1 (and other interpretations).
Thus, with respect to language extension, a simple GADT representation of a
language is not modular. This limitation is one side of the well-known expression
problem [18].

There are several reasons why modularity is a desired property of a language
implementation. During the development phase, it makes it easier to experiment
with new language constructs. It also allows constructs to be developed and
tested independently, simplifying collaboration. However, there is no reason to
limit the modularity to a single language implementation. For example, Lit1 and
Add1 are conceptually generic constructs that might be useful in many different
languages. In an ideal world, language implementations should be assembled
from a library of generic building blocks in such a way that only the truly
domain-specific constructs need to be implemented for each new language.

The purpose of the Syntactic library is to provide a basis for such modular
languages. The library provides assistance for all aspects of an embedded DSL
implementation:

– A generic AST representation that can be customized to form different lan-
guages.

– A set of generic constructs that can be used to build custom languages.

– A set of generic functions for interpretation and transformation.

– Generic functions and type classes for defining the user interface of the DSL.



3.1 Using Syntactic

data AST dom a
where

Sym : : Signature a ⇒ dom a → AST dom a
(:$) : : Typeable a ⇒ AST dom (a :→ b) → AST dom ( Full a)

→ AST dom b

type ASTF dom a = AST dom ( Full a)

i n f i x l 1 :$

Fig. 7. Type of generic abstract syntax trees

newtype Full a = Full { result : : a }
newtype a :→ b = Partial (a → b)

i n f i x r :→

class Signature a
instance Signature ( Full a)
instance Signature b ⇒ Signature (a :→ b)

Fig. 8. Types of symbol signatures

The idea of the Syntactic library is to express all syntax trees as instances of a
very general type AST3, defined in Figure 7. Sym introduces a symbol from the
domain dom, and (:$) applies such a constructor to one argument. By instanti-
ating the dom parameter with different types, it is possible to use AST to model
a wide range of algebraic data types. Even GADTs can be modeled.

To model our previous expression language using AST, we rewrite it as follows:

3 The Typeable constraint on the (:$) constructor is from the standard Haskell module
Data.Typeable, which, among other things, provides a type-safe cast operation. Syn-
tactic uses type casting to perform certain syntactic transformations whose type-
correctness cannot be verified by the type system. The Typeable constraint on (:$)

leaks out to functions that construct abstract syntax, which explains the occur-
rences of Typeable constraints throughout this paper. It is possible to get rid of the
constraint, at the cost of making certain AST functions more complicated.



data NumDomain2 a
where

Lit2 : : Num a ⇒ a → NumDomain2 ( Full a)
Add2 : : Num a ⇒ NumDomain2 (a :→ a :→ Full a)

type Expr2 a = ASTF NumDomain2 a

The result type signatures of Lit2 and Add2 have a close correspondence to the
Lit1 and Add1 constructors. In general, a constructor of type

C2 : : T2 (a :→ b :→ . . . :→ Full x)

represents an ordinary GADT constructor of type

C1 : : T1 a → T1 b → . . . → T1 x

Types built using (:→) and Full are called symbol signatures, and they are defined
in Figure 8.

In this encoding, the types Expr1 and Expr2 are completely isomorphic (up to
strictness properties). The correspondence can be seen by reimplementing our
smart constructors for the Expr2 language:

lit2 : : Int → Expr2 Int
lit2 a = Sym (Lit2 a)

add2 : : Expr2 Int → Expr2 Int → Expr2 Int
add2 x y = Sym Add2 :$ x :$ y

The implementation of eval2 is left as an exercise to the reader. Note that, in
contrast to Add1, the Add2 constructor is non-recursive. Types based on AST

normally rely on (:$) to handle all recursion.

Part of the reason for using the somewhat unnatural AST type instead of an
ordinary GADT is that it directly supports definition of generic tree traversals.
Generic programming using AST is not the subject of these notes, but the basic
idea can be seen from a simple function returning the number of symbols in an
expression:

s ize : : AST dom a → Int
s ize (Sym ) = 1
size (s :$ a) = s ize s + s ize a

Note that this function is defined for all possible domains, which means that
it can be reused in all kinds of language implementations. Such traversals are
the basis of the generic interpretation and transformation functions provided by
Syntactic.



3.2 Extensible Syntax

Support for generic traversals is one of the key features of the AST type. Another
– equally important – feature is support for extensible syntax trees. We can note
that Expr2 is closed in the same way as Expr1: Adding a constructor requires
changing the definition of NumDomain2. However, the AST type turns out to be
compatible with Data Types à la Carte [17], which is a technique for encoding
open data types in Haskell.4

The idea is to create symbol domains as co-products of smaller independent
domains using the (:+:) type operator (provided by Syntactic). To demonstrate
the idea, we split NumDomain2 into two separate sub-domains and combine them
into NumDomain3, used to define Expr3:

data Lit3 a where Lit3 : : Int → Lit3 ( Full Int )
data Add3 a where Add3 : : Add3 ( Int :→ Int :→ Full Int )

type NumDomain3 = Lit3 :+: Add3

type Expr3 a = ASTF NumDomain3 a

The new type Expr3 is again isomorphic Expr1.

Now, the trick to get extensible syntax is to not use a closed domain, such as
NumDomain3, but instead use constrained polymorphism to abstract away from
the exact shape of the domain. The standard way of doing this for Data Types à
la Carte is to use the inj method of the (:<:) type class (provided by Syntactic).
Using inj , the smart constructors for Lit3 and Add3 can be defined thus:

lit3 : : (Lit3 :<: dom) ⇒ Int → ASTF dom Int
lit3 a = Sym ( i n j (Lit3 a))

add3 : : (Add3 :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
add3 x y = Sym ( i n j Add3) :$ x :$ y

The definition of smart constructors can even be automated by using the function
appSym (provided by Syntactic). The following definitions of lit3 and add3 are
equivalent to the ones above:

lit3 : : (Lit3 :<: dom) ⇒ Int → ASTF dom Int
lit3 a = appSym (Lit3 a)

add3 : : (Add3 :<: dom) ⇒ ASTF dom Int → ASTF dom Int → ASTF dom Int
add3 = appSym Add3

4 The original Data Types à la Carte uses a combination of type-level fixed-points
and co-products to achieve open data types. Syntactic only adopts the co-products,
and uses the AST type instead of fixed-points.



A constraint such as (Lit3 :<: dom) can be read as “dom contains Lit3”, which
simply means that dom should be a co-product chain of the general form

( . . . :+: Lit3 :+: . . . )

One domain of this form is NumDomain3, but any other domain that includes Lit3
is also valid.

The fact that we have now achieved a modular language can be seen by not-
ing that the definitions of Lit3/lit3 and Add3/add3 are completely independent,
and could easily live in separate modules. Obviously, any number of additional
constructs can be added in a similar way.

3.3 Syntactic Sugar

It is not very convenient to require all embedded programs to have the type AST.
First of all, one might want to hide implementation details by defining a closed
language:

type MyDomain = Lit3 :+: Add3

newtype Data a = Data {unData : : ASTF MyDomain a}

In fact this is exactly how Feldspar’s Data type (see section 1) is defined (although
with a different symbol domain).

Secondly, it is sometimes more convenient to use more “high-level” representa-
tions as long as these representations have a correspondence to an AST. Such
high-level types are referred to as “syntactic sugar”. Examples of syntactic sugar
used in Feldspar are:

– The Data type

– Haskell tuples

– The Vector type (section 1.2)

One illustrating example is the fib function from section 1.1:

f ib : : Data Index → Data Index
f ib n = f s t $ forLoop n (1 ,1) $ λ i (a ,b) → (b, a+b)

Here, the initial state is the ordinary Haskell pair (1,1) . The body matches on
the state a Haskell pair and constructs a new one as the next state. Finally, the
fst function selects the first part of the state as the final result.

Syntactic sugar is defined by the class in Figure 9. The desugar method converts
from a high-level type to a corresponding AST representation, and sugar converts



class Typeable (Internal a) ⇒ Syntactic a dom | a → dom
where

type Internal a
desugar : : a → ASTF dom (Internal a)
sugar : : ASTF dom (Internal a) → a

instance Typeable a ⇒ Syntactic (ASTF dom a) dom
where

type Internal (ASTF dom a) = a
desugar = id
sugar = id

Fig. 9. Syntactic sugar

back. The associated type function Internal maps the high-level type to its in-
ternal representation. Note that this type function does not need to be injective.
It is possible to have several syntactic sugar types sharing the same internal
representation.

The Syntactic instance for Data looks as follows:

instance Typeable a ⇒ Syntactic (Data a) MyDomain
where

type Internal (Data a) = a
desugar = unData
sugar = Data

In order to make a user interface based on syntactic sugar, such as Data, we
simply use the function sugarSym instead of appSym that was used in section 3.1:

l i t : : Int → Data Int
l i t a = sugarSym (Lit3 a)

add : : Data Int → Data Int → Data Int
add = sugarSym Add3

As we can see, sugarSym is a highly overloaded function. But as long as it is given
a sufficiently constrained type signature (that is compatible with the signature
of the given symbol), it will just do “the right thing”.

4 Feldspar Implementation

In this section, we give an overview of Feldspar’s implementation. Although the
back-end is a large part of the implementation (Figure 5), it will not be treated
in this text. See reference [9] for more information about the back-end.



To make the presentation simpler and to highlight the modularity aspect, we
will focus on a single language construct: parallel arrays.

4.1 Parallel Arrays

The syntactic symbols of Feldspar’s array operations are defined in the Array

type:

data Array a
where

Paral le l : : Type a ⇒ Array (Length :→ ( Index → a) :→ Full [a ])
Append : : Type a ⇒ Array ( [a ] :→ [a ] :→ Full [a ])
GetIx : : Type a ⇒ Array ( [a ] :→ Index :→ Full a)
SetIx : : Type a ⇒ Array ( [a ] :→ Index :→ a :→ Full [a ])

. . .

As we saw in section 1.1, we use [a] to denote an array with elements of type
a. From now on, we will focus on the implementation of Parallel , and just note
that the other constructs are implemented in a similar way.

After we have defined the syntactic symbol, we need to give it semantics. This
is done by declaring the following instances:

instance Semantic Array
where

semantics Paral le l = Sem ”para l l e l”
(λlen i x f → genericTake len $ map i x f [ 0 . . ] )

. . .

instance Render Array where renderPart = renderPartSem
instance Eval Array where evaluate = evaluateSem
instance EvalBind Array where evalBindSym = evalBindSymDefault

The Semantic instance says that Parallel has the name ” parallel ”, and that it
is evaluated using the given lambda expression. The succeeding instances give
access to functions like drawAST and eval, by deriving their behavior from the
Semantic instance. This means that whenever we run something like:

∗Main> eval $ para l l e l 10 (∗2)
[0 ,2 ,4 ,6 ,8 ,10 ,12 ,14 ,16 ,18]

it is the function in the above semanticEval field that does the actual evaluation.

The implementation contains a number of other trivial class instances, but we
will omit those from the presentation.



Now it is time to define the user interface to Parallel . This follows the exact
same pattern as we saw in section 3.3:

para l l e l : : Type a ⇒ Data Length → (Data Index → Data a) → Data [a ]
para l l e l = sugarSym Paral le l

Note how the function (Index → a) in the signature for Parallel became a function
(Data Index → Data a) in the user interface. All of this is handled by the sugarSym

function.

In addition to the above simple declarations, the implementation of parallel also
consists of optimization rules and code generation, which are out of the scope
of these notes. However, it is important to look at what we get from those few
lines of code that we have given so far. It turns out to be quite a lot:

We have defined a typed abstract syntax symbol Parallel and its corresponding
user function parallel . We have derived various interpretation functions (evalua-
tion, rendering, alpha-equivalence, etc.) by providing very minimal information
about the specific nature of parallel . We even get access to various syntactic
transformations (constant folding, invariant code hoisting, etc.) without adding
any additional code. All of this is due to the generic nature of the Syntactic
library. Note also that the implementation of parallel is completely independent
of the other constructs in the language, a property due to the extensible syntax
provided by Syntactic (section 3.2).

Having seen the important bits of how the core language is implemented we can
now move on to see how the vector library is implemented on top of the core
(recall Figure 5).

4.2 Assembling the Language

Once a number of symbol types (such as Array above) have been defined, they
are assembled using the same pattern as in section 3.3,

newtype Data a = Data {unData : : ASTF FeldDomainAll a}

where FeldDomainAll is the complete symbol domain. Additionally, to make type
signatures look nicer, we define the Syntax class recognized from the examples in
section 1:

class
( Syntactic a FeldDomainAll
, SyntacticN a (ASTF FeldDomainAll ( Internal a))
, Type ( Internal a)
) ⇒

Syntax a

instance Type a ⇒ Syntax (Data a)



Syntax does not have any methods; it is merely used as an alias for its super-class
constraints. The most important constraint is Syntactic a FeldDomainAll, which
can now be written more succinctly as Syntax a. In other words, all functions
overloaded by Syntax get access to the syntactic sugar interface described in
section 3.3.

The Type class is the set of all value types supported by Feldspar (for example,
Bool, Int32, (Float , Index), etc.). The SyntacticN class is beyond the scope of these
notes; interested readers are referred to the API documentation [1].

4.3 Vector Library

The vector library (module Feldspar .Vector) provides a type for “virtual” vectors
– vectors that do not (necessarily) have any run-time representation. Vectors are
defined as:

data Vector a
= Empty
| Indexed
{ segmentLength : : Data Length
, segmentIndex : : Data Index → a
, continuation : : Vector a
}

This recursive type can be seen as a list of segments, where each segment is
defined by a length and an index projection function. The reason for having
vectors consisting of several segments is to allow efficient code generation of
vector append. However, in this presentation, we are going to look at a simpler
vector representation, consisting only of a single segment:5

data Vector a
= Indexed

{ length : : Data Length
, index : : Data Index → a
}

This is essentially a pair – at the Haskell-level – of a length and an index pro-
jection function. The meaning of a non-nested vector is given by the following
function:

freezeVector : : Type a ⇒ Vector (Data a) → Data [a ]
freezeVector vec = para l l e l ( length vec) ( index vec)

5 Note that for programs that do not use the (++) operation (which is the case for all
but one of the examples in this document), there will only ever be a single segment,
in which case the two representations are equivalent.



That is, a Vector with a given length and index projection has the same meaning
as a parallel with the same length and projection function. A small example:

∗Main> eval $ freezeVector $ Indexed 10 (∗2)
[0 ,2 ,4 ,6 ,8 ,10 ,12 ,14 ,16 ,18]

With this simple representation of vectors, it becomes straightforward to define
many of Haskell’s standard operations on lists. Some examples are given in
figure 10.

take : : Data Length → Vector a → Vector a
take n (Indexed l i x f ) = Indexed (min n l ) i x f

map : : (a → b) → Vector a → Vector b
map f (Indexed len i x f ) = Indexed len ( f ◦ i x f )

zip : : Vector a → Vector b → Vector (a ,b)
zip a b = Indexed ( length a ‘min‘ length b)

(λ i → ( index a i , index b i ))

zipWith : : (a → b → c) → Vector a → Vector b → Vector c
zipWith f a b = map (uncurry f ) $ zip a b

fold : : Syntax a ⇒ (a → b → a) → a → Vector b → a
fold f a (Indexed len i x f ) = forLoop len a (λ i st → f st ( i x f i ))

sum : : (Num a , Syntax a) ⇒ Vector a → a
sum = fold (+) 0

Fig. 10. Definition of some vector operations

Does it work? Let us check:

∗Main> eval $ freezeVector $ map (∗2) $ Indexed 10 (∗2)
[0 ,4 ,8 ,12 ,16 ,20 ,24 ,28 ,32 ,36]

This is all very well, but things start to get really interesting when we note that
we can actually make Vector an instance of Syntactic . A first attempt at doing
this might be:

instance Type a ⇒ Syntactic (Vector (Data a)) FeldDomainAll
where

type Internal (Vector (Data a)) = [a ]
desugar = desugar ◦ freezeVector
sugar = thawVector ◦ sugar



thawVector : : Type a ⇒ Data [a ] → Vector (Data a)
thawVector arr = Indexed (getLength arr ) ( getIx arr )

The function thawVector is the inverse of freezeVector . This works, but only for
non-nested vectors. A better solution is given in figure 11. This instance works
for elements of any Syntax type, which means that it even handles nested vectors.

instance Syntax a ⇒ Syntactic (Vector a) FeldDomainAll
where

type Internal (Vector a) = [ Internal a ]
desugar = desugar ◦ freezeVector ◦map (sugar ◦ desugar)
sugar = map (sugar ◦ desugar) ◦ thawVector ◦ sugar

instance Syntax a ⇒ Syntax (Vector a)

Fig. 11. Syntactic instance for Vector

Having a Syntactic instance for Vector means that they can now work seamlessly
with the rest of the language. Here is an example of a function using (?) to select
between two vectors:

f : : Vector (Data Index) → Vector (Data Index)
f vec = length vec > 10 ? (take 10 vec , map (∗3) vec)

Since Feldspar’s eval function is also overloaded using Syntax,

eval : : Syntax a ⇒ a → Internal a

we can even evaluate vector programs directly just like any other Feldspar pro-
gram:

∗Main> eval f [5 ,6 ,7]
[15 ,18 ,21]

It is important to note here that Vector is an ordinary Haskell type that is not
part of Feldspar’s core language. Relating to figure 5, Vector lives in one of the
top boxes of the API, and is not part of the core language. This means that
the back ends have no way of knowing what a Vector is. The reason vectors are
still useful is that we have an automatic translation between vectors and core
expressions via the Syntactic class. This technique provides a very powerful, yet
very simple, way of extending the language with new constructs.

Vector Fusion The fact that vectors are not part of the core language, has the
nice consequence that they are guaranteed to be removed at compile time. This



is the underlying explanation for the kind of fusion that was seen in section 1.2.
Take, for example, the scalar product function:

scalarProd : : (Num a , Syntax a) ⇒ Vector a → Vector a → a
scalarProd as bs = sum (zipWith (∗) as bs)

Using the definitions of sum, zipWith, zip and map in figure 10, scalarProd can be
transformed in the following sequence of steps:

−− Definition of zipWith and zip
scalarProd2 as bs

= sum (
map (uncurry (∗)) (

Indexed
( length as ‘min‘ length bs)
(λ i → ( index as i , index bs i ))

)
)

−− Definition of map
scalarProd3 as bs

= sum (
Indexed

( length as ‘min‘ length bs)
(λ i → index as i ∗ index bs i )

)

−− Definition of sum
scalarProd4 as bs

= forLoop
( length as ‘min‘ length bs)
0
(λ i st → st + index as i ∗ index bs i )

As we can see, the end result is a single forLoop, where the multiplication and the
accumulation have been fused together in the body. Note that these reductions
are performed by Haskell’s evaluation, which is why we can guarantee statically
that expressions of this form will always be fused.

The only exception to this static guarantee is the function freezeVector which
will compute the vector using parallel (which is not guaranteed to be fused).
Functions outside of the vector API (such as forLoop) can only access vectors
using desugar/sugar. Since desugar implicitly introduces freezeVector , this means
that functions outside of the vector API will not be able to guarantee fusion.

We have chosen to implement vectors as an additional high-level library. It would
have been possible to express all vector operations directly in the core language,
and implement fusion as a syntactic transformation. However, then we would



not have been able to guarantee fusion in the same way as we can now. Imagine
we had this core-level implementation of reverse (available in the vector library):

rev : : Type a ⇒ Data [a ] → Data [a ]
rev arr = para l l e l l (λ i → getIx arr ( l−i−1))

where
l = getLength arr

Then we would generally not be able to tell whether it will be fused with the
array arr . If arr is produced by another parallel , fusion is possible, but if arr is
produced by, for example, sequential (section 1.1), fusion is not possible. This
is because sequential can only produce its element in ascending order, while
rev indexes in reverse order. The vector library reverse , on the other hand, will
unconditionally fuse with its argument.

5 Discussion

We have presented Feldspar, an embedded language for DSP algorithm design.
One key aspect of Feldspar is that it is purely functional, despite the fact that
what we wish to do is to provide an alternative to C, which is currently used
for DSP programming. We have shown how Feldspar consists of a small core at
about the same abstraction level as C, and libraries built upon the core that
raise the level of abstraction at which the programmer works. Thus we intend to
bring the benefits of functional programming to a new audience. As a result we
do not really have a novel language design to present, but rather a new setting in
which functional programming with a strong emphasis on higher order functions
can be used. Doing array programming in a relatively simple, purely functional
language allows the Feldspar user to construct algorithmic blocks from smaller
components. The purely functional setting gives a kind of modularity that is
just not present in C. It is easy to explore algorithms by plugging components
together in new ways. One can remove just part of an algorithm and replace
it with a function with the same input-output behaviour, but perhaps different
performance. The fact that Feldspar programs are compact is important here.
In the first part of these notes, we tried to illustrate this aspect of Feldspar. Our
hope is that this ease of algorithm exploration will be a key benefit of taking the
step from C to Feldspar.

In the implementation sections, we tried to convey the most important parts
of Feldspar’s implementation, focusing mainly on the underlying principles (the
Syntactic library), but also showing concrete details of the implementation of
parallel and the vector library.

There was not enough room to go into all details of the implementation. Readers
who are interested more details are encouraged to look at NanoFeldspar, a small
proof-of-concept implementation of Feldspar shipped with the Syntactic package.
To download NanoFeldspar, simply run:



> cabal unpack syntactic-0.8

> cd syntactic-0.8/Examples/NanoFeldspar

NanoFeldspar contains simplified versions of Feldspar’s core language and the
vector library. There is no back-end, but it is possible to print out the syntax
tree to get an idea of what the generated code would look like. NanoFeldspar
follows the modular implementation style described in section 3.2, and it should
be perfectly possible to use NanoFeldspar as a basis for implementing other
embedded languages.

Some additional details of the Feldspar implementation can be found in our
report on adding support for mutable data structures to Feldspar [15]. This
paper gives a very nice example of modular language extension using Syntactic.

An important part of Feldspar’s implementation is the ability to add new li-
braries, such as the vector library, without changing the existing core language
or the code generator. In addition to the vector library, Feldspar has (more or
less experimental) libraries for synchronous streams, Repa-style arrays [14], bit
vectors and fixed-point numbers, etc.

5.1 Limitations

Feldspar currently only generates pure algorithmic functions. What is missing
in order to develop a complete application in Feldspar is the ability to coordi-
nate the generated functions. This requires language support for parallelism and
concurrency, memory management, real-time scheduling, etc. We are currently
working on adding such support to the language.

Syntactic Although Syntactic has worked very well for the implementation of
Feldspar, we do not expect it to be suitable for all kinds of embedded languages.
While the AST type can model a wide range of data types, it does not handle
mutually recursive types. For example, AST is not suited to model the following
pair of data types:

type Var = String

data Expr a where
Var : : Var → Expr a
Lit : : Num a ⇒ a → Expr a
Add : : Num a ⇒ Expr a → Expr a → Expr a
Exec : : Stmt → Var → Expr a

data Stmt where
Assign : : Var → Expr a → Stmt
Seq : : Stmt → Stmt → Stmt
Loop : : Expr Int → Stmt → Stmt



. . .

Here, Expr is an expression language capable of embedding imperative code using
the Exec constructor. Stmt is an imperative language using the Expr type for pure
expressions. In the AST type, all symbols are “first-class”, which means that we
cannot easily group the symbols as in the example above.

Note, however, that the above language can easily be modeled as a single data
type with monadic expressions. In fact, the latest Feldspar release has support
for mutable data structures with a monadic interface. Their implementation is
described in [15].

It is also important to be aware that many of the reusable components provided
by Syntactic (syntactic constructs, interpretations, transformations, etc.) assume
that the language being implemented has a pure functional semantics. However,
this is not a limitation of the AST type itself, but rather of the surrounding
utility library. There is nothing preventing adding utilities for different kinds of
languages if the need arises.

5.2 Related Work

Work related to Feldspar and its implementation has been covered by previous
publications [3,2].

Syntactic shares common goals with a lot of related work on implementation of
domain-specific languages. However, in the context of strongly typed embedded
languages, Syntactic is rather unique in providing a library of reusable build-
ing blocks for language implementation. Its support for language extension is
derived from Data Types à la Carte [17]. A quite different approach to extensi-
ble embedded languages is Finally Tagless [6]. Although very elegant, neither of
these techniques provides libraries of reusable implementation tools.

6 Conclusion

Feldspar is a slightly strange beast: an embedded language in Haskell that tries
to be as much like Haskell (or at least a simple subset of Haskell) as possible.
Once one has chosen this direction, the hard work is not in language design
but in finding ways to present the user with this illusion, while generating high
performance C code. We have (so far) performed only one brief test in which
Ericsson engineers used Feldspar. The generated code was of satisfactory qual-
ity but what was most striking about the experiment was the realisation, by
observing the reactions of our Ericsson colleagues, that it is purely functional
programming, with all its familiar benefits, that we are trying to sell, and not a
new language called Feldspar!



Building on the Syntactic library, Feldspar has a modular, easily extensible im-
plementation. Much of its functionality is derived from the generic building
blocks provided from Syntactic. This has been demonstrated concretely in the
implementation of parallel (section 4.1):

– The implementation of parallel is independent of other language constructs.

– The implementation of parallel is covered by a few tens of lines of code,
mostly in declarative form.

– A lot of details are handled by the Syntactic library: evaluation, rendering,
alpha-equivalence, certain optimizations, etc. Very little extra code is needed
to make these generic functions work for parallel .

Furthermore, the vector library (section 4.3) is implemented as an additional
library completely separate from the core language. This design allows us to
implement many of Haskell’s list processing functions in just a few lines each, and
still be able to generate high-performance C code from vector-based programs.

Appendix: C code from the fft4 function

The first page of code contains loops for computing twiddle factors and for doing
bit reversal. The second page contains the two nested for loops that do the FFT
calculation. (The code is split only for display purposes.)



/∗
∗ Memory information
∗
∗ Local : complex f loat array , complex f loat array
∗ Input : unsigned 32−bit integer , complex f loat array
∗ Output : complex f loat array
∗
∗/
void test ( struct array ∗ mem, uint32 t v0 , struct array ∗ v1 , struct array ∗
out)
{

uint32 t v19 ;
uint32 t v20 ;
f loat complex v21 ;
uint32 t len0 ;
uint32 t v23 ;
uint32 t len1 ;

v19 =∼(∼((4294967295 << v0))) ;
v20 =∼((4294967295 << v0)) ;
v21 = complex fun float (( f loat )((1 << v0)) , 0.0 f ) ;
len0 = (1 << (v0 − 1));
for (uint32 t v15 = 0; v15 < len0 ; v15 += 1)
{

at( f loat complex,&at( struct array ,mem,0) ,v15) =
cexpf (((0.0 f+0.0 f i ) − (( complex fun float (( f loat )(v15) , 0.0 f ) ∗

(0.0 f+6.2831854820251465 f i )) / v21))) ;
}
setLength(&at( struct array ,mem,0) , len0 ) ;
v23 = (v0 − 1);
len1 = getLength(v1) ;
for (uint32 t v11 = 0; v11 < len1 ; v11 += 1)
{

at( f loat complex , out , v11) = at( f loat complex ,v1 ,((v19 & v11) |
rotateL fun uint32( reverseBits fun uint32 ((v20 & v11)) , v0))) ;
}



setLength(out , len1 ) ;
for (uint32 t v12 = 0; v12 < v0 ; v12 += 1)
{

uint32 t v24 ;
uint32 t v25 ;
uint32 t v26 ;
uint32 t len2 ;

v24 = (1 << v12) ;
v25 = pow fun uint32(2 , v12) ;
v26 = (v23 − v12) ;
len2 = getLength(out ) ;
for (uint32 t v14 = 0; v14 < len2 ; v14 += 1)
{

uint32 t v27 ;
uint32 t v28 ;
f loat complex v29 ;
f loat complex v30 ;

v27 = testBit fun uint32 (v14 , v12) ;
v28 = (v14 ˆ v24) ;
i f ( testBit fun uint32 (v28 , v12))
{

v29 = (at( f loat complex,&at( struct array ,mem,0) ,
((v28 % v25) << v26)) ∗ at( f loat complex , out , v28)) ;

}
else
{

v29 = at( f loat complex , out , v28) ;
}
i f (v27)
{

v30 = (at( f loat complex,&at( struct array ,mem,0) ,
((v14 % v25) << v26)) ∗ at( f loat complex , out , v14)) ;

}
else
{

v30 = at( f loat complex , out , v14) ;
}
i f (v27)
{

at( f loat complex,&at( struct array ,mem,1) ,v14) = (v29 − v30) ;
}
else
{

at( f loat complex,&at( struct array ,mem,1) ,v14) = (v30 + v29) ;
}

}
setLength(&at( struct array ,mem,1) , len2 ) ;
copyArray(out , &at( struct array ,mem,1)) ;

}
}
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Loránd (ELTE) University. The authors would like to thank the Feldspar team
at Chalmers and ELTE for fruitful collaboration.

We acknowledge the constructive suggestions of an anonymous referee, who
helped us to improve these notes.

References

1. Syntactic library, version 0.8. http://hackage.haskell.org/package/

syntactic-0.8.
2. E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal, and A. Persson.

The design and implementation of Feldspar – an embedded language for digital
signal processing. In 22nd International Symposium, IFL 2010, volume 6647 of
LNCS, 2011.

3. Emil Axelsson, Koen Claessen, Gergely Dévai, Zoltán Horváth, Karin Keijzer,
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