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Response of the Shockley surface state to an external electrical field:
A density-functional theory study of Cu(111)
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The response of the Cu(111) Shockley surface state to an external electrical field is characterized by combining
a density-functional theory calculation for a slab geometry with an analysis of the Kohn-Sham wave functions.
Our analysis is facilitated by a decoupling of the Kohn-Sham states via a rotation in Hilbert space. We find that
the surface state displays isotropic dispersion, quadratic until the Fermi wave vector but with a significant quartic
contribution beyond. We calculate the shift in energetic position and effective mass of the surface state for an
electrical field perpendicular to the Cu(111) surface; the response is linear over a broad range of field strengths.
We find that charge transfer occurs beyond the outermost copper atoms and that accumulation of electrons
is responsible for a quarter of the screening of the electrical field. This allows us to provide well converged
determinations of the field-induced changes in the surface state for a moderate number of layers in the slab
geometry.
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I. INTRODUCTION

Surface states1–4 are long known to significantly affect the
properties of surfaces in a host of ways. This is particularly
so when the surface state crosses the Fermi level, rendering
it metallic. Such states provide the possibility of low-energy
adsorption and enhancement of transport. On the close-packed
(111) surfaces of noble metals, such states have their minima
at the center of the surface Brillouin zone (�̄) in the bulk L gap,
have minimal angular anisotropy, and are well approximated
by free-electron dispersion.5,6 Since the energy difference
between the Fermi level and the bottom of the band is small, so
is the Fermi wave vector, leading to a Fermi wavelength that
is nearly an order of magnitude larger than that of typical
bulk Fermi wavelengths. Furthermore, confinement to the
surface leads only to slow decay in directions perpendicular
to the surface plane, Fig. 1. Arguably the most dramatic
outcome is the observation of quantum corrals and mirages
on surfaces.7–10 These states can also produce ordered super-
structures of adsorbed species.11–18

A question of both fundamental and practical concern is
the sensitivity of these metallic surface states to perturba-
tions. Moderately strong perturbations such as chemisorption
can easily destroy the surface state19,20 or create overlayer
resonances.21–23 There is also a theoretical prediction that
alkali-overlayer formation can lead to a localization (for
dynamics parallel to the surface) of high-energy electrons in a
resonance state.24 On the other hand, weak perturbations can
allow the state to survive but with an altered dispersion relation
(typically a shifted minimum and a changed curvature).21,25

This offers the exciting possibility to manipulate the Fermi
wavelength and effective mass of the state, if one can
understand in detail how perturbations such as adsorption
affect dispersion.

However, adsorption typically leads to several different
changes to the surface.27 First, there can be charge transfer,
producing an electric field due to the resulting surface dipole.
(There could also be effects from the intrinsic dipole of an

organic adsorbate.) Second, there can be correlated electron
hopping such as characteristic of covalent bonds. Third, the
adsorbate will perturb the tails into the vacuum of the metal-
surface electron density.27 Furthermore, as dipole-producing
adsorbates approach each other, they create a depolarizing
field that decreases the dipole, consistent with experiments
for Na atoms on Cu(001).28 Hence the prospect of predicting
how a particular adsorbate modifies the surface state poses a
considerable challenge.

In this paper, we instead focus on just the first aspect of
the adsorption bond, that due to charge transfer. Specifically,
we look at the effect that a uniform electric field normal to
the surface has on the surface state. This problem also has
advantages over a direct study of a pure ionic bond: the
electric field is uniform, and the screening is well confined
to the direction perpendicular to the substrate. Furthermore,
this simple scenario bears on the more complicated geometry
involved with the effect of strong fields between STM tips and
substrates.29,30

For over four decades,31 with increasing sophistication,
theoreticians have used density-functional theory (DFT) in
various implementations31–39(a) to examine the effect of static
perpendicular electric fields on the electronic properties of
simple metal surfaces (until relatively recently, typically
jellium-like). Trying to understand experiments related to self-
diffusion on Pt(001), Feibelman discussed how such electric
fields can be used to tune diffusion barriers and possibly alter
the dominant mechanism of mass transport.36 Negulyaev et al.
showed that such fields could serve as a switching tool for
magnetic states in atomic-scale nanostructures.38 However, we
know of no DFT study of the effect of perpendicular electric
fields on metallic surface states.39(b)

We further note that understanding the surface response to
a perpendicular electric field and the formation of an image
plane are fundamental building blocks in the study of the van
der Waals interactions.40–46 The image plane is available from
DFT calculations35,47–49 and the handling of screening is a
central element in the vdW-DF method.50–52 Knowledge of the
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FIG. 1. (Color online) Contours of the �̄-point surface-state
density. Yellow (red, blue) surfaces correspond to high (medium,
low) density. The density is largest outside the surface, and lowest in
the planes formed by the atoms. Graphics generated with VESTA.26

image plane position permits an approximation of multipole
effects,41,53 and hence a quantitative study of interactions of,
for example, atoms and molecules at noble-metal surfaces.54–57

The image plane is also important for ensuring transferability
over a range of different binding distances, for example, in
molecular crystals.58–60

Much of our exploration was motivated by a desire to
manipulate the surface states that mediate the interactions
between anthraquinone (AQ) molecules on Cu(111):61 the
giant regular honeycomb formed spontaneously by them are
likely related to such interactions.62 Alternatively, the pores in
the honeycomb can be viewed as an array of two-dimensional
(2D) quantum dots. The stabilization of the pattern may be
due to the population—from the metallic surface state—of
the 2D orbitals of the dots, forming what amounts to closed-
shell, 2D-noble-gas-like quasiatoms.63 By manipulating the
surface state, we hope to tune its Fermi wave vector (and,
concomitantly, its effective mass) and thereby enhance or
destabilize different superlattice structures. A major goal of
this study of surface-state response is to gain the ability
to engineer novel structures on surfaces. Furthermore, the
standing waves within the honeycomb cells, arising from these
surface states, are believed to determine the potentials that
small molecules like CO encounter when adsorbing within the
cells.64 These cells form a set of identical nanostructures with
thermodynamic-like behavior that differs significantly from
that found when these molecules adsorb on large defect-free
flat surfaces.

Most traditional DFT implementations rely on supercells
to model surfaces, with slabs separated by vacuum. However,
since pairs of Shockley surface states on opposite sides of a slab
hybridize, the energy and dispersion are affected, with ensuing
loss of accuracy. Use of very thick slabs can marginalize
the hybridization effects, but such a brute-force approach is
computationally expensive and more susceptible to numerical
noise. In this paper, we present a method which extracts proper,
unhybridized, surface states from standard supercell-DFT
studies for geometries with moderate slab thicknesses. Our
method is based on a simple rotation in the Hilbert space

spanned by the two Kohn-Sham (KS) metallic surface states
that are found in underlying semilocal DFT calculations. We
use our method to characterize the response of the Cu(111)
surface state, but it should also be useful for the study of other,
more complex, material systems.

The KS-rotation method presented here is complementary
to the use of more advanced DFT implementations, such as
the embedding Green function method,65–71 which effectively
model a semi-infinite surface. The embedding method can also
handle an external field.39(a) As our study is based on a tradi-
tional DFT implementation, we do not correctly describe the
image-potential behavior, for which GW calculations72,73 are
normally required. The embedded method allows an explicit
inclusion66–68,71 of an imagelike behavior and can therefore
determine image-potential states in DFT. The inclusion of this
imagelike behavior would likely also improve the accuracy
of the evanescent part of the surface states found in the
slab analysis. In spite of these benefits of an embedding
method, we believe it is also important to continue to seek
simple mechanisms to enhance the accuracy in widely used
(for examples, Refs. 23,74–88) slab-geometry DFT studies of
surface states.

The plan of this paper is as follows. In Sec. II, we discuss our
computational methods, paying particular attention to a simple
yet unambiguous and robust way to accurately decouple the
surface states on the two sides of the slab and to obtaining a
faster convergence as a function of slab thickness. In Sec. III,
we characterize the surface state with no electric field, while
in Sec. IV, we describe the changes in the wavefunctions,
potential profile, and dispersion in the presence of an applied
perpendicular field. Section V discusses the screening of
this electric field, deriving the relative contribution of the
electrons in the surface state. It also makes comparisons with
experimental data and illustrates the decoupling method for
benzene on Cu(111). Finally, Sec. VI offers conclusions about
the impact of these changes in the surface state.

II. COMPUTATIONAL METHODS

The electronic structure is obtained with DFT within
the generalized-gradient approximation (GGA) for exchange-
correlation using the Perdew-Burke-Ernzerhof (PBE)89 ver-
sion. For these calculations, we use the ultrasoft pseudopo-
tential plane-wave code DACAPO,90 with an energy cutoff of
400 eV91 and a k sampling of 16 × 16 × 1. The KS states
required to obtain the surface-state dispersion is calculated
non-self consistently in a post-processing Harris functional
calculation92 in which the wave vectors were sampled with a
grid spacing of 0.01 K , where K is the size of the shortest
in-plane reciprocal-lattice vector.

The Cu(111) surface is modeled as a finite slab in a supercell
since the plane-wave scheme restricts us to using periodic
boundary conditions. The top and bottom copper layers in two
adjacent supercells are separated by 12 Å, thus insuring neg-
ligible cross coupling. The lattice constant of the slab is set to
that of copper, a = 3.65Å, as obtained in a separate bulk PBE
calculation. The electrical fields used in this study only slightly
perturb the electronic structure of the surface, and we find no
significant relaxations of the atoms of the surface slab; the
atoms are therefore frozen in their truncated bulk positions.93 A
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dipole layer in the vacuum region induces an external electrical
field normal to the copper slab.94,95 Both positive and negative
electrical fields are studied in a single calculation.

A. Issues with coupled surface states

The finite slab geometry makes the surface state couple to
both sides of the slab, and therefore challenges the analysis of
surface state response to an external perturbation.

In the upper panel of Fig. 2, the full curves show the sum-
projected density of the KS wavefunctions with surface-state
character, ψKS

i (k) at the �̄ point,

ρKS
i (z) =

∫
dx

∫
dy

∣∣ψKS
i (x,y,z)

∣∣2
, (1)

FIG. 2. (Color online) Issues with surface-state hybridization that
arise because of the finite slab geometry. The upper panel shows
the sum-projected surface-state densities obtained for a six-layer-
wide copper slab. The full lines shows the Kohn-Sham (KS) states
with a surface-state character. The dashed lines show the surface-
localized (SL) states for which we here present a simple but robust
determination (since the SL states provide a more accurate description
of genuine surface-state behavior). The lower panel shows the electric
field variation of the surface state for a 15-layer slab calculation using
the plane-wave code DACAPO. The full line shows the least-squares
fit to decoupled surface-state energies as obtained for the SL states,
cf. Sec. IV B.

for a six-layer thick copper slab in zero external field. These
states couple equally to both sides of the slab, rather than being
localized on one side. They therefore lack the characteristic
exponential decay into the bulk. In a hybridization, or a
tight-binding picture, these KS states can be viewed as linear
combinations of surface-localized (SL) states that hybridize
in a finite slab geometry. For zero electrical field, the KS
states form symmetric and antisymmetric combinations of the
underlying SL states (which provide an accurate description
of the actual surface-state behavior).

The dashed lines in the top panel of Fig. 2 shows the sum-
projected densities, ρSL

i , of these SL states. The SL states
exhibit “good” surface-state properties, like exponential decay
into the bulk and localization at the surface. For sufficiently
large slabs, these SL states are good representations of the
proper surface states, i.e., surface states as they would have
been calculated in an accurate DFT of a semi-infinite bulk
system.

In the lower panel of Fig. 2, the filled (red) circles show, for
different external fields, the KS eigenvalues for the states with
surface-state character, εKS

i . These results were obtained for a
15-layer-thick slab. The jump at E = 0 in the KS calculation of
the minimum surface-state energy, εKS(0), indicates an avoided
crossing, which further supports the picture of a coupled two-
level system. Since the field influences both the properties of
the underlying states and the linear combination making up
the KS states, it is a challenge to deduce the inherent response
of the proper surface states.

B. Decoupling of surface states

This subsection presents our numerically robust method to
construct the (pair of) SL states from the KS surface states of
the slab. The full line in the bottom panel of Fig. 2 shows the
effective Fermi level shifts for the SL result. The continuity of
this result contrasts the singular response which appears in an
analysis based directly on the KS states (shown as red dots).

Our assumption is that the KS surface states arise exclu-
sively from hybridization of the actual SL states; we assume
that these do not couple to bulk states or surface resonances.
In this case, we can for a given k set up a bonding/antibonding
Hamiltonian for this SL two-level system:

H(k) =
(

ε(k) + W (k) �(k)

�∗(k) ε(k) − W (k)

)
. (2)

Here, ε(k) ± W (k) gives the energy of the uncoupled states,
where W is the detuning between the levels and � is the
coupling. In terms of them, the eigenvalues of the KS wave
functions are given by

εKS
1,2 = ε ±

√
W 2 + |�|2 , (3)

which follows from the invariance of TrH and DetH. As
the slab size increases, � → 0 and the eigenvalues of the
decoupled surface states reduce to ε ± W .

The key observation is that the SL state energy ε converges
much faster as the slab size increases than the coupling
parameter � vanishes. The same is generally true of the
detuning parameter W ; even at E = 0 (when the correct
detuning must vanish identically), we find (below) that the
numerical value of W converges fairly well before the
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accumulation of numerical noise eventually destroys this
behavior. Therefore, by constructing H of Eq. (2), we can
characterize the surface-state properties to high accuracy, with
a smaller unit cell than what is required for the KS to decouple
due to asymmetry induced by small-scale numerical effects.

In general, a SU(2) rotation is needed to construct the SL
basis states and H as we seek a linear combination of the
KS wave functions ψi(k) that localizes the state on one side
of the slab through constructive and destructive interference.
However, when we can identify the symmetry point of the unit
cell in the xy plane, we can ensure that both KS states have the
same variation in the complex plane. This is done, for example,
in the present Cu(111) slab study, by setting the KS states real
at this symmetry point via multiplication by a simple phase
factor: ψi → exp(iη)ψi . The transformed KS states must then
have the same complex-phase variation across the unit cell
because the KS states are Bloch functions; they can be written
as ψi(r) = ui(r)eikr, where ui(r) has the same periodicity as
the supercell and can be chosen real.96

With this transformation, the full SU(2) transformation
reduces to an O(2) rotation R in the Hilbert space:(

φ1

φ2

)
=

(
cos θ − sin θ

sin θ cos θ

) (
ψ1

ψ2

)
. (4)

To determine the value of θ , we choose a condition of maximal
localization (MaxLoc), that is, we minimize the sum of the
variances of the generated wave functions

F (θ ) =
∑

i

∣∣〈φi |z2
i |φi〉

∣∣ − ∣∣〈φi |zi |φi〉
∣∣2

. (5)

Such a condition has also been used to construct the
generalized-Wannier functions.97

The matrix transformation that corresponds to this rotation
is H → RHRT = HSL. Thus(

εKS
1 0

0 εKS
2

)

→
(

ε̄KS + 1
2
εKS cos 2θ 1

2
εKS sin 2θ

1
2
εKS sin 2θ ε̄KS − 1

2
εKS cos 2θ

)
. (6)

Here, ε̄KS = (εKS
1 + εKS

2 )/2 and 
εKS = (εKS
1 − εKS

2 )/2. By
comparing to Eq. (3), we identify the SL-hybridization
parameters: ε = ε̄KS, W = (
εKS/2) cos(2θ ), and � =
(
εKS/2) sin(2θ ). We note that � is real because we can here
work with an O(2) rotation.

For perfectly symmetric surfaces, we have θ = π/4, and
the surface-state energy is then the average of the eigenvalues
of the two states. Thus, the full machinery discussed here is
not required. For certain perturbations, like adsorbate systems,
a less elegant solution is to use symmetric adsorbates on
both sides of the slab. Such a brute-force approach has the
drawbacks of increased computational costs and fewer layers
with a bulklike behavior; furthermore, wave functions are not
decoupled. Strong asymmetric perturbations, such as halogen
overlayers, lead to W � � and a natural decoupling of the
states. However, a natural decoupling does not happen for
weak perturbations, like adsorbates bound by van der Waals
interactions98 or for dilute chemisorbed overlayers, where

TABLE I. Convergence of the surface state with slab thickness.
All three columns of energies are in meV. The bold numbers for 15
layers are used for the rest of this paper.

Number of layers εF − ε(0) �(E=0) W (E=0)

6 520 272 0.24
9 464 113 0.38
12 449 50 0.17
15 443 23 0.81
18 443 10 1.34
24 442 2 11.0

� ∼ W , unless a huge number of layers are used, typically
beyond the computational feasibility.

C. Convergence of surface-state properties

Our method to construct the SL states significantly reduces
the number of layers needed to accurately characterize the
surface state; however, the slab still must be thick enough to
describe most of the relatively slow decay into the bulk. We
also confirm that the MaxLoc condition [see Eq. (5)] properly
decouples the two states by comparing with the results for a
24 layer calculation, where decoupling arises numerically as
� → 0.

Table I shows the calculated SL state parameters for
different slab thicknesses at zero electrical field. The Fermi
energy εF relative to ε(0) converges to the sub-meV level
for a 15-layer slab if the decoupling method is used. For
a six-layer slab, the surface-state energy differs from the
converged value by 80 meV, about 20%; we consider it a
minimum slab thickness for an approximate account of the
surface state, which can be useful for studying surface-state
shifts for adsorbates-systems requiring a large supercell in the
in-plane direction.

We find that coupling � decays significantly slower than the
value of εF − ε(0) converges, a fact which as mentioned above
motivates our approach. We note that the value of 272 meV for
six layers will almost deplete one of the two surface-related
KS bands (while driving the other at least partially into the
energy range of bulk states). Nevertheless, the corresponding
result for the effective depth of the surface-state Fermi sea,
εF − ε(0) differs from the converged value by merely 57 meV.
For 15 layers, � reduces to 23 meV, while the εF − ε(0) is
converged to within less than 1 meV.

D. Effects of numerical noise on optimal slab geometry

The nonzero value of the detuning W at zero electrical
field stems purely from numerical noise and grid effects, since
the slab geometry is symmetric. The upper panel of Fig. 4
shows the KS states for different electrical fields. For zero
electrical field, the slight asymmetry of the curves hints of
the nonzero W . For larger fields, the KS states clearly favor
one side of the slab, but even for E = 0.36 V/Å, the wave
functions are localized on both sides of the slab. The inserts
illustrate (purple dot) the coordinate in the 2D space (W,�),
with magnitude (εKS

1 − εKS
2 )/2, constructed using the MaxLoc

condition. The detuning grows as the electrical field increases,
while the coupling remains roughly constant.
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For six layers, the two KS surface-state densities are fully
symmetric as shown in the upper panel of Fig. 2. For thicker
slabs, the coupling reduces, and the surface-state densities
becomes increasingly asymmetric; for 24 layers, we find that
the surface states localize almost exclusively on one side of
the slab, consistent with a detuning five times larger than the
coupling �.

That εKS ≈ ε for 24 layers reflects this finding and the
general expectation that increasing the number of layers must
eventually decouple the KS and ensure an automatic approach
to the more meaningful SL states. Nevertheless, a finite value of
W is required for the states to decouple. For slabs thicker than
15 layers, both the decreasing value of � and the increasing
value of W contribute to the decoupling. As the KS state gets
localized on one side of the slab, the smaller SL coefficient
falls off as ±�/2W . As this increase in W (for E = 0) is
solely an expression of an accumulation of numerical noise
(with the number of atoms and electrons), we conclude that
such brute-force decoupling is not desirable.

We propose instead to use the maximum-localization
approach to identify the genuine surface-state behavior and
avoid such numerical noise. In this study, we use 15 layers, as
it is an optimum between a converged value of ε and minimal
numerical noise; our approach converges the surface-state
energies to meV accuracy.

III. SURFACE STATE DISPERSION
IN ZERO ELECTRICAL FIELD

Our calculations of the surface-state dispersion in zero
electrical field are presented in this section and compared
to experimental99,100 and earlier theoretical studies.15,101 We
find that the surface state is practically isotropic even for
k ≡ |k| > 2.5kF , and that nonparabolicity becomes significant
once k exceeds kF .

Figure 3 shows the surface-state dispersion as a function
of the absolute value of k. The filled (green) circles indicate
the calculated values of ε(k) − εF , which have been sampled
evenly on a kx,ky grid, while the (red) crosses indicate the
energies obtained for ky = 0. That they align to form a
curve shows that the surface state is isotropic, even as far as
∼2.5|kF |. This isotropy is further evidenced by the circular
constant-energy contours displayed in the insert. The full
curve gives the parabolic dispersion, while the dashed includes
non-parabolicity via a quartic term:

ε(k) − ε(0) = h̄2k2

2m
− αk4 + O(k6) , (7)

with parameters obtained as described in the following
paragraph. These curves show that up to about the kF , the
dispersion is well described by a parabolic form, but for larger
wave vectors, nonparabolicity is significant.

The deviation from a parabolic-dispersion behavior has
been observed experimentally and can be understood in terms
of an s-band tight-binding model.102 We expand ε(k) as given
by the standard Hamiltonian and find:

ε(k) − ε(0) ∝ 1 − 1

3
cos(kxa)

− 2

3
cos

(
kxa

2

)
cos

(√
3kya

2

)

FIG. 3. (Color online) Dispersion of the surface state plotted as a
function of |k| for k sampled evenly on a 2D grid. The full (dashed)
curve gives the best-fit second-(fourth-) order polynomial. The dotted
line indicates the Fermi surface. The filled (green) circles, which form
a thick line, indicate the calculated values, while the [red] crosses
indicate those for ky = 0. The insert shows the energy contours as
function of k, with ticks having the same spacing as in the main
figure.

= 1

4
(ka)2 − 1

64
(ka)4

+ 10 + cos(6θ )

23040
(ka)6 + O(k8), (8)

where θ ≡ arctan(ky/kx) and a = 2.58 Å is the nearest-
neighbor distance. Thus the quartic correction is negative
(albeit much smaller than found in the DFT calculation) and
anisotropy does not appear until the k6 term.103

Table II gives deduced surface-state properties and com-
pares them to other studies. In obtaining these values, we
only needed data points obtained for ky = 0, since we have
amply demonstrated the isotropic surface-state dispersion;
this procedure also avoids excessive weighting of large-|k|
values, as the number of 2D grid points grows approximately
linearly with the wave-vector magnitude. Our value for the
effective Fermi level is similar to earlier experimental and
calculated values; it is somewhat smaller than that given
in Ref. 71, which is based on a semi-infinite approach
including an image potential. Our value for the effective
mass is smaller than those of the earlier studies, which is
partly a result of the fitting procedure used to obtain its
value.

A parabolic fit is often used to extract the effective mass
from the dispersion curve; however, the effective mass is
defined by the second-order Taylor expansion of the dispersion
curve, not by an optimal parabolic fit to a curve that may
deviate from parabolicity. To properly extract the terms in the
Taylor expansion with a polynomial fit, we rely only on values
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TABLE II. Properties of the surface state. The value εF − ε(0)
is the difference between the Fermi surface and the minimum of
the surface state ε(0). Also listed are comparisons of our values of
the effective mass, surface-state Fermi wavelength and wave vectors,
m,λF ,kF . Our DFT value for the quartic component of the in-plane
surface state dispersion, α, is compared with the (m dependent)
estimates (h̄a)2/32m ≈ 1.58(me/m)eVÅ

4
given by the expansion (8)

of the tight-binding behavior observed in Ref. 102.

Here Other theory STM ARPES

εF − ε(0)[eV] 0.443 0.42a, 0.40b, 0.526f 0.42c 0.39d

m/me 0.34 0.38a, 0.43b, 0.394f 0.38c 0.44d

λF [Å] 30.2 31.0a 30.0c

kF [Å] 0.208 0.20a 0.21c

α[eVÅ4] 23.1 3.7-4.7e

aReference 15.
bReference 101.
cReference 99.
dReference 100.
eTight binding, Eq. (8).
fReference 71.

fairly close to the �̄ point and, in addition, include higher-order
terms in the fit to minimize their influence on the extraction
of the lower-order ones. It is possible to avoid the influence
of quartic terms on the effective mass with a purely parabolic
fit, but this requires that we restrict the domain to data points
very close to the �̄ point. This has the disadvantage that the
influence of noise is larger. In detail, our approach is as follows:
first, the effective mass m is obtained with least-squares using
a fourth-order polynomial fit for the six smallest k points
(corresponding to 6% of the reciprocal vector), next, we keep
the mass fixed and determine α using a sixth-order polynomial
using all 20 data points.

The correspondence with the data points of Fig. 3 for
small and medium |k| corroborates our procedure, as just
described. If we instead include ten data points and fit to
a purely parabolic dispersion, we find a mass of 0.38me,
closer to that of earlier studies (listed in Table II). Thus,
that our deduced mass is smaller than previously obtained
values relates to our use only of data points close to the �̄

point and our inclusion of higher-order polynomial terms. The
quartic prefactor α compensates somewhat for the smaller
mass, and the Fermi wavelength λF and wave vector kF are
in good agreement with earlier results. That sensitivity to
fitting domain (parabolic fitting) was discussed by Butti et al.71

They note that when comparing with experimental data, it is
important that same procedure is used in both cases. We argue
that, ideally, all parameters should be defined in terms of the
Taylor expansion. When they use a minimal sampling of k
points around the �̄ point, they obtain an effective mass of
0.303me, which is closer to, and even smaller than the mass
we obtain. The importance of making sure that higher-order
terms do influence the extraction of the effective mass is
also reflected in the significant non-parabolic dispersion that
Becker et al.104 found for Ag(111). They extracted the effective
mass by considering only data points collected close to the �̄

point.

IV. SURFACE STATE IN AN EXTERNAL
ELECTRICAL FIELD

The dispersion of the Shockley surface state was charac-
terized in the previous section at zero electrical field. In this
section, we present the results for a finite external electrical
field.

A. Wave functions and potential profile

Figure 1 gives intersections or contours of the variation of
the surface-state density in three dimensions. Fig. 1 confirms

FIG. 4. (Color online) The average potential profile and KS and
SL surface-state densities at the �̄ point for a Cu(111) surface in
an external electrical field E pointing to the left, i.e., inwards to
the surface at the top (at z ≈ 0) of the slab and outwards from the
surface at the bottom (at z ≈ −30 Å). Thus, the force on an electron
is away from the surface at the top of the slab and the minimum
energy ε(0) of this top-surface SL state is lowered, increasing εF −
ε(0). The upper panel shows the KS surface-state densities (full and
dashed) for three different strengths of E. At zero electrical field they
are almost symmetric, while for larger field they almost decouple.
The inserts illustrate the corresponding hybridization parameters. The
lower panel shows the atom positions, filled (yellow) circles, and
the decoupled SL surface states, evanescent oscillatory curves. The
bottom panel also shows, by surfaces of semitransparent grey shading,
the potential profile for the three different strengths of electrical fields.
Field-induced changes in the potential profile are observable only
outside the outermost Cu atoms.
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that the surface state is mostly located between the copper
layers or outside the outermost copper layer. The figure also
shows that, in the in-plane direction, the density is largest close
to the copper atoms.

The upper panel of Fig. 4 shows the sum-projected density
of the KS wave functions at the �̄ point, ρ

KS,(E)
i (z), for

different external electrical fields E. For zero field (top line),
the two wave functions form approximately symmetric and
antisymmetric functions as depicted by the full (green) and
dashed (black) curve, respectively. That the two curves have
almost equal magnitude on the left side, but not on the right,
reflects the presence of numerical noise and grid sensitivities
in the plane-wave DFT calculations.

The lower panel of Fig. 4 shows the sum-projected density
of the SL states at the �̄ point, ρ

SL,(E)
i (z), and the average

potential energy as a function of z. The SL states differ
marginally for different electrical fields; hence, we only
display those for zero electrical field. These states exhibit
oscillatory exponential decay into the bulk and are located
solely on one side (or the other) of the slab, further validating
use of the MaxLoc condition. The filled (yellow) circles
indicate the location of the copper atoms. The first node of the
wave functions coincides with the position of the top copper
layer. The (laterally averaged) potential energy profiles for the
three field strengths are given by surfaces of semitransparent
grey shading; thus, the light, medium, and dark grey areas
indicate energies that are smaller than one, two, or all three
of the potentials. A sharp edge between dark grey and white
indicates that the potentials overlap, for example, within the
slab. At the left side of the slab, the finite electrical fields go
outward from the surface, corresponding to a total reduction
of electrons. The number of surface-state electrons are also
reduced on the left side as the electrical field push the electrons
toward the surface and thereby increases confinement. This
raises the minimum energy ε(0) of the surface state, lowering
εF − ε(0). At the right side, electrons accumulate and so
do the surface state electrons; they experience weakening
confinement, hence a lowering of the energy, which leads to
an increasing value of εF − ε(0).

For large electrical fields, the surface state becomes increas-
ingly unstable, and at some point, depending on the size of the
vacuum region in the unit cell, electrons start accumulating
at the dipole layer, ruining the physical picture of semistable
surface states.

B. Modified dispersion

The external electrical field not only modifies the effective
Fermi level εF of the surface state, but also influences the
surface-state dispersion, expressed here in terms of a shift in
the effective mass. The mass is obtained as described in the
previous section.

Figure 5 shows the calculated values of the surface-state
energy relative to the effective Fermi level (upper panel),
the effective mass (mid panel), and in the lower panel, the
relative shift in the wavelength and the wave vector based on
the shift in Fermi level and effective mass in the parabolic
free-electron gas approximation. It shows that for the largest
plotted electrical field, the wavelength shifts by about 4%. For

FIG. 5. (Color online) Calculated energy at the �̄-point (upper
panel) and mass (middle panel) shift for different external electrical
fields. Here, we take a positive value of the field strength E to imply
that the field E (the force) points away from (towards) the surface.
In terms of the underlying slab calculations, Fig. 4, the positive-E
(negative-E) results characterize the behavior of the SL state at the
left-most (right-most) slab surface. The filled (red) circles [(white)
diamond] gives the calculated values for a 15 (12) layer slab. The
black line gives the least-square fit to the calculated data. In the lower
panel, the relative shift in wavelength (wave vector) is given by the
full (dashed) curve.

the upper and middle panels, the line gives the least-square fit
according to linear relations:

[εF − ε(0)]E = [εF − ε(0)]E=0 + AεE, (9)

m(E)/me = m(0)/me + Am̂E , (10)

where m̂ denotes m/me.
The parameters determined are listed in Table III along with

the shift in the characteristic Fermi wave vector kF (AkF ) and
in the wavelength λF (AλF

).
The range of field strengths E plotted in Fig. 5 are larger

than values that are directly achievable in most experiments
(but smaller than what is regularly achieved in adsorption
studies, as discussed in Sec. V). In particular, in a study of the
Stark shift of the surface state due to measurement by scanning
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TABLE III. Response of the surface state to the external electrical
field, obtained from fitting to the calculated dispersion. The values
Aε,Am̂,AλF

, and AkF
are our results for the field derivatives of

the surface-state Fermi sea level, εF − ε(0), effective mass, Fermi
wavelength, and Fermi wave vector, respectively. The value of Aσ is
our DFT-based determination of the fraction of overall external-field
screening which originates from the surface-state behavior.

Aε[eÅ] −0.146 (±0.007)
Am̂[Å/V] 0.029
AkF

[V−1] −0.025

AλF
[Å

2
V−1] 3.68

Aσ [(VÅ)−1] −4.82 · 10−3

tips rather than photoemission, Berndt’s group30 found a linear
decrease in [εF − ε(0)]E versus E. This is true up to E =
0.055 V/Å, at which there is an energy shift of magnitude
∼13 meV; thereafter, the rate of change increased markedly,
an effect which the authors attributed to the breakdown of the
tunneling regime at small tip-surface separation. We note that
while the experimentally observed breakdown occurs around
0.055 V/Å for Cu(111), it occurs already at 0.008 V/Å for the
more weakly bound Shockley state on Ag(111).

From their graph of energy shift versus field, we extract the
mean slope to be Aε ≈ −0.23 eÅ for Cu(111), comparable to
our computed value in Table III. We speculate that the larger
magnitude in the experiment arises from the additional strain
in lateral directions due to the nonuniform field between the
STM tip and the surface.

V. DISCUSSION

A. Role of the surface state in screening an external field

In a metal, the electrons close to the Fermi level completely
screen an external static electrical field perpendicular to the
surface. The virtually identical potential profile inside the slab,
for −30 < z < 0 Å, in the lower panel of Fig. 4 for different
electrical fields, shows that our DFT calculations account for
this screening.

FIG. 6. (Color online) Charge transfer induced by external electri-
cal field averaged over the in-plane directions. The upper light (cyan)
[dark (black), dashed (orange)] is for E = −0.36 [−0.12,0.24] V/Å.

Figure 6 displays the charge density response to the external
fields. The charge is induced outside the outermost copper
layer, while there are small oscillations in the first two
bulk layers. The response is almost identical, with opposite
prefactor, at the other side of the slab. The short screening
length indicates that the bulk electrons play a major role in
screening the electric field.

To determine the fraction of the screening performed by
the surface state compared to the bulk states, we obtain the
total charge induced on the surface from Gauss’s law and the
charge accumulated in the surface state with its parabolic free-
electron dispersion. Gauss’s law relates the induced charge
on the surface to the electrical field by σ = ε0E. To obtain
the charge accumulation in the surface state, we recall that
2D electron density of states (including spin degeneracy) is
mεF /π [assuming in this paragraph, for notational simplicity,
that ε(0) = 0]. Then the charge density due to the surface
state is σs = −emεF /π at T = 0, which is the appropriate
temperature for comparison with standard DFT calculations.
Since the mass m and the Fermi-level εF change as an external
electrical field is applied, so does the charge of the surface state.
To first order in the electrical field, this shift is given by 
σs =
−
(mεF )e/π = −AσeE/π + O(E2), where Aσ = (mAε +
Am̂εF ). Combining the expressions, we find the fraction of the
electrical field screened by the surface state:


σs

σ
= −eAσ

ε0π
+ O(E) = 0.27. (11)

The surface state therefore plays a significant but not dominant
role in the screening of the electrical field. We note that
the calculated potential profile and induced charge density
curves exhibit minute oscillatory variation for different fields.
This observation, again, accords well with the idea that bulk
electrons perform most of the screening.

That screening arises predominantly from bulk electrons
and has several noteworthy consequences. It supports the
practice of calculating interaction energies due to surface-state
mediated interactions11–13,15,17 based solely on the changes in
the energies of single-particle states, ignoring the electrostatic
term in the full Harris formalism.92 It also suggests that
interactions between closely spaced adsorbates (within a few
lattice spacings of each other) are dominated by the bulk states
rather than the surface states. Based on an STM study, Petersen
et al.105 concluded that the screening of step edges at the
surface is dominated by the surface states on Cu(111) and
Au(111), but they also noted that the screening of defects
slightly below the surface is dominated by bulk electrons. The
important role of the bulk electrons is also reflected in the linear
dispersion of acoustic-surface plasmons on Cu(111).106,107

B. Comparison with experiments

In Table IV, we collect results for adsorption-induced
shifts in εF − ε(0) as well as changes in the effective mass
and the work function when available, for Cu(111) and
Ag(111) to provide information about the kinds of values
measured in mostly recent experiments. We have not included
gold-surface-adsorbate systems because the strong spin-orbit
coupling gives rise to a Bychkov-Rashba splitting.117–119 In
addition, Au(111), in contrast to Cu, Ag, and other fcc (111)
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TABLE IV. Experimental results for alkali adsorbates and electric
fields on the Shockley surface state on Cu and Ag (111). The
ratio of effective to bare electron mass is indicated by m̂. Unless
indicated otherwise, coverages are one saturated overlayer (“1 ML”).
The entries for electric fields, denoted by “E:substrate,” are those
discussed in Sec. IV B, the “adsorbed” values are for the the maximum
fields before the tunneling regime breaks down (not the tabulated30

values for R = 500 M�).

[εF − ε(0)] [meV] m̂

System Clean Adsorbed Clean Adsorbed

� 1
2 ML Li/Cu a,b ... 755 ... ...

0.11–0.15ML Na/Cu c 390 800 ... ...
0.4ML K/Cu d 410 755 0.41 0.36
Cs/Cu a ... ... ... ...
Ar/Cu e 434(2) 376(3) 0.43(1) 0.46(3)
Kr/Cu e 434(2) 358(2) 0.43(1) 0.44(2)
Xe/Cu e 434(2) 291(2) 0.43(1) 0.44(2)
Xe/Cu f 440(10) 310(10+) 0.40(2) 0.42(3)
1
4 ML Na/Cu g ∼340 690 ... ...
C6H6/Cu h 410 240 0.46 0.9
E:Cu i 437(1) 450 ... ...

0.17ML Na/Ag j −65k −260 ... ...
Ar/Ag e 62(2) −1(3) 0.42(1) 0.46(4)
Kr/Ag e 62(2) −08(2) 0.42(1) 0.44(4)
Xe/Ag e 62(2) −52(2) 0.42(1) 0.42(6)
Xe/Ag l 67 −52 ratio = 1.00(15)
E:Ag m 64(1) 71 ... ...

aReference 108 indicates that the surface-state shifts down with Li
adsorption and disappears (into the bulk) before a half monolayer.
bReference 109.
cReference 25.
dReference 21.
eReference 110.
fReference 111.
gReference 112.
hReference 113.
iReference 30.
jReference 114.
kReference 115.
lReference 116.
mReference 29.

surfaces, reconstructs, taking on a herringbone pattern.120,121

We note that is not always possible to fully calibrate the values
in the experiments since precise coverages are rarely given.
Data are typically for a monolayer (1 ML), which refers to
the saturation coverage rather than one adsorbate per substrate
atom. Even if this information were available, there are many
other factors, discussed at the outset, that can contribute to the
shift. This is true especially for nonalkali adsorbates.

Alkali adsorbates invariably lower the surface band, even-
tually dragging it into the bulk continuum, where it becomes
a resonance; often the details are not reported [for example,
for Cs/Cu(111)23]; the associated calculations are problematic
due to the large unit cells needed for fractional coverage
and ill defined order. There have been recent studies, using
two-photon photoemission of all the alkalis on Cu(111)122

and on Ag(111);115 they confirm the downward shift but

offer little additional quantitative information on the coverage
dependence of the shifts. To address this shift quantitatively
with DFT for Na/Cu(111) while keeping a manageable cell
size, Caravati and Trioni123 used a jellium-like model with
one-dimensional Chulkov potential124 and found εF − ε(0) to
be colinear for coverages � = 0, 0.06, and 0.14, of the form
−0.303 − 2.2�, with a slightly smaller negative slope when
� = 0.25 was also included. For noble-gas adsorbates, the
shifts are large, while the increase in effective mass is small,
implying that more than just field effects are involved.

In passing, we discuss a specific complication in decipher-
ing the tabulated numbers: the lateral dipolar interaction. This
effect can influence the field at other sites. Most significantly,
as alkali atoms get close to each other, the direct dipolar
repulsion becomes more important than the indirect, surface-
state-mediated interaction. This happens when the dipole is
large enough to produce a significant shift in the surface state.28

We note that the maximum downward shifts possible for
metallic surface states are approximatively set by the E = 0
value of the minimum surface-state energy εF − εE=0(0), for
example, as measured in Ref. 30 and reported in Table IV (as
the ‘clean’ entry in the “E:substrate” rows). The maximum
possible upward shift in εE �=0(0) is instead approximately
given by the difference between the value of εE=0(0) and the
energy εbulk(L) = 900 meV of the bulk state at the bottom of
the Cu L gap125,126 (since the overlap in energies will convert
the surface state to a surface-state resonance). The maximum
upward shifts of the surface state for Cu can therefore be
estimated by εE=0(0) − εbulk(L) ≈ 460 meV.

When making precise use of the band shifts, one must
take into account the temperature, as discussed in detail for
the (111) faces of the three noble metals by Paniago et al.127

In particular, they show εF − εE=0(0) = −(75 ± 5) meV +
(0.17 meV/K) T for Ag(111). There is a small increase also
in m̂, from 0.43 ± 0.04 at 65 K to 0.45 ± 0.04 at 294 K. For
Cu(111) the increase is comparable, with linear coefficient
(0.18 ± 0.01) meV/K.

Overall, it is noteworthy that shifts far larger than those
reported at the end of Sec. IV B are seen. The adsorption-
induced shifts are indeed larger than the shifts of 50 meV,
which formed the abscissa limits in Fig. 5. Hence the range of
field strengths investigated in our study are physically sensible.

C. Decoupling method for adsorbed molecules

Our study of response to an external field has been aided
by the decoupling method described and tested in Sec. II. This
method can also be used to study shift in surface-state energy
produced by an adsorbed molecule or atom. This requires
that the two KS states corresponding to the SL states do not
hybridize with other bulk or molecular KS states. For systems
with inversion symmetry in the plane (in terms of the basis
vectors), like benzene on Cu(111),98 we only need to decouple
the states using an O(2) rotation.

As a test case, we consider benzene on Cu(111) in a
3×3 periodic unit cell and a six-layer slab. Using DFT with
the vdW-DF2 functional to capture the nonlocal correlation
essential to the binding of this system,52 we determine a
binding separation of 3.5 Å, and a binding energy of 0.48 eV.
Except for the use of vdW-DF2, the details of this calculation
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are the same as in our previously reported calculation with
vdW-DF1.98 After decoupling the two KS states, we find a
coupling of � = 320 meV and a detuning of W = 16 meV.
Since for the adsorbed-molecule case only one of the surfaces
is perturbed, the energy difference between the decoupled
states 2W = 32 meV equals the shift in surface state energy.

In this calculation, the decoupling method enabled us to
extract the shift in surface-state energy in a traditional slab
calculation using far fewer layers than what would be required
for the KS to fully decouple because of the (weakly) broken
symmetry. We have also used the method to study the surface
shift induced by adsorbed anthraquinone chains on Cu(111)
for varying coverages.63

VI. CONCLUSIONS

Using DFT calculations, we have shown that an electric
field perpendicular to a metal surface with a metallic Shockley
surface state linearly shifts the bottom of this state (relative to
the Fermi energy) for physically plausible field strengths. We
have computed the value of the linear proportionality constant,
as well as that associated with the field-induced change in the
curvature of the dispersion relation, that is, in the effective
mass.

The decoupling method presented here should be useful
when studying the response in the surface-state dispersion to a
perturbation that does not destroy the surface-state character.
It is, for example, relevant for a study of the surface response
arising from organic overlayers weakly coupled to the surface
or dilute overlayers of chemisorbed atoms.

More generally, the MaxLoc analysis could be useful for
decoupling states which arise at different spatial locations and
hybridize under the assumption that an infinite time is available
to create the coupling. The characterization of the coupling in

such systems can be used to calculate tunneling rates and
oscillation frequencies.

It is hard to overemphasize the significance of acquiring the
ability to control the Fermi wavelength in order to manipulate
and engineer surface structures determined by interactions
mediated by surface states. With a strong enough field, one
could in principle manipulate channels in a manner reminiscent
of Repp’s resonator128 and so dynamically direct the flow of
an atom on the surface.129

Note added in proof. We thank P. A. Ignatiev for sending
Ref. 130 very recently. Extending their Korringa-Kohn-
Rostoker (KKR) approach, their DFT study did investigate
shifts in the properties of the Shockley state on Cu(111) for
three values of a perpendicular electric field (−0.5, 0.1 and
0.5 V/Å). Their tabulated shifts are rather similar to (but
slightly larger than) those obtained using the linear coefficients
in our Table III, except that their effective mass shift for
−0.5 V/Å is about double the prediction of our linear relation.
Also, their values for the magnitude of the band minimum
relative to the Fermi level, and so kF , at zero field are somewhat
larger than ours. Cf. discussions in Secs. II C, III, and IV B.
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58J. Kleis, E. Schröder, and P. Hyldgaard, Phys. Rev. B 77, 205422
(2008).

59K. Berland and P. Hyldgaard, J. Chem. Phys. 132, 134705 (2010).
60K. Berland, Ø. Borck, and P. Hyldgaard, Comput. Phys. Commun.

182, 1800 (2011).
61G. Pawin, K. L. Wong, K.-Y. Kwon, and L. Bartels, Science 313,

961 (2006).
62K. Kim and T. L. Einstein, Phys. Rev. B 83, 245414 (2011).
63J. Wyrick et al., Nano Lett. 11, 2944 (2011).
64Z. Cheng, M. Luo, J. Wyrick, D. Sun, D. Kim, Y. Zhu, W. Lu,

K. Kim, T. L. Einstein, and L. Bartels, Nano Lett. 10, 3700 (2010).
65J. E. Inglesfield, J. Phys. C 14, 3795 (1981).
66M. Nekovee and J. Inglesfield, Europhys. Lett. 19, 535 (1992).
67L. Szunyogh, B. Újfalussy, P. Weinberger, and J. Kollár, Phys. Rev.

B 49, 2721 (1994).
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