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It is shown that the evolution equations describing partially coherent wave propagation in noninstanta-

neous Kerr media are integrable and have an infinite number of invariants. A recursion relation for

generating these invariants is presented, and it is demonstrated how to express them in the coherent

density, self-consistent multimode, mutual coherence, and Wigner formalisms.
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A crucial step in the understanding and description of
the properties of the nonlinear propagation of coherent
waves was the development of the inverse scattering theory
[1]. This made it possible to find general solutions for a
broad class of nonlinear evolution equations for arbitrary
initial conditions. Unique features of this solution proce-
dure are the Zakharov-Shabat eigenvalue problem [2], the
Lax formalism [3], and the fact that the integrability of the
system is manifested by the existence of an infinite number
of invariants, i.e., conserved quantities. In particular, the
well-known soliton solution was first thought to be an
inherently coherent phenomenon until it was recently
found both experimentally [4] and theoretically [5] that
similar solitonlike wave structures can also exist for par-
tially coherent waves in noninstantaneous nonlinear media.
Although at least four different but equivalent [6,7] ap-
proaches have been developed for describing the nonlinear
propagation of partially coherent waves in terms of char-
acteristic evolution equations [8], no general formalism,
analogous to the inverse scattering theory, has been devel-
oped for the nonlinear evolution equations describing
nonlinear propagation of partially coherent waves.

The purpose of the present Letter is to contribute to the
development of the theory of nonlinear propagation of
partially coherent waves in noninstantaneous Kerr media,
by providing proper generalizations of the classical con-
cepts of the Zakharov-Shabat eigenvalue problem and the
Lax formalism, and to give an explicit recursion formula
for the generation of an infinite number of invariants. It is
also shown how these invariant quantities can be expressed
in the coherent density [5], self-consistent multimode [9],
mutual coherence, and Wigner formalisms [10,11]. These
results should provide an important step forward in the
investigation of the dynamics of partially coherent waves
in nonlinear media, with the conservation laws finding
multiple uses in the theoretical analysis of solutions, pro-
viding information on, e.g., evolution, stability, and soliton
decomposition. Invariant quantities are further useful as a
way of assessing the accuracy of many numerical schemes.
In addition to various applications in the area of nonlinear
optics [8,12–14], the obtained results should also be of

interest to a number of scientific disciplines such as bio-
physics [15], Bose-Einstein condensates [16], plasma
physics [17], and water waves [18–20], where the coupled
nonlinear Schrödinger system of the self-consistent multi-
mode theory and the evolution equations of some of the
other equivalent formalisms are used as model equations.
The propagation of partially coherent light in a non-

instantaneous nonlinear Kerr medium can be described by
the coherent density function fðx; z; �Þ satisfying the evo-
lution equation [5]
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where z is the distance of propagation, x is the transverse
field coordinate, � represents an angle with respect to the
propagation axis, and� and � are diffraction and nonlinear
coefficients, respectively. Using the transformation

fðx; z; �Þ expði �
2� x� i �2

4� zÞ ! jc ðx; z;�Þi, where jc i is

interpreted as an infinite-dimensional column vector
labeled by the continuous index �, Eq. (1) can conveniently
be written using a bra-ket notation as
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with hc j being the Hermitian conjugate row vector, and the
integral is replaced by the scalar product hc 1jc 2i ¼R1
�1 c �1c 2d�. The identification of Eq. (1) with the vector

problem Eq. (2) is key to the subsequent analysis.
For a finite-dimensional ket vector jc i, Eq. (2) reduces

to a system of coupled nonlinear Schrödinger equations,
viz.,
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If the vector elements c n are further required to be or-
thogonal, they may be taken as modal functions in the self-
consistent multimode theory [9], and Eq. (3) gives the
evolution of the modal functions.
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In Ref. [21], we show that Eq. (2) and its Hermitian
conjugate can be derived as an operator condition

½�ð1Þ;�ð2Þ� ¼ 0 by using the dressing operators, cf. [22],

�ð1Þ ¼ ~I
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is a generalization of the unit matrix with the identity ket
j1i. These operators depend on a single parameter p such
that, after rescaling z! z=�, we have �� ¼
2=ðl1l2Þ ¼ 8p2=ð1� p2Þ, with l1 ¼ ð1� pÞ=2p and
l2 ¼ ð1þ pÞ=2p.

If the operator pair given by Eqs. (4) and (5) is written as

�ð1Þ ¼ ~Ii @
@z� Â and�ð2Þ ¼ L̂, we recover the familiar Lax

representation [3] with the two equations

L̂� ¼ ��; (7)
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where � is the spectral eigenvalue, � is the corresponding

eigenfunction, and gðL̂Þ is an arbitrary function of the

operator L̂; cf. [23]. The operator condition ½�ð1Þ;�ð2Þ� ¼
0 is then replaced by the equation
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and the spectrum is constant due to Â being Hermitian. The
integrability of the nonlinear evolution equation (2)
follows from its representation as a Lax pair.

The eigenvalue problem for the scattering operator
Eq. (7), viz.,
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can, using the substitutions � ¼ i�=ð2l1l2Þ and
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(11)

be written as the Zakharov-Shabat problem [2]
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Normalizing jc i= ffiffiffiffiffiffiffiffi
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Eq. (8), this implies that
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since jc i ! 0 as x! 1 and a Riccati equation for � is
obtained from Eq. (12), viz.,
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where hc j�1 is an inverse operator such that hc jhc j�1 ¼
hc j�1hc j ¼ 1.
The solution of Eq. (14) is a generating function for an

infinite set of conserved quantities
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with w0 ¼ hc jc i.
The first six expressions obtained from Eq. (15) are

given by

w0 ¼ hc jc i; (16)

w1 ¼ hc jc xi; (17)

w2 ¼ hc jc xxi þ ðhc jc iÞ2; (18)

w3 ¼ hc jc xxxi þ hc jc ihc xjc i þ 4hc jc ihc jc xi; (19)

w4 ¼ hc jc xxxxi þ 3hc xjc ihc jc xi þ 3hc jc ihc xjc xi
þ hc jc ihc xxjc i þ 6hc jc ihc jc xxi
þ 5ðhc jc xiÞ2 þ 2ðhc jc iÞ3; (20)

w5 ¼ hc jc xxxxxi þ 4hc jc xihc xxjc i þ 11hc jc xihc xjc xi
þ 6hc xjc ihc jc xxi þ 6hc jc ihc xjc xxi
þ 4hc jc ihc xxjc xi þ hc jc ihc xxxjc i
þ 8hc jc ihc jc xxxi þ 18hc jc xihc jc xxi
þ 6ðhc jc iÞ2hc xjc i þ 16ðhc jc iÞ2hc jc xi; (21)

with the first three invariants having the physical
interpretation of energy, momentum, and Hamiltonian
conservation. Note that the operator hc j�1 acts only on hc j
and should be distributed symmetrically, e.g., hc xjhc j�1�
½hc jc ihc jc xi�¼ 1

2hc xjc ihc jc xiþ 1
2hc jc ihc xjc xi.

The above invariants can be directly calculated in terms
of the coherent density function or the modal functions of
the self-consistent multimode theory for infinite- and
finite-dimensional bra-ket vectors, respectively.
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We will now establish how to express the invariants in
terms of the mutual coherence and Wigner distribution
functions. The latter are often more convenient to use,
since they provide direct information about the overall
degree of coherence of the field. In our bra-ket notation,
the mutual coherence function is given by

Kðx1; x2; zÞ ¼ hc ðx1; zÞjc ðx2; zÞi (22)

and satisfies the evolution equation [10]
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with the intensity Iðx; zÞ ¼ Kðx; x; zÞ.
The Wigner distribution function is obtained from the

mutual coherence function, by transforming to coordinates
x ¼ ðx1 þ x2Þ=2 and � ¼ x1 � x2 and then taking the
Fourier transform with respect to �, viz.,

	ðx;p;zÞ¼ 1
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and satisfies the Wigner-Moyal equation [11]
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where hc jc i ¼ R1
�1 	dp and the sine operator is defined

by its series expansion, with the arrows indicating the
direction of application of the derivatives.

From the definition (22), it follows that the conservation
laws may be expressed in the mutual coherence formalism
using the relation
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In the Wigner formalism, we instead make use of the
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which follows fromZ 1
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by a change of variables and by applying the inverse
Fourier transform concomitant to Eq. (24). For instance,

using Eq. (18), the Hamiltonian invariant for the Wigner-
Moyal equation (25),

R1
�1w2dx, becomesZ 1

�1

�Z 1
�1

p2	dp�
�Z 1
�1

	dp

�
2
�
dx ¼ const: (29)

The invariance of this integral may, remembering the
normalization ��hc jc i ! 2hc jc i, be verified by taking
the appropriate moments of Eq. (25).
In conclusion, we have shown that the nonlinear evolu-

tion equations governing the propagation of partially
coherent waves in noninstantaneous Kerr media are inte-
grable and have an infinite number of conserved quantities.
A recursive relation to generate these conservation laws
has been presented, as well as relations allowing them to be
expressed in either formalism.
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