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ABSTRACT

Human RAD51 protein (HsRad51) catalyses the DNA
strand exchange reaction for homologous recom-
bination. To clarify the molecular mechanism of
the reaction in vitro being more effective in the
presence of Ca2+ than of Mg2+, we have investigated
the effect of these ions on the structure of HsRad51
filament complexes with single- and double-
stranded DNA, the reaction intermediates. Flow
linear dichroism spectroscopy shows that the two
ionic conditions induce significantly different struc-
tures in the HsRad51/single-stranded DNA complex,
while the HsRad51/double-stranded DNA complex
does not demonstrate this ionic dependence.
In the HsRad51/single-stranded DNA filament, the
primary intermediate of the strand exchange
reaction, ATP/Ca2+ induces an ordered conform-
ation of DNA, with preferentially perpendicular
orientation of nucleobases relative to the filament
axis, while the presence of ATP/Mg2+, ADP/Mg2+

or ADP/Ca2+ does not. A high strand exchange
activity is observed for the filament formed with
ATP/Ca2+, whereas the other filaments exhibit
lower activity. Molecular modelling suggests that
the structural variation is caused by the divalent
cation interfering with the L2 loop close to the
DNA-binding site. It is proposed that the larger
Ca2+ stabilizes the loop conformation and thereby
the protein–DNA interaction. A tight binding of
DNA, with bases perpendicularly oriented, could fa-
cilitate strand exchange.

INTRODUCTION

Human RAD51 protein (HsRad51) catalyses the strand
exchange reaction, which is a crucial step of homologous
recombination, an evolutionary well conserved and
central process of DNA metabolism. HsRad51 is thus
vital for cell survival and maintenance of the genomic in-
formation by ensuring an error-free recombinational
repair of double-strand breaks, the most severe DNA
damage (1,2). The protein is also involved in the
creation of gene diversity, shuffling homologous paternal
and maternal DNA strands, as well as in cell proliferation
by assisting DNA segregation (3). Both the up- and
down-regulations of HsRad51 seem to relate to cancer
formation (4,5). Besides its vital biological roles, the
strand exchange reaction can be highly exploited in the
medicinal field. It could be exploited in correction and
repair of defective genes in gene therapy (6–8) and due
to its relationship with cancer cell proliferation and radio-
therapy resistance, it is also a potential target for
anticancer treatment (9,10).
HsRad51, like its well-studied bacterial homologue

RecA, catalyses the strand exchange reaction by first co-
operatively assembling around single-stranded DNA
(ssDNA) in the presence of ATP, forming a nucleoprotein
filament in which the DNA is stretched �50% compared
with its canonical B form (11,12). This HsRad51/ssDNA
filament engages a double-stranded DNA (dsDNA) with
homologous sequence and promotes strand exchange
between the two DNA molecules. Finally, HsRad51 is
released from the newly formed dsDNA hybrid. Despite
extensive studies on both HsRad51 and RecA, the molecu-
lar mechanisms involved in both the search for homolo-
gous DNA as well as the strand exchange reaction itself
remain unclear (13–17). Although HsRad51 and RecA
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have functionalities in common and the overall structure
of the nucleoprotein filaments they form are highly similar
(12), there are some distinct differences between the two
proteins. The strand exchange activity in vitro is much
weaker for HsRad51 (18,19) and it also presents a salt
dependence different from that of RecA (20–22).
Interestingly, HsRad51 exhibits a more efficient strand
exchange in the presence of Ca2+ compared with Mg2+,
while the strand exchange activity of RecA requires high
concentration of Mg2+.
It has been suggested that the different responses of

HsRad51 to the two cationic conditions may be explained
by the formation of a more stable and regular filament in
the presence of Ca2+ compared with Mg2+ (20,23,24).
Structural differences between the HsRad51/ssDNA/
ATP complexes with Ca2+ and Mg2+ have also been
proposed from fluorescence analysis of a DNA
analogue, etheno-DNA, in complex with HsRad51 (20).
The stronger fluorescence intensity from etheno-DNA in
the complex with Ca2+ compared with the complex with
Mg2+ may reflect differences in the organization and
unstacking of the DNA bases (25–28). Also, crystallo-
graphic studies of the archaeal homologue MvRadA (22)
have shown that the presence of Ca2+ induces a
well-ordered a-helical structure of the C-terminus region
of the L2 loop, one of the putative DNA binding loops
(29,30). This specific conformation of the L2 loop is
believed to enhance the stiffness and stability of the nu-
cleoprotein filament. Surprisingly, with Mg2+ the L2 loop
does not adopt a similar conformation but instead seems
to be disordered, since no diffraction from the L2 loop
was observed in the crystal structures of MvRadA
formed in the presence of Mg2+ (22,30).
In an attempt to unveil the molecular mechanism

behind the ion dependence of the HsRad51 strand
exchange activity, we have investigated the structural vari-
ations in HsRad51/DNA complexes with different nucleo-
tide cofactors, formed in the presence of Ca2+ and Mg2+,
using flow linear dichroism (LD) spectroscopy and mo-
lecular modelling, and then correlated the filament struc-
tures to their strand exchange activity. Flow LD is a
powerful technique to determine the structure of filament-
ous molecules or complexes, like the HsRad51/DNA
complex, in solution (32,33). The intensity of the LD
signal provides information about hydrodynamic
properties, such as stiffness and overall structure, while
the spectral details can provide information about the
orientation of specific chromophores within the molecule
relative to the filament axis. This technique has been suc-
cessfully used in studies of RecA/DNA and HsRad51/
dsDNA complexes (34,35). From flow LD, we have pre-
viously demonstrated that the DNA bases in the complex
of bacterial RecA, ssDNA and ATP are oriented nearly
perpendicular to the filament axis (36), while no preferen-
tial orientation is observed in the absence of ATP. This
organization of DNA bases may facilitate the search for
homology and thus increase the protein strand exchange
activity (16).
In the present study, we show that in the presence of

ATP and Ca2+, but not ATP and Mg2+, ssDNA bound to
HsRad51 is well ordered and the DNA bases are oriented

with their planes rather perpendicular to the filament axis.
Since ATP is hydrolyzed by HsRad51 during strand
exchange, we have examined the nucleoprotein structure
in the presence of both ATP and ADP. As RecA demon-
strates a strongly reduced DNA binding capacity in the
presence of ADP (37,38), the RecA/DNA/ADP filament
cannot be studied. On the other hand, HsRad51 binds
relatively strongly to DNA also in the presence of ADP
(39), which motivated us to study also the influence of
ATP/ADP in some detail.

We have finally examined the role of cations in the
HsRad51 filament structure through molecular modelling.
Molecular dynamics (MD) simulations demonstrate that
the divalent cations stabilize an a-helical conformation of
the L2 loop, which is in close contact with DNA, thus
indirectly affecting the DNA binding and the whole
filament structure. Also, from previously published
crystal structures of MvRadA it is expected that Ca2+ is
more tightly bound than Mg2+ (22). We suggest that the
observed variations in structure and strand exchange
activity of HsRad51 filaments, formed with either Mg2+

or Ca2+, could be due to the fact that Ca2+, being a larger
ion and thus having a tighter binding and longer residence
time, has a greater stabilizing effect on the L2 loop than
Mg2+.

MATERIALS AND METHODS

Materials

Wild-type human Rad51 protein was purified as previ-
ously described (30). Calf thymus DNA and poly(dT)
were purchased from Sigma, and poly(deA) was
prepared by chemical modification of poly(dA) (Sigma)
with chloroacetaldehyde (Aldrich) as described by
Cazenave et al. (27). The concentrations of poly(dT)
and calf thymus DNA were determined by ultraviolet
(UV) absorption using the extinction coefficients
e263 nm=8520M�1 cm�1 for poly(dT) and e260 nm=
6600M�1 cm�1 per nucleobase for calf thymus DNA.
The concentration and degree of modification of
poly(deA) were determined from the UV absorption
spectrum using the formulas given by Ledneva et al.
(40), providing e257 nm=3990M�1 cm�1 and a modifica-
tion degree of 93%.

The buffer used in the experiments, if not noted other-
wise, contained 20mM Tris–HCl (pH 7.5), 40mM NaCl,
30% glycerol, 0.2mM ethylenediaminetetraacetic acid,
0.1mM ethyleneglycoltetraacetic acid 1.2mM of either
MgCl2 or CaCl2 and trace amounts of dichlorodiphenyl-
trichloroethane from the protein storage buffer (<60 mM).

Flow LD measurements

LD was measured on a Chirascan spectropolarimeter
(Applied Photophysics). The samples were aligned using
an inner rotating Couette flow cell with a total path length
of 1mm, and the shear rate was 1500 s�1. The spectra were
measured between 350 nm and 200 nm for samples con-
taining poly(dT) and between 400 nm and 200 nm for
samples containing poly(deA) (bandwidth: 1 nm; data in-
crement: 0.5 nm; time-per-point: 0.5 s) and four spectra
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were averaged to increase the signal to noise ratio.
Baseline correction was made by subtracting a spectrum
measured without rotation of the Couette flow cell. The
complexes were formed by mixing 4 mM HsRad51 protein,
12 mM (base) poly(dT) or poly(deA) and 300 mM ATP or
ADP in the indicated buffer. In some cases, an ATP re-
generation system, consisting of 2mM creatine phosphate
and 75 mg/ml creatine kinase, was added.

Strand exchange activity

The strand exchange activity assay was performed as
described by Nomme et al. (41) measuring the exchange
between a single-stranded oligonucleotide of 58 bases and
its homologous double-stranded oligonucleotide of 32 bp.
Experiments were performed with 0.5mM Rad51, 20 nM
(in fragment) ssDNA, 50 nM (in fragment) dsDNA, 1mM
CaCl2 or MgCl2 in 20mM Tris–HCl (pH 8), 1mM ATP,
1mM dichlorodiphenyltrichloroethane, 100 mg/ml bovine
serum albumin and 2% glycerol.

Molecular modelling

The conformation of the L2 loop of an HsRad51
monomer, adopted from our previous filament model
(30), was redesigned using a homology modelling
approach followed by structural equilibration with mo-
lecular dynamics (MD). The C-terminus region of the
L2 loop (residues from Gly283 to Arg293) was taken
from the crystal structures of homologous ScRad51
(PDB entry 1SZP) and HsDMC1 (PDB entry 1V5W),
and the rest of the loop (Val263-Gly282) was added
using USCF Chimera (42). The HsRad51 monomer struc-
ture was equilibrated with MD using AMBER-f10 force
fields and a standard protocol (43), details of which are
given below.

A rigid body docking of ATP/ADP into the equilibrated
structure of the HsRad51 monomer was performed with
USCF DOCK6.5 (http://dock.compbio.ucsf.edu/). The
docking analysis was based on a geometric matching
algorithm and a lowest energy binding mode search. An
electrostatic potential analysis was performed, in order to
revise the DNA binding mode inside the protein filament,
using the PDB2PQR server (44). For visualization of the
results USCF Chimera was used.

All MD simulations in this study were carried out ac-
cording to the following protocol: initial 1000 steps of
steepest descent, followed by 1000 steps of conjugate
gradient performed in explicit water (TIP3P water
model) and subsequent fast heating (50 ns) to 300K with
harmonic restraints of 20 kcal/mol Å2 on the heavy atoms
of the solutes; restraints were then gradually removed in a
series of equilibration runs of 100 ps each. MD trajectories
of 20 ns at constant temperature (300K) and pressure
(1 bar), using AMBER11 software package (45,46), were
recorded for a filament fragment consisting of four
HsRad51 monomers gathered around a 15-base long
oligo(dT) in complex with ATP or ADP, with either
Mg2+ or Ca2+. The model system was varied in terms of
placement of the divalent cation (in each simulation either
Ca2+ or Mg2+ was present), choice of cofactor (ATP or
ADP) and whether ssDNA was present or absent inside

the filament. The cations were placed in two different
ways: (i) one cation (Ca2+/Mg2+) coordinating the ATP/
ADP Pg/Pb-oxygens and the second cation (Ca2+/Mg2+)
placed at the C-terminus of the L2 loop, coordinating the
carboxyl groups of the protein backbone of His283–
Ser285; (ii) a single cation (Ca2+/Mg2+), coordinating the
ATP/ADP oxygens. The ssDNA fragment used in this
study was adopted from the crystal structure of a
RecA-ssDNA filament complex (PDB entry 3CMU) (14).

RESULTS

LD of HsRad51/ssDNA/ATP

We have measured LD of flow-oriented HsRad51/ssDNA
complexes to investigate how the filament structure is
influenced by the presence of Ca2+ and Mg2+. The LD
signal depends upon the macroscopic orientation of the
filament and on the local orientation of the chromophores
within the complex, such as DNA bases, aromatic amino
acid residues and ATP. When the nucleoprotein is aligned
by the shear flow, any ordered structure of chromophores
will give rise to an LD signal, defined as the differential
absorption between parallel and perpendicularly polarized
light, respectively, LD=Ajj � Ao (33). In the LD setting
used here, the filaments are preferentially aligned by the
flow with their fibre axes parallel the flow and the polar-
ization direction denoted as ‘parallel’. Thus, a positive LD
signal may stem from chromophores oriented with their
transition moments aligned in the same direction as the
filament axis (Ajj>Ao), while a negative LD signal would
indicate chromophores aligned more perpendicular to the
filament axis (Ajj<Ao). In addition, if the degree of
macroscopic orientation of the filament can be determined
independently, e.g. calibrated from the LD of internal
standards of known orientation, LD can also provide
quantitative orientation angles for the various chromo-
phores (30,33).
Neither ssDNA nor HsRad51 alone gives rise to any

significant LD signal, regardless of the presence or
absence of nucleotide cofactors (results not shown).
ssDNA, in contrast to dsDNA, has a flexible structure
so that its bases on the whole appear unoriented even at
high shear-flow gradients, while HsRad51 alone, in the
concentration range used here, does not form stable, suf-
ficiently long filaments to be significantly oriented (47).
However, in combination, the HsRad51/poly(dT)/ATP
complexes with Ca2+ as well as with Mg2+ exhibit rela-
tively strong LD signals (Figure 1A), although weaker
than that observed for the RecA/ poly(dT)/ATPgS
complex (35). This observation indicates that HsRad51
forms quite a long and regular filament around
poly(dT). If discontinuous short filaments were formed,
with naked DNA regions in between, the filament
stretches would act as flexible joints and the sample
would not align in the shear flow, resulting in a much
weaker, if any, LD signal (48). Interestingly, the formation
of stiff nucleoprotein filaments, which are aligned by shear
flow, requires both ATP and divalent ions. In the absence
of either, we observed only weak LD signals (results not
shown).
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Figure 1A shows the LD spectra of HsRad51 in
complex with poly(dT) and ATP in the presence of
Mg2+ or Ca2+ after 2 h incubation at room temperature.
Both complexes exhibit strong LD signals, proving the
formation of stiff complex, but we can also note that
the shapes of the LD spectra, which are dependent on
the orientation of the individual chromophores, for the
Rad51/poly(dT) complexes with Ca2+ and Mg2+ differ
from each other. The complex with Mg2+ exhibits a
positive band at 280 nm and a negative band �260 nm
of similar intensity, while the complex with Ca2+ exhibits
an intense negative band �260 nm and a weak positive
band at 285 nm. These spectral variations reveal a clear
structural difference depending upon type of divalent
cation. Interestingly, such a conspicuous structural differ-
ence between Mg2+ and Ca2+ conditions is not observed
for the complex with dsDNA (Figure 1B). The shapes of
the LD spectra of the two complexes formed with dsDNA
are nearly identical, only their intensities differ. This indi-
cates similar organization of DNA bases and HsRad51
subunits in the complex but somehow different hydro-
dynamic properties.
The observed LD signals in Figure 1A coincide with the

absorption wavelengths for the transition moments of
poly(dT) and ATP, both absorbing �260 nm [265 nm

for poly(dT) and 261 nm for ATP]. The nucleobases also
absorb <230 nm, as do transition moments of the tyrosine
and phenylalanine residues of HsRad51, absorbing at 227
and 278 nm, and 210 nm and 258 nm, respectively (49)
(Figure 1C). Thus, absorption at wavelengths around
and <230 nm could stem from a combination of transition
moments in the HsRad51 filament: DNA, ATP, and
tyrosine and phenylalanine residues all absorb here, as
well as peptide bonds in the protein. It is therefore hard
to deduce from which of these molecules the positive LD
signal in this wavelength region really originates.
However, the spectral variations �260 nm observed
between the complexes with Ca2+ and Mg2+ could be
related to differences in either the orientation of the
DNA bases or the orientation of ATP, assuming similar
stiffness (hydrodynamic properties) of the two filaments.
It should be noted that the strength of the LD signal
cannot be directly translated into angular orientations of
chromophores within the filament as these absorptions are
centred very close to each other in the LD spectra (260 nm
and 280 nm), and have opposite signs. The signals will
therefore partly cancel each other and, in addition, the
LD maxima will be shifted apart (33).

To examine whether the observed large difference at
260 nm in the LD spectra for HsRad51/ssDNA/ATP

Figure 1. LD spectra of HsRad51/DNA/ATP complexes: comparison between Ca2+ and Mg2+ conditions. (A) Complexes were formed by mixing
HsRad51, poly(dT) and ATP in buffer containing Ca2+ (black) or Mg2+ (red) as described in text. LD spectra were measured after 2 h incubation at
room temperature. (B) Complexes were formed by mixing HsRad51 and ATP together with calf thymus DNA in the presence of Ca2+ (black) or
Mg2+ (red) and incubated for 2 h before LD measurement. (C) Transition moments responsible for LD signals at indicated wavelengths: thymine (1),
adenine (2), tyrosine (3) and phenylalanine (4).
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with Ca2+ and Mg2+ is due to a corresponding difference
in orientation of ATP or DNA bases, we measured LD
under the same conditions, but using poly(deA) instead of
poly(dT). In poly(deA), the adenine bases of poly(dA) are
modified to 1,N6-ethenoadenine (eA), which has an add-
itional absorption band �310 nm (50), where no other
chromophore of the HsRad51/DNA/ATP system
absorbs. Thus, the LD signal >300 nm is unambiguously
related to the orientation of the ssDNA bases within the
nucleoprotein filament. Furthermore, the LD is not
overlapped or cancelled by any other LD contributions
at this wavelength, but reflects the true orientation of
the modified base.

The LD spectra of HsRad51/poly(deA)/ATP complexes
with Ca2+ and Mg2+ are shown in Figure 2. We note that
the LD intensity of Rad51/poly(deA) complexes is weaker
than that of HsRad51/poly(dT) complexes, suggesting
that HsRad51 cannot form as long and stiff filaments on
poly(deA) as RecA (34,36). Nevertheless, the HsRad51/
poly(deA) complex with ATP/Ca2+ clearly shows a
negative LD signal at 310 nm and another large negative
signal �225 nm (Figure 2), which also stems from the ab-
sorption of poly(deA). The negative signal at 260 nm
could originate from the absorption of poly(deA) but
also from well-oriented ATP. However, for the complex
formed with ATP/Mg2+ no significant LD signal at
310 nm was observed (Figure 2). This demonstrates
clearly that in the nucleoprotein complex with ATP/
Ca2+ the DNA bases are structurally ordered preferen-
tially perpendicular to the filament, while there is no
such well-defined orientation of DNA bases in the
complex formed with ATP/Mg2+. The LD signal
detected for the HsRad51/poly(deA) complex with ATP/
Mg2+ is therefore most likely composed of contributions
only from the aromatic residues of HsRad51 and ATP.
This conclusion is strongly supported by the fact that

the shape of the LD spectra of the HsRad51/poly(dT)
complex and the HsRad51/poly(deA) complex, when
formed in the presence of ATP/Mg2+, are similar despite
the large differences in the absorption patterns of poly(dT)
and poly(deA). Thus, the negative LD band �260 nm of
the HsRad51/poly(dT) complex with ATP/Mg2+ is
probably due to the organization of the adenine base of
ATP rather than the DNA. The binding mode of ATP in
the HsRad51/ssDNA filament deduced from molecular
modelling (see below) indeed suggests an orientation
that would give a negative LD signal �260 nm for either
of the cationic conditions.

LD of HsRad51/ssDNA/ADP

Since the ATPase activity of HsRad51, generally weak, is
significantly higher in the presence of Mg2+ compared
with Ca2+ (20), we needed to verify that the structural
variation between the two cationic conditions was not
due to accumulation of ADP. Therefore, we first
followed the variation in the LD signal for the two differ-
ent complexes over time, recording spectra once every
hour during 6 h and after over-night incubation.
Secondly, we measured LD in the presence of an ATP
regeneration system, and finally we recorded the LD
spectra of the HsRad51/ssDNA complexes formed under
the two different cationic conditions, but with ATP
substituted for ADP.
The HsRad51/ssDNA complex with ATP/Ca2+ is quite

stable over time, after an initial 15% increase in signal
strength during the first hour the signal decreases slowly.
The signal strength at 6 h is �85% of that of the first
time-point and there is only a 10% further decrease
in signal strength after over-night incubation
(Supplementary Figure S1). The LD signal for the
complex with ATP/Mg2+ is also stable during the first
6 h, but greater changes appear after over-night incuba-
tion, the signal increasing by as much as 65%. This indi-
cates that there is no significant ADP accumulation during
the first hours and the observed structural variations after
2 h incubation cannot be explained merely by ADP accu-
mulation, which is consistent with the weak ATPase
activity of HsRad51 (29,51). Further support for this con-
clusion is the observation that the presence of an ATP
regeneration system does not significantly modify the
LD spectrum even after 2 h of incubation
(Supplementary Figure S2). The addition of an ATP re-
generation system increases the ATP concentration in
solution, although we cannot still exclude the possibility
that ADP is trapped inside the filament.
The LD spectra of HsRad51/poly(dT) filaments formed

in the presence of ADP/Mg2+ and ADP/Ca2+ after 2 h
incubation (Figure 3) display clear differences compared
with the spectra of the corresponding filaments formed
with ATP. As already concluded, these observed vari-
ations cannot be explained by the accumulation of ADP,
or a simple conversion of the ATP-bound complex into
the corresponding ADP-bound complex. The LD spectra
of complexes with ADP vary between Mg2+ and Ca2+

conditions as well. Interestingly, the LD spectrum of the
HsRad51/ssDNA complex with ADP/Ca2+ is very similar

Figure 2. LD spectra of HsRad51/poly(deA)/ATP complexes: compari-
son between Ca2+ and Mg2+ conditions. Complexes were formed by
mixing HsRad51, poly(deA) and ATP in the presence of Ca2+ (black)
or Mg2+ (red). LD spectra were measured after 2 h incubation at room
temperature. Transition moment responsible for the LD signal at
310 nm is shown in the molecular structure of 1,N6-ethenoadenine.
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to that of the complex formed with ATP/Mg2+(during the
first 6 h), suggesting that these filaments are structurally
similar.
Surprisingly, the LD signal of the HsRad51/ssDNA

filament with ATP/Mg2+ after overnight incubation
differs significantly from that of the complex formed

with ADP/Mg2+ (Supplementary Figure S3). This seems
to confirm that even if some of the ATP within the
filament is hydrolyzed to ADP during the long incubation
time, two different structures still exist, depending on
whether any ATP is present or not.

Correlation between structure and strand exchange
activity

The strand exchange activity of HsRad51 was examined
under the same conditions as in our LD study in search for
a structure-function relationship. In agreement with
results reported previously by Bugreev and Mazin (20),
the strand exchange activity in the presence of ATP/
Ca2+ is 2–3 times higher than that in the presence of
ATP/Mg2+ (Figure 4). We also observed a higher strand
exchange activity when the concentration of Ca2+ was
increased to 5mM, consistent with their results.
Surprisingly, we also observed that HsRad51 exhibits
some strand exchange activity in the presence of ADP/
Ca2+, which, according to our LD analysis, promotes a
similar structure of the HsRad51/ssDNA complex as
ATP/Mg2+. To verify that there is no contamination of
ATP or any exonuclease activity in the sample, we have
performed HPLC analysis for ATP and monitored the
fluorescence of poly(deA) (results not shown). In
contrast, HsRad51 does not present any significant
strand exchange activity with ADP/Mg2+. Obviously the
structure of the HsRad51/ssDNA complex in the presence
of ADP/Mg2+, as judged from the LD spectrum, differs

Figure 4. Effects of Ca2+ and Mg2+ ions on DNA strand exchange activity of HsRad51. HsRad51-promoted strand exchange between labelled
ssDNA and the homologous dsDNA in the presence of ATP/Ca2+, ATP/Mg2+, ADP/Ca2+ or ADP/Mg2+ was performed as described in text.
The products were separated by gel electrophoresis (A) and quantified (B).

Figure 3. LD spectra of HsRad51/poly(dT)/ADP complexes.
Complexes were formed by mixing HsRad51, poly(dT) and ADP in
the presence of Mg2+ (red) or Ca2+ (black). LD spectra were
measured after 2 h incubation at room temperature.
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significantly from that promoted by ATP/Mg2+. In con-
clusion, these variations suggest that the structure of the
HsRad51 filament is crucially important for its strand
exchange activity.

Molecular modelling and structural analysis

To get an increased understanding of the molecular basis
of the structural variations observed in LD of HsRad51/
ssDNA filaments with ATP or ADP in the presence of
Ca2+ or Mg2+, we performed a molecular modelling
combined with a structural analysis of the available
crystal data of homologous proteins, including ScRad51
(PDB entry 1SZP), MvRadA (PDB entries 3FYH, 2I1Q,
2FPL, 1T4G and 1XU4) and HsDMC1 (PDB entry
1V5W). To this end our previous model of the protein
(30) was refined. In particular, the conformation of the
L2 loop was amended with the help of homology
modelling using the structures of ScRad51 (PDB entry
1SZP), HsDMC1 (PDB entry 1V5W) and MvRadA
(PDB entry 1XU4) as templates. The L2 loop is not
only a ‘host’ for one Ca2+ or Mg2+ ion, but it is also pos-
itioned in close proximity to the postulated ATP/ADP
binding site, the DNA-binding site and the interface
between two adjacent protein monomers. The interactions
and structure of the L2 loop are therefore highly relevant
to this study. The final converging geometry of the L2
loop is depicted in Figure 5.

A docking analysis was carried out to find the position
and orientation of ATP/ADP inside the HsRad51/ssDNA

filament, with the L2 loop of the protein in a folded con-
formation. The binding site for ATP/ADP consists of the
P-loop, which hosts the P-terminus of ATP/ADP, and the
L2 loop, sequences that are highly conserved among all
recombinases. Nevertheless, significant variations in their
locations inside the nucleoprotein filament structure
appear possible. The docking analysis placed ATP/ADP
in the same binding position as that observed for the
MvRadA structures (22,52), but with a slightly different
orientation. This binding mode of ATP/ADP was used as
a starting orientation for further simulations.
The DNA binding mode inside the HsRad51 filament

was also re-examined and structurally refined. An electro-
static potential analysis of the filament structure with a
redesigned L2 loop revealed the presence of a positively
charged tunnel (Supplementary Figure S4) located
between the two putative DNA binding loops, L1 and
L2 (29). This DNA binding mode provides a better fit
for the DNA helix inside the protein filament than the
one suggested in our previous model (30). This binding
mode of ssDNA was kept throughout further simulations.
We have performed a set of MD simulations, each 20 ns

long, to examine the role of divalent cations in the nucleo-
protein structure in the presence and absence of Mg2+ or
Ca2+, together with ATP or ADP. The simulations were
performed with and without ssDNA in the filament.
Details on model systems are given in the ‘Materials and
methods’ section. In all simulations where the model
systems had Ca2+ or Mg2+ at the C-terminus of the L2
loop, the nucleoprotein filament was stable and no signifi-
cant structural changes were observed. When ssDNA was
missing inside the filament, the absence of cations did not
induce any structural changes, compared with a filament
with cation. However, when Ca2+/Mg2+were absent at the
C-terminus of the L2 loop and the filament contained
ssDNA, the a-helical region of the L2 loop became
elongated during MD (Figure 5), bringing its hydrophobic
amino acid residues into the protein–DNA interaction
area. This breaks the continuity of the positively charged
tunnel, which provides a well-defined binding site for
DNA, and loosens the protein-DNA attraction. The
MD simulations with Ca2+ and Mg2+ did not show any
structural divergence between the two. This could be ex-
plained by the fact that during MD simulations, the
divalent ions tend to remain in their initial position, and
thus no difference between Ca2+ and Mg2+ could be
observed with a classic MD approach on a 20-ns time
scale.
Finally, MD revealed some interesting differences in the

binding mode of ATP compared with ADP. ATP sits tight
in its binding pocket and the angular distribution of the
electronic transition moment, which gives rise to the
negative LD signal at 261 nm, varied only from 75� to
83� relative to the filament axis. For ADP, on the other
hand, the binding is not as tight and the angular distribu-
tion spreads from 59� to 83�, though again contributing
with a negative signal to the LD spectrum. (A pdb-
formated file containing the coordinates of the model
structure of the HsRad51/ssDNA/ATP/Mg2+ complex is
available as Supplementary Dataset 1.)

Figure 5. Model structure of the HsRad51/ssDNA/ATP filament with
and without a divalent cation, (A) and (B), respectively, at the
C-terminus of the L2 loop (orange). One cation (magnesium or
calcium) coordinates the oxygen atoms of the phosphates of ATP
(cation labelled ‘ATP’), whereas another cation coordinates the
a-helical region of loop L2 (cation labelled ‘L2 loop’). The a-helical
part of the L2 loop, which secures the DNA binding inside the nucleo-
protein filament, is stable in the presence of divalent cation (Ca2+ or
Mg2+). Without one divalent ion at the C-terminus of the loop, the
a-helical region becomes elongated, significantly disturbing the DNA
binding.
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DISCUSSION

To gain insight into the strand exchange reaction and to
explain the molecular mechanism behind the higher activity
ofHsRad51 in the presenceofCa2+comparedwithMg2+,we
have investigated the structure of the first reaction intermedi-
ate, HsRad51/ssDNA/ATP (or ADP), formed in the
presence of either Ca2+ or Mg2+. Using flow-oriented
samples in LD spectroscopy, we observed clear
ion-dependent structural differences between the complexes
with the two divalent ions in aqueous environment.
From the LD measurements on nucleoprotein filaments

formed with poly(deA), we found that the DNA bases in
the complex with Ca2+, the more active form, have a
defined orientation. A negative LD signal at 310 nm for
the complex with Ca2+suggests that the bases are oriented
preferentially perpendicular to the filament axis, while the
complex with Mg2+, the less active form, showed no signal
at 310 nm, thus indicating rather randomly oriented bases.
A perpendicular orientation of the bases in ssDNA may be
a prerequisite for an effective strand exchange reaction,
foreshadowed by base comparison and test pairing with
one of the strands of the incoming dsDNA. It has previ-
ously been shown, first with LD (35) and later confirmed
by a crystal structure (14), that the DNA bases in the
RecA/ssDNA/ATP/Mg2+ complex, which has a high
strand exchange activity, are also oriented with their
planes approximately perpendicular to the filament axis.
The lower, but still existing, strand exchange activity of
HsRad51/ssDNA/ATP/Mg2+ could be explained by the
nucleobases not being ordered in the filament. This lack
of orientation of the DNA bases in the HsRad51/ssDNA/
ATP/Mg2+ complex seen with our LD analysis cannot be
explained by accumulation of ADP due to rapid ATP hy-
drolysis in the presence of Mg2+, since the presence of an
ATP regeneration system did not modify the LD signal.
The fact that the HsRad51/ssDNA/ATP filament with

Mg2+ exhibited a significant LD signal, despite that the
DNA bases are poorly aligned in the filament, indicates
that HsRad51 covers ssDNA rather regularly, forming a
stiff linear filament. However, the LD intensity of the
HsRad51/poly(deA)/ATP complexes was weaker than
that of the HsRad51/poly(dT)/ATP complexes, both
with Ca2+ and Mg2+. This may reflect an incomplete or
unstable assembly of HsRad51 on some ssDNA se-
quences. Such a behaviour could be a contributing explan-
ation to the weak strand exchange activity of HsRad51
compared with that of RecA.
Our observations suggest that Ca2+ and Mg2+ influence

the organization of the protein filament around ssDNA
differently. To more clearly understand the structural cir-
cumstances, the two cations may impose on the overall
structure of the HsRad51/ssDNA/ATP complex, we have
refined our previous molecular model of the HsRad51 nu-
cleoprotein filament (30). The conformation of the putative
DNA binding loop (L2) was recalculated, providing an al-
ternative even more favourable binding mode for DNA in
a well-defined positively charged tunnel formed between
the L1 and L2 loops. The conducted MD experiments
reveal a delicate balance of the a-helical region stability
of the L2 loop. With a divalent cation present at the

loop’s C-terminus, the a-helical region that interacts with
the DNA backbone via two positively charged residues
remains stable. However, when a cation is missing, the
a-helical region becomes elongated, bringing its hydropho-
bic side chain residues close to the DNA backbone, thus
significantly perturbing the protein–DNA interaction.
Although MD does not show any significant differences
between the simulations with Ca2+ and Mg2+, we may
argue that Mg2+, being a smaller ion, may have greater
mobility and less chance to reside for a long time at the
C-terminus of the L2 loop, which would resemble the MD
case with no cation at the C-terminus. On the other hand,
for Ca2+, a bigger and more massive cation, the residence
time would be longer. It is worth mentioning that the
region where the C-terminus of the L2 loop is located is
structurally crowded, which would make it easier for the
smaller Mg2+ion to leave. Supporting our hypothesis is the
fact that in the crystal structures of the homologous
MvRadA protein, the L2 loop remains disordered in all
cases when crystallization was made in the presence of
Mg2+ (22), while when Ca2+was present, the L2 loop con-
tained an a-helical region.

It is interesting to note that the different HsRad51/
ssDNA filament structures induced by Ca2+ and Mg2+

are also highly dependent on whether ATP or ADP is
bound. Our MD simulations suggest that the ATP is
bound more tightly in the filament than ADP and
previous FRET measurements and single molecule studies
indicate that the complex with ATP is stretched while that
with ADP is not (51,53). Surprisingly, according to our LD
analysis, the structure of the HsRad51/ssDNA/ATP/Mg2+

filament is similar to that of the HsRad51/ssDNA/ADP/
Ca2+ complex, but the ATP-dependent strand exchange
activity of HsRad51 is higher in the presence of ATP/
Mg2+ than with ADP/Ca2+. With ADP/Mg2+, a filament
stiff enough to give an LD signal is formed, but it adopts a
different structure and it does not exhibit any significant
strand exchange activity.

Both Ca2+ as well as Mg2+ are ubiquitous modulators
of various cell functions. The total concentration of Mg2+

varies between cell types, but it ranges from 5mM to
30mM, while the free Mg2+ concentration has been
most often determined to be around 0.4–0.6mM (54).
On the other hand, the concentration of Ca2+ in vivo
does not exceed 5–10 mM and thus appears too low to
stimulate homologous recombination in the cell (55).
Nevertheless, it has been observed that Ca2+ plays an im-
portant role during the early stages of meiosis (56,57) and
in response to DNA damage (58,59). It is possible that the
effect we have observed in vitro with Ca2+ for the
HsRad51/poly(dT) complex can also occur in vivo with
the assistance of activator proteins.

While the HsRad51/ssDNA filament, which is the initial
complex in the strand exchange reaction, is highly depend-
ent on the divalent cation present, the HsRad51 complex
formed with dsDNA does not exhibit this dependence.
Our LD analysis reveals that the HsRad51/dsDNA
complex forms stiff and stable filaments of similar struc-
ture with both Ca2+and Mg2+. Moreover, previous kinetic
analyses have shown that the association and dissociation
of the HsRad51/dsDNA complex are independent of the
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type of divalent ions, while these processes with ssDNA
depend on the ions present (23). In further support of the
hypothesis that there are significant differences in the
binding modes of HsRad51 to ssDNA or dsDNA,
Kurumizaka et al. have reported that the strand
exchange inhibitor halenaquinone prevents the binding
of HsRad51 to dsDNA but only slightly to ssDNA (60).
In the case of RecA, we have observed that the filament
structure is very similar to complexes formed with ssDNA
and dsDNA (61), but from this study we can definitely
conclude that there are major differences in the case of
HsRad51. We can also conclude that there is a clear
cation dependence for both structure and activity of the
HsRad51/ssDNA filament. This is probably due to the
divalent cation directly affecting the protein–DNA inter-
action, thus exerting changes on the structure and stability
of the whole filament.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–4 and Supplementary Dataset 1.
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Krüger,S., Feller,A.C., Lopens,A., Diedrich,K., Schwinger,E.
et al. (2000) Over-expression of wild-type Rad51 correlates with
histological grading of invasive ductal breast cancer. Int. J.
Cancer, 88, 907–913.

6. Kowalczykowski,S.C. and Zarling,D.A. (1995) The synergistic
interaction between RecA protein and SSB protein during DNA
strand exchange. Gene Targeting (Ed Vega). CRC press,
pp. 167–210.

7. Liu,L., Maguire,K.K. and Kmiec,E.B. (2004) Genetic
re-engineering of Saccharomyces cerevisiae RAD51 leads to a
significant increase in the frequency of gene repair in vivo.
Nucleic Acids Res., 32, 2093–2101.

8. Klug,A. (2010) The discovery of zinc fingers and their
development for practical applications in gene regulation and
genome manipulation. Q. Rev. Biophys., 43, 1–21.

9. Ito,M., Yamamoto,S., Nimura,K., Hiraoka,K., Tamai,K. and
Kaneda,Y. (2005) Rad51 siRNA delivered by HVJ envelope
vector enhances the anti-cancer effect of cisplatin. J. Gene Med.,
7, 1044–1052.

10. Ohnishi,T., Taki,T., Hiraga,S., Arita,N. and Morita,T. (1998)
In vitro and in vivo potentiation of radiosensitivity of malignant
gliomas by antisense inhibition of the RAD51 gene. Biochem.
Biophys. Res. Commun., 245, 319–324.

11. Yu,X., Jacobs,S.A., West,S.C., Ogawa,T. and Egelman,E.H.
(2001) Domain structure and dynamics in the helical filaments
formed by RecA and Rad51 on DNA. Proc. Natl Acad. Sci.
USA, 98, 8419–8424.

12. Ogawa,T., Yu,X., Shinohara,A. and Egelman,E.H. (1993)
Similarity of the yeast RAD51 filament to the bacterial RecA
filament. Science, 259, 1896–1899.

13. Masuda,T., Ito,Y., Terada,T., Shibata,T. and Mikawa,T. (2009)
A non-canonical DNA structure enables homologous
recombination in various genetic systems. J. Biol. Chem., 284,
30230–30239.

14. Chen,Z., Yang,H. and Pavletich,N.P. (2008) Mechanism of
homologous recombination from the RecA-ssDNA/dsDNA
structures. Nature, 453, 489–484.

15. Saladin,A., Amourda,C., Poulain,P., Férey,N., Baaden,M.,
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27. Cazenave,C., Toulmé,J.J. and Hélène,C. (1983) Binding of RecA
protein to single-stranded nucleic acids: spectroscopic studies
using fluorescent polynucleotides. EMBO J., 2, 2247–2251.

28. Chabbert,M., Lami,H. and Takahashi,M. (1991) Cofactor-induced
orientation of the DNA bases in single-stranded DNA complexed
with RecA protein. A fluorescence anisotropy and time-decay
study. J. Biol. Chem., 266, 5395–5400.

29. Matsuo,Y., Sakane,I., Takizawa,Y., Takahashi,M. and
Kurumizaka,H. (2006) Roles of the human Rad51 L1 and L2
loops in DNA binding. FEBS J., 273, 3148–3159.

30. Reymer,A., Frykholm,K., Morimatsu,K., Takahashi,M. and
Nordén,B. (2009) Structure of human Rad51 protein filament
from molecular modeling and site-specific linear dichroism
spectroscopy. Proc. Natl Acad. Sci. USA, 106, 13248–13253.

31. Wu,Y., He,Y., Moya,I.A., Qian,X. and Luo,Y. (2004) Crystal
structure of archaeal recombinase RADA: a snapshot of its
extended conformation. Mol. Cell, 15, 423–435.

32. Nordén,B., Kubista,M. and Kuruscev,T. (1992) Linear
dichroism spectroscopy of nucleic acids. Quart. Rev. Biophys., 25,
51–170.

33. Nordén,B., Rodger,A. and Dafforn,T. (2010) Linear Dichroism
and Circular Dichroism: A Textbook on Polarized Light
Spectroscopy. The Royal Society of Chemistry, Cambridge, UK.

34. Morimatsu,K., Takahashi,M. and Nordén,B. (2002) Arrangement
of RecA protein in its active filament determined by
polarized-light spectroscopy. Proc. Natl Acad. Sci. USA, 99,
11688–11693.

35. Takahashi,M., Kubista,M. and Nordén,B. (1987) Linear
dichroism study of RecA-DNA complexes. Structural
evidence and binding stoichiometries. J. Biol. Chem., 262,
8109–8111.

36. Nordén,B., Elvingson,C., Kubista,M., Sjöberg,B., Ryberg,H.,
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