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Abstract: Ultrasensitive detectors based on localized surface plasmon
resonance refractive index sensing are capable of detecting very low
numbers of molecules for biochemical analysis. It is well known that the
sensitivity of such sensors crucially depend on the spatial distribution of
the electromagnetic field around the metal surface. However, the precise
connection between local field enhancement and resonance shift is seldom
discussed. Using the quasistatic approximation, we developed a model that
relates the sensitivity of a nanoplasmonic resonator to the local field in
which the analyte is placed. The model, corroborated by finite-difference
time-domain simulations, may be used to estimate the magnitude of the
shift as a function of the properties of the sensed object – permittivity and
volume – and its location on the surface of the resonator. It requires only
a computation of the resonant field induced by the metal structure and is
therefore suitable for numerical optimization of nanoplasmonic sensors.
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1. Introduction

Plasmonics, that is the properties and applications of surface plasmons in metal structures, has
become one of the most rapidly expanding fields in nanoscience and a cornersone of nanoop-
tics. This development has become possible due to considerable progress in nanofabrication
techniques and computational electromagnetics. However, the most important driver has been
the potential for applications in areas such as the life sciences, photonics and solar energy re-
search. Metal nanostructures exhibit localized surface plasmon resonances (LSPRs) determined
primarily by their shape, size and material composition. But LSPRs are also utterly sensitive
to the presence of nearby dielectric objects, and the optical response of such objects are in
turn strongly affected by the localized electromagnetic field induced by the plasmon charge
oscillation. These effects are the basis for one of the most exciting application opportunities
in plasmonics, i.e. to use the localized plasmons to probe the presence of molecules that re-
side in the vicinity of the metal surface. This can be accomplished through amplification of
the molecular vibrational fingerprint, like in surface-enhanced Raman scattering (SERS) and
surface-enhanced infrared absorption (SEIRA), or by affecting molecular fluorescence proper-
ties. However, the most general approach is to monitor how the localized plasmon resonance
itself changes in the presence of a molecule by measuring the color of the nanostructure [1-7].
This approach, which is essentially analogous to classical thin film surface plasmon resonance
(SPR) refractive index sensing [8], is the focus of the present contribution.

The relation between optical response and the location of a molecular target relative to a
plasmonic nanostructure is well established in the case of surface-enhanced spectroscopies.
The amplitude of a SERS signal, for example, scales roughly as the fourth power of the local
field-enhancement factor, which implies that “hot spots,” such as sharp tips or crevices between
particles, may dominate completely [9]. Indeed, enhancement factors as high as ten orders-of-
magnitude has been realized in single molecule SERS experiments [10-13]. But the position of
an analyte molecule is also expected to affect the response of a LSPR refractive index sensor



[14, 15]. This effect was recently analyzed theoretically by Davis et al., who studied the cou-
pling between a plasmonic nanoparticle and a small dielectric sphere in the quasistatic limit
[16, 17]. Here we present an alternative approach that results in a description of the LSPR shift
in terms of changes in local field intensities due to the presence of the analyte. We begin by de-
scribing the analyzed system in terms of coupled point dipoles to provide a general background.
Next, we describe a model based on the quasistatic approximation that is based on an analysis
of local fields. It allows for estimation of the magnitude of the LSPR shift as a function of the
location of the dielectric analyte and takes into account its material and geometrical size. As a
test case, we assume that the metal resonator and analyte are both spherical in shape. Finally,
we compare and discuss the analytical model in relation to Finite Difference Time Domain
(FDTD) simulations of a gold nanorod and a nanodisk coupled to a small dielectric object.

2. Coupled dipole approximation

The interaction of two objects with dimensions smaller than the wavelength of the illuminating
light may be analyzed within a coupled dipole approximation, which is a self-consistent solu-
tion to a problem of scattering electromagnetic fields by the system. The particles are assumed
to be characterized only by an electric dipole polarization Pi = αi(Ei0 −∑ j 6=i Ai jPj) dependent
on the local electric field coming from the source Ei0 and other dipoles Ai jPj and its polariz-
ability αi. To make our point we drop all vector and matrix indices and look at the following
set of equations for a dipole P1 coupled to a dipole P2:

P1 = α1 (E0 −A12P2) , (1a)
P2 = α2 (E0 −A21P1) , (1b)

where E0 is the extarnal field strength (assumed to be the same for both dipoles) and A12 is the
dipole coupling factor. We are interested in the new mode frequencies of the second particle,
assumed to be metallic, due to its interaction with the first being a dielectric. Substituting Eq.
1a into Eq. 1b we obtain the self-consistent polarizability of the metal object

P2 =
α2 (1−α1A21)

1−α1α2A12A21
E0. (2)

Setting the denominator to zero: 1−α1α2A12A21 = 0 allows us to calculate the mode fre-
quencies of the interacting system. We assume that the polarizability αi = 4πε0r3

i
εi−1
εi+2 , where

i = 1,2, ri is the radius of sphere i and ε0 is the permittivity of free space. Solving for ε2(ω) we
obtain

ε2(ω) =−2+Q
1−Q

, (3)

where Q≡ (4πε0)
2 (r1r2)

3 ε1−1
ε1+2 A2 is a parameter that depends on the mutual couping of the two

dipoles (A12 = A21 = A), their radii and permittivity ε1 of the dielectric. Let us assume that ε2 is
described by a Drude model: ε2 = 1−ω2

p/ω2 ≡ 1−Ω−2, where ωp is the plasma frequency. For
a lone metal sphere (resonance frequency ω0) we have Ω2

0 =
1
3 , while at the shifted frequency

ω1 it is Ω2
1 = Ω2

0(1−Q). The normalized resonance shift due to the interaction is then equal to

∆ω ≡ ω1 −ω0

ω0
'

ω2
1 −ω2

0

2ω2
0

=
1
2

(
Ω2

1

Ω2
0
−1
)
=−1

2
Q. (4)

We see that the resonance peak shift is directly proportional to the coupling strength Q. In
the near-field we can use A ∼ 1/(4πε0d3), where d is the distance between the dipoles. Thus,



for a small analyte (r1) placed on the surface of the metal sphere (r2) we have d ≈ r2 � r1

−1
2

Q ∼−1
2

V1

V2

ε1 −1
ε1 +2

. (5)

From this simple analysis we see, that the expected resonance shift is proportional to the
relative volumes of the analyte and resonator and depends on the polarizability of the analyte.
If we take into account the fact that the dipole coupling terms determine the electric field acting
onto the other dipole (Q∼A2), we see that the magnitude of the shift is proportional to the local
electric field enhancement. Moreover, in the full case A is a tensor, so the dipole orientation with
respect to the external field also influences the observed shift. Comparing this schematic result
to the one obtained by Davis et al. [16] we note the qualitative agreement when neglecting the
field orientation: both models reproduce the volume scaling and the saturation for large ε1. Next,
we will describe a way of calculating the resonance shift based on the local field intensities in
the constituents of the resonant system, which is not limited to spherical geometries.

3. Quasistatic model

Let us consider an arbitrarily shaped metallic object in a dielectric medium illuminated by a
plane wave of frequency ω . The extinction spectrum and resonance frequency ω0 depend on
its size, shape, and material properties as well as those of the surrounding medium. Binding
of an additional object of permittivity different from the surrounding medium to its surface
changes the resonance conditions, what can be observed by a slight shift of the spectrum. In the
quasistatic limit, letting ~E denote the induced field due to an external field ~E0 impinging on the
system, we can let ~E =−~∇Ψ. An induced local field generated by a metal resonator decays to
zero at a surface S far away from the particle [18]. We then have (~∇ ·~D = 0):

0 =−
∮
S

(
Ψ∗~D

)
·d~S =−

∫
V

~∇ ·
(

Ψ∗~D
)

dV =
∫
V

~E∗ ·~DdV = ∑
i

εi

∫
Vi

|Ei|2 dV ≡ ∑
i

εiIi, (6)

where V is a volume enclosed by S and the sum is over the electric field in individual subvol-
umes Vi defined by their respective permittivities εi. In our case they are the metal m, dielectric
analyte d and surrounding medium s. Without an analyte Eq. 6 becomes

εm(ω)Im + εsIs = 0, (7)

which determines the resonance frequency ω0. For a spherical particle Is = 2Im and we retrieve
the well-known condition εm(ω)+ 2εs = 0 for a surface plasmon resonance. When we add a
dielectric object d, the resonance is shifted and broadened by ∆ω , and 7 is modified to

εm(ω ′)I′m + εsI′s′ + εdId = 0, (8)

where ′ indicates changes compared to Eq. 7. To determine the relative resonance shift ∆ω ≡
ω ′−ω0

ω0
, we expand the permittivity εm(ω ′) of the metal object into a Taylor series

εm(ω ′) = εm(ω0)+ω0∆ω
∂εm

∂ω

∣∣∣∣
ω0

+ . . . , (9)

Subtracting Eq. 7 from Eq. 8 and substituting εm(ω ′) into the result we obtain

I. field change in metal object
and change in resonance frequency︷ ︸︸ ︷

εm(ω0)
(
I′m − Im

)
+ω0∆ω

∂εm

∂ω

∣∣∣∣
ω0

I′m+

II. field and volume
change outside metal object︷ ︸︸ ︷
εdId + εs

(
I′s′ − Is

)
= 0. (10)



εm(ω), Vm

εs′ , Vs′

εd , Vd

Fig. 1. Schematic view of a dielectric analyte (εd , Vd) attached to a metal sphere (εm(ω),
Vm) surrounded by a dielectric medium (εs′ , Vs′ ).

Equation 10 from which we can now calculate ∆ω consists of two parts. The first part (I)
depends on the field change inside the metal resonator brought on by the analyte and the second
(II) part depends on the volume and field change in the surrounding medium.

We rewrite Eq. 10 into a form that allows for an explicit estimation of the resonance fre-
quency shift from the electric fields which may be obtained using different methods. The di-
electric particle decreases the outside volume by Vd giving a new surrounding medium volume
Vs′ = Vs −Vd and we can split the secong term of II into two parts. Additionally, we assume,
that the analyte is small compared to the resonator (Vd �Vm), so that the perturbed field in the
resonator is approximated by the field of the unperturbed one I′m ≈ Im, however, this approxi-
mation is used only in the second term of Eq. 10. Rearranging Eq. 10 we then obtain a formula
for the relative frequency shift

∆ω =−∑i(εiIi − ε0
i I0

i )

ω0
∂εm
∂ω

∣∣∣
ω0

Im

, (11)

where the shift is proportional to a sum over spatial integrations of fields in individual sub-
volumes i and I0

i indicates unperturbed (no analyte) fields. Notice that this is a general result,
whereby the shift is related to the change in stored electromagnetic energy in the system as the
analyte is introduced. The real part ℜ{} of ∆ω gives the shift and its imaginary part ℑ{} the
change in width of the large particle resonance.

We will now apply this formula to a simple test case of a gold sphere (radius rm = 30 nm)
with a spherical analyte (rd = 1 nm) limiting the number to three components m, s, and d (see
Fig. 1). The considered gold sphere has maximum extinction at 585 THz and at this frequency
permittivity εm =−3.21+2.91i and its derivative ω0

∂εm
∂ω
∣∣
ω0

= 30.18+22.51i. These values are
calculated from experimental data of Johnson and Christy [19].

In Fig. 2 we plot cross-sections of spatial distributions the numerator of Eq. 11 showing the
magnitude and sign of the contributions for a parallel (β = 0) and perpendicular (β = π/2) field
alignment in Fig. 2a and b, respectively. When β = 0 the analyte is located at the incident side
of the metal sphere on the z-axis, while β = π/2 means that the analyte is on the side where
the resonant field is the strongest. The energy redistribution due to analyte adhesion in the
considered case is the following: the difference of the product of the permittivity and the integral
between the perturbed and unperturbed fields in the metal gives a negative contribution to the
total shift, while in the surrounding medium it has a positive sign. In the dielectric particle the
sign depends on the permittivity of the analyte – in the case presented for εd = 4 the contribution
is positive.

To obtain these cross-sections as well as resonance shift plots in Fig. 2 we take into ac-
count that the analyte is much smaller than the resonator and that the local radius of curva-



Fig. 2. Local values of the sum of integrals in the numerator of Eq. 11 calculated for a
dielectric analyte of εd = 4, rd = 1 nm attached to a gold resonator (εm = −3.21+ 2.91i,
rm = 30 nm) in vacuum (εs = 1) for the local electric field in metal Em (a) parallel and
(b) perpendicular to the surface. The contribution from the metal is negative and causes a
blueshift. The contributions from the surrounding medium and the analyte for εd = 4 are
positive and cause a redshift. The insets in (a) and (b) show the system scheme for β = 0
and β = π/2, respectively, where the dielectric particle is a red circle on the metal resonator
placed in an incident field E0..

ture of the resonator is larger than the dielectric particle size. For a sphere the image factor is
(εm − εs)/(εm + l+1

l εs) and its response at close distances is determined by large l, which then
approaches the planar image factor (εm − εs)/(εm + εs). This allows us to locally model the
gold surface as flat. The analyte is placed in the near-field of the metal resonator and its dipo-
lar response is determined by its polarizability αd ∝ (εd − εs)/(εd +2εs). The induced dipole,
decomposed into parallel and perpendicular components relative to the local metal surface,
changes the local electric field which we calculate in the quasistatic case using the method of
images. The change to the field outside the resonator is generated by the original dipole and a
mirrored one inside the metal, the change inside the metal by the original and an image outside,
and inside the dielectric particle by the image in the metal and the presence of the particle itself.

4. Results and discussion

Figure 3a shows the calculated resonance shift ℜ{∆ω} as a function of the analyte permit-
tivity εd and the angle β with black points. The shift is a monotonic function of permittiv-
ity, because for an increasing εd the dipole moment increases asymptotically due to satura-
tion of the dielectric sphere polarizability (full saturation is not shown here). Figure 3b and
c show the total shift predicted by the model ∆ω (solid blue line) and calculated with FDTD
∆ωFDTD (dashed black line with circles), and individual contributions from the three subvol-
umes (∆ω = ∆ωs′ +∆ωm +∆ωd) for β = 0 and π/2, respectively. We notice, that the model
agrees quite well with the full FDTD calculation, although the latter is a fully-retarded method
and takes into account the radiative components. For small εd the main redshift comes from the
surrounding medium ∆ωs′ and analyte ∆ωd and is reduced by the remaining volume. For large
εd the analyte volume also decreases the redshift. When the field is perpendicular to the surface
instead of parallel, the electric field amplitude, determined by β , increases giving a larger shift.

The angular dependence is, in a first approximation, of the form cos2 β +b| εm
εs
|2 sin2 β , where

b is a parameter determining the relative sensitivity to the presence of an analyte placed in a
parallel or perpendicular electric field with respect to the surface. If the shift is only propor-



Fig. 3. (a) Resonance shift ℜ
{

∆ω
}

as function of εd and β for an analyte of rd = 1 nm
attached to a gold resonator rm = 30 nm in vacuum (εs = 1): black points – calculated
with model, surface – Eq. 12 fitted to data, color scale for surface – residuals. (b)-(c) Total
resonance shift ℜ{∆ω = ∑i=m,d,s′ ∆ω i}, contributions from subvolumes ℜ

{
∆ω i=m,d,s′

}
,

and shift obtained with FDTD ∆ωFDTD for (b) a parallel (β = 0) and (c) perpendicular
(β = π/2) field. Notice the different scales for β = 0 and β = π/2

tional to the intensity of the local field |E|2 determined by the position of the analyte, and by
the permittivity of gold at the resonance frequency ω0, then b = 1 . To estimate b we fit the
following function

a0
εd −1
εd +a1

(
cos2 β +b0

∣∣∣∣εm

εs

∣∣∣∣2 sin2 β

)
, (12)

to the calculated data points. The result of the fitting (a0 = 2.71× 10−6, a1 = 3.98, and b0 =
0.37), as can be seen in Fig. 3a, is presented using a 3D-surface, while the surface’s color scale
shows the residuals of the fit. From the fitting procedure we get b0 ≈ 0.37, which means that
the sensitivity per field unit is larger for the field along the metal surface than perpendicular to
it. This is also confirmed in our FDTD simulations.

Within the assumed model the frequency shift is proportional to the normalized volume
Vd/Vm of the dielectric analyte and is confirmed in Fig. 4, where the largest considered nor-
malized analyte volume corresponds to a radius of 2 nm. The field decays away from the gold
sphere, so the resonance shift increases more slowly than a linear function and will approach
asymptotically a maximum value in a similar manner as observed for gold nanoislands [20].
However, this last observation is beyond this quasistatic approximation as the analyte size
would have to be comparable in size to the metal sphere.

To see how the method performs for commonly encounted sensors, we check how it com-

Fig. 4. Resonance shift ℜ
{

∆ω
}

as function of normalized particle volume Vd/Vm and angle
β calculated for a dielectric particle with εd = 2.



Fig. 5. (a) Gold disk of radius 25 nm, thickness 25 nm, edge curvature 5 nm illuminated by
a plane wave. Blue spheres indicate positions of analyte placement for FDTD calculations.
(b) Resonance shift calculated using FDTD at positions from (a) and interpolated using cu-
bic splines for easier comparison with model calcuated shift. (c) Resonance shift calculated
with the model. The color scale is the same for (b) and (c).

pares with FDTD simulations for predicting resonance shifts for a disk-shaped resonator (Fig.
5a) with the following dimensions: radius 25 nm, thickness 25 nm, edge curvature 5 nm, which
is illuminated by a linearly polarized plane wave. The analyte is modeled as a dielectric sphere
with permittivity εd = 4 and radius of rd = 1 nm and is arranged sequentially in a lattice on
the surface of the disk. We calculate the extinction spectra using 3D-FDTD with nonuniform
meshing equal to 0.5 nm for the gold disk and 0.2 nm for the dielectric analyte. Resonance
shifts, shown in Fig. 5b, are obtained by fitting the data points and extracting the local maxi-
mum of the fitted function. Resonance shift values between the particle placements are obtained
by interpolating with cubic splines. For the disk, the accuaracy of the fit does not depend on
the location of the analyte and is ±0.2×10−3 nm. The electric field distribution for the model
is calculated at resonance (534.7 nm) of a lone disk and is used, in a similar scheme as dis-
cussed for the sphere, to estimate the peak shifts (Fig. 5c). We see, that the agreement is very
good when the analyte is placed far away from the edges of the disk, however, decreases when
moving away from the center. The largest mismatch is observed when the analyte is placed
in the vicinity of the curved edge - the FDTD simulation yields a 1.5× 10−2 nm shift, while
using the model we estimate a 1.0×10−2. The reason behind this is the calculation scheme for
the dipole moments of the analyte and its image – we assume a much larger local curvature
of the surface of the metal resonator than the analyte. This condition is not fulfilled when the
dielectric particle is near the rounded edge. However, a method of calculating electromagnetic
fields created by an electric dipole in the vicinity of a sphere in the quasistatic approximation,
presented by Zurita-Sánchez [21], may be modified to correct the model prediction.

A second comparison of model predicted shifts to FDTD obtained ones is carried out for a
gold rod (radius of caps and rod 20 nm, length 100 nm) with dielectric particles (rd = 1 nm,
εd = 4) arranged at 13 positions along a line as indicated in Fig. 6. The longitudinal dimension
of the rod relative to the resonance wavelength is about four times larger so the quasistatic
condition is not fulfilled as strongly as in the previous case. Thus, there is a larger discrepancy
of the quantitative results obtained via FDTD (simulations and extinction fitting) and model
calculated data. The shifts are schematically indicated by lines following the surface of the rod
where the analyte molecules are placed: the blue solid line represents fits to FDTD obtained
shifts (maximum resonance shift is 3.7× 10−3 nm, ∆ω = 7.4× 10−6) with a 95% confidence
interval shown using the green dashed line; the solid red line indicates model calculated shifts.
Quantitative matching is not as good as in the test case of a sphere, but due to a larger radius of
curvature of the resonator is better than for analytes near the disk edge.

Our approach of calculating the plasmon resonance shift of a metallic resonator due to dielec-



Fig. 6. Gold rod 20 nm in radius with hemispherical caps of 100 nm long with schematically
indicated positions of analyte placement illuminated with a plane wave polarized along the
x axis. The analytes are placed along a line parallel to the incident electric field as indicated
by blue spheres. FDTD calculated/fitted resonance shifts are indicated by the blue line with
0.95 confidence interval (green dashed). The shift calculated using the model is shown by
the red line.

tric particle adhesion can be viewed in light of dipole – image-dipole interaction. An electric
field parallel to the surface induces a parallel dipole moment in the analyte, while its image is
antiparallel. For the electric field perpendicular to the surface, both the dipole and its image
have the same sense. Both arrangements form an attractive system leading to a lower resonance
frequency, but, in the case of the perpendicular field the interaction is weaker and for an outside
field of the same amplitude as for a parallel field produces a smaller shift. However, the larger
field enhancement counteracts this.

5. Conclusions

We have demonstrated a method of estimating the resonance shift of a simple metal object due
to adhesion of a small dielectric analyte within the quasistatic approximation. It requires only a
single, prior calculation of electromagnetic fields surrounding the resonator without the analyte
using a numerical method, while its accuracy depends on the estimation quality of the analyte
polarizability. Using FDTD simulations and the quasistatic model we have demonstrated the
dependence of the plasmon resonance of metallic objects on the location of the added dielectric
analyte. The magnitude of the shift is a function of geometrical and material parameters as well
as position and is consistent with a schematic coupled dipole picture. The sensitivity per electric
field unit in which the analyte is placed is greater when the field is parallel to the metal surface
than for perpendicular alignment. However, due to a large enhancement factor observed for the
latter arrangement shifts in this configurations are greater.
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