
A computational interpretation of parametricity
Jean-Philippe Bernardy Guilhem Moulin

Chalmers University of Technology and University of Gothenburg
email: {bernardy,mouling}@chalmers.se

Abstract—Reynolds’ abstraction theorem has recently been
extended to lambda-calculi with dependent types. In this paper,
we show how this theorem can be internalized. More precisely,
we describe an extension of Pure Type Systems with a special
parametricity rule (with computational content), and prove
fundamental properties such as Church-Rosser’s and strong
normalization. All instances of the abstraction theorem can be
both expressed and proved in the calculus itself. Moreover, one
can apply parametricity to the parametricity rule: parametricity
is itself parametric.

I. INTRODUCTION

In his seminal paper, Reynolds [25] gave formal meaning to
polymorphism, by interpreting types as predicates, in such a
way that all inhabitants of a given type satisfy its interpretation
as a predicate. Crucially, the type of types (∗) is interpreted by
the set of predicates. A simple example is that if a function f
has type ∀a : ∗. a→ a — the type of the polymorphic identity
— then the following proposition holds1

∀a : ∗.∀ȧ : a→ ∗.∀x : a. ȧ x→ ȧ (f a x)

(which implies that f must return exactly its argument).
The above result, abstraction, has proved useful for reasoning

about functional programs [31] . It also has deep theoretical
implications: for example, the induction principle over Church
numerals can be deduced from it [32].

The study of parametricity is typically semantic, including
the seminal work of Reynolds. There, the concern is to construct
a model that captures the polymorphic character of a λ-calculus.
Mairson [16] pioneered a different angle of study, of more
syntactical nature: for each concrete term, a proof term which
shows that it satisfies the relational interpretation of its type is
constructed. That idea has then been used by various authors,
including Abadi et al. [1], Plotkin and Abadi [23] and Wadler
[32]. Bernardy et al. [8] have also shown how terms, types,
their relational interpretation as proofs and propositions can
all be expressed in a single calculus. The calculi where this
is possible must however be rich enough: in particular they
must support dependent types. Systems such as the Calculus of
Constructions [10] or Martin-Löf’s Intuitionistic Type Theory
[17] both satisfy the requirements.

Still, even though we know that all terms of the above
systems satisfy the parametricity condition, and each of these
conditions can be expressed in the same system as the terms
they concern, the very fact that any given term satisfies the
relational interpretation of its type is itself not provable in the

1We use the convention that the variable ȧ is the predicate corresponding
to the type variable a.

system. For example, the parametricity condition arising from
the type ∀a : ∗. a→ a, namely

∀f : (∀a : ∗. a→ a).

∀a : ∗.∀ȧ : a→ ∗.∀x : a. ȧ x→ ȧ (f a x),

is not provable in the Calculus of Constructions.
One would like to be able to rely on parametricity conditions

within proof assistants themselves. Indeed, the correctness of
numerous functional programming techniques relies on para-
metricity. Examples include program transformation [12, 14],
testing [7], semantic program inversion [29] and generic
programming [30]. Proof assistants based on type theory can
already describe these techniques, and it would be useful to
take advantage of parametricity to mechanize their proofs.

We are not the first to recognize the need for parametricity:
it is for example a recurring topic in the field of mechanized
metatheory, where precise encoding of variable bindings often
makes use of polymorphism. For example, Pouillard [24]
describes the following representation for terms, using the
AGDA [20] proof assistant:

data Term (V : Set) : Set where

var : V → TermV
app : TermV → TermV → TermV
abs : (MaybeV → TermV)→ TermV

with the intent that closed terms should quantify universally
over V . One can argue that terms defined as above must
be well-scoped as follows: because V is an abstract type
variable, the only way to obtain a type-correct argument to
the var constructor is from the higher-order binding in the abs
constructor. Pouillard formalizes the above argument within
AGDA, using logical relations as defined by Bernardy et al.
[8]. Only the parametricity axiom is missing to establish that
all terms are well-scoped. Chlipala [9] and Atkey et al. [3]
encounter the same type of situation.

Another application of parametricity is a new kind of meta-
programming. Indeed, via the Curry-Howard isomorphism,
proofs can be interpreted as programs, and in particular the
proof that a term is parametric can be a useful program in its
own right. Bernardy [5, p. 82] shows for example how to derive
the vectors of length n from lists with a (modified) version of
parametricity. Not only the type is derived, but operations on
lists are transformed to their counterpart on vectors.

In this paper, we address the lack of support for parametricity
in logical frameworks. Technically, we propose to extend
the pure type systems (PTSs) to make all the parametricity

propositions provable internally. The aim is to pave the way
for native support of parametricity in tools based on dependent
types, such as AGDA or COQ [28]. The challenge is not
to merely postulate the axiom and check its consistency
with the rest of the system: because we want to retain the
constructive character of these proof assistants, we must provide
a computation rule for parametricity. This computational aspect
is not only philosophically satisfying, it enables the usage of the
parametricity as a meta-programming tool, as outlined above.

Furthermore, the new construction can itself be given a
parametric interpretation, which preserves the abstraction theo-
rem (in terms of itself). That is, in our calculus, parametricity
is parametric. As we shall explain, to support this form of
self-applicability, our design uses quantification over multi-
dimensional objects. Beside parametricity, the use of multiple
dimensions is a characteristic feature of our calculus.

Our technical contributions are as follows:
• We describe a dependently-typed λ-calculus with inter-

nalized parametricity. The calculus is summarized in
definitions 5, 6, and 3; And motivated in Sec. II.

• We prove that it satisfies typical properties of a well-
behaved λ-calculus with types. In particular, we prove
the Church-Rosser property, subject reduction. We also
prove strong normalization relatively to the corresponding
calculus without parametricity, by translation into that
calculus.

• An implementation of a type-checker for the calculus is
made available for experimentation.

II. DESIGN, STEP BY STEP

In this section we describe and motivate our design step by
step, starting from pure type systems.

A. Pure type systems, and our notation

We assume familiarity with pure type systems (PTSs), but
we give a brief reminder in the following paragraphs, as well
as an introduction to our notation. Readers are referred to
Barendregt [4] for details.

PTSs are a family of λ-calculi, parameterized by a set of
sorts S, a set of axioms A ⊆ S × S and set of rules R ⊆
S ×S ×S . The various syntactic forms of quantifications (and
corresponding abstraction and application) are syntactically
unified, and one needs to inspect sorts to identify which form
is meant. The axioms A give the typing rules for sorts, and R
determines which forms of quantification exist in the system.
Many systems (e.g., the Calculus of Constructions or System
F) can be cast into the framework of PTSs. The syntax for
PTS terms is the following:

Term 3 A, . . . , U = s sort
| x variable
| AB application
| λx : A.B abstraction
| ∀x : A.B product

The product ∀x : A.B may be also written A → B when x
does not occur free in B. In the rest of the paper we assume

a given PTS specification (S,A,R). We name the calculus
arising from that specification O.

The major part of the paper is devoted to the description and
justification of another calculus, here called P , parameterized
over the same specification (S,A,R), which extends O and
contains our special construction for parametricity. The syntax
and typing rules for P are given in definitions 5, 6, and 3.

B. Logical relations, from PTS to PTS

In this section we recall the relational interpretation of terms
and types of the PTS O into another PTS, here called JOK. The
material of this section is essentially the same as in Bernardy
et al. [8] and Bernardy and Lasson [6].

In any PTS, types and terms can be interpreted as relations
and proofs that the terms satisfy the relations. Each type can be
interpreted as a predicate that its inhabitants satisfy; And each
term can be turned into a proof that it satisfies the predicate
of its type. Usual presentations of parametricity use binary
relations, but for simplicity of notation we present here a unary
version. The generalization to arbitrary arity is straightforward,
and we refer the readers to [6] for details.

In the following we define what it means for a program C
to satisfy the predicate generated by a type T (the proposition
C ∈ JT K); and the translation from a program C of type T
to a proof JCK that C satisfies the predicate. A property of
the translation is that whenever x is free in T , there is another
free variable ẋ in JT K, which witnesses that x satisfies the
parametricity condition of T (ẋ : x ∈ JT K). This means that
the translation extends contexts, as follows:

J−K = −
JΓ, x : AK = JΓK, x : A, ẋ : x ∈ JAK

It is important to notice that this definition assumes a global
renaming from each variable x to a fresh variable ẋ. (The
renaming will be made local in further sections.)

The relational interpretation of a type T to a proposition
C ∈ JT K, defined as a syntactic translation from terms to terms
by structural induction on T , as follows.
• Because types in a PTS are abstract (there is no pattern

matching on types), any predicate over C can be used to
witness that C satisfies the relational interpretation of a
sort s.

C ∈ JsK = C → s

• If the type is a product (∀x : A.B), then C is a function,
and it satisfies the relational interpretation of its type iff
it maps related inputs to related outputs.

C ∈ J∀x : A.BK = ∀x : A.∀ẋ : x ∈ JAK. (C x) ∈ JBK

• For any other syntactic form for a type T of sort s, (which,
if it is well-typed, may be a variable or an application), T
is interpreted as a predicate (JT K : T → s), and to check
that C satisfies it, one can use application.

C ∈ JT K = JT K C

There remains to give the translation from a term C to a proof
term JCK, also defined by structural induction on the term C.
• The translation of a variable is done by looking up the

corresponding parametric witness in the context.

JxK = ẋ

• The case for abstraction adds a witness that the input
satisfies the relational interpretation of its type and returns
the relational interpretation of the body, mirroring the
interpretation of product:

Jλx : A.BK = λx : A. λẋ : x ∈ JAK. JBK

• The application follows the same pattern: the function is
passed a witness that the argument satisfies the interpre-
tation of its type.

JABK = JAKB JBK

• If the term has another syntactic form, then it is a type (T),
thus we can use λ-abstraction to create a predicate and
check that the abstracted variable z satisfies the relational
interpretation of the type in the body (z ∈ JT K).

JT K = λz : T . z ∈ JT K

At this point the definition might appear circular; but in
fact the form · ∈ JT K invokes JT K only when T is an
application, which is processed structurally by J·K.

Bernardy and Lasson [6] prove the following theorem:

Theorem 1 (Abstraction). If Γ `O A : B : s, then

JΓK `JOK JAK : (A ∈ JBK) : s

where JOK is a PTS computed from O Furthermore, if O is
consistent, then so is the JOK.

Proof: By induction on the derivation.
A direct reading of the above result is as a typing judgement

about translated terms: if A has type B, then JAK has type
A ∈ JBK. However, it can also be understood as an abstraction
theorem for O: if a program A has type B in Γ, then A satisfies
the relational interpretation of its type (A ∈ JBK). For arity
2, JΓK contains two related environments (and witnesses that
they are properly related), and JAK is a proof that the two
possible interpretations of A (by picking variables out of each
environment in JΓK) are related.

In general, the PTS JOK, where parametricity conditions are
expressed, is more general than the source system O. However,
for rich enough systems, such as the calculus of constructions,
they are equivalent (see [8, 6] for the conditions where this
occurs).

C. Aim and example

Let us assume a PTS Q, such that Q is equivalent to JQK.
Because both types and their parametricity conditions can be
expressed in Q, one can hope that for every term A of type
B, the user of the system can get a witness JAK that it is
parametric (A ∈ JBK). Even though this hope is fulfilled for

closed terms, we run out of luck for open terms, because the
context where JAK is meaningful is “bigger” than that where
A is: for each free variable x : A in Γ, we need a variable
ẋ : x ∈ JAK in JΓK. In other words, from Γ `Q A : B we have
JΓK `Q JAK : A ∈ JBK, but we really need Γ `Q JAK : A ∈
JBK. Indeed, we do not want to add an explicit assumption
that every variable is bound to a parametric value. The aim
of this paper is to find a system P such that the following
proposition is verified.

Proposition 1 (Internal parametricity).

Γ `P A : B ⇒ Γ `P JAK : A ∈ JBK

In that case, for any term A, users of P can invoke the fact
that A is parametric, by writing JAK.

Example 1. For example, further assuming that P embeds
the Calculus of Constructions, we can prove that any function
of type ∀a : ∗. a → a is an identity, as we hinted at in the
introduction. The formulation of the theorem within P and its
proof term are as follows.

identities : ∀f : (∀a : ∗. a→ a).∀a : ∗.∀x : a.Eq a (f a x)x

identities = λf.λa.λx.JfK a (Eq a x)x (refl a x)

where Eq stands for Leibniz equality. (The type of JfK is
∀a : ∗.∀ȧ : a→ ∗.∀x : a. ȧ x→ ȧ (f a x).)

If identities is used on a concrete identity function, say
i = λa : ∗. λx : a. x, then f a x reduces to x, and the theorem
specializes to reflexivity of equality:

identities i : ∀a : ∗.∀x : a.Eq a xx

after reduction the proof no longer mentions J·K:

identities i

→β λa.λx.JfK[f 7→ λa : ∗. λx : a. x] a (Eq a x)x (refl a x)

= λa.λx.Jλa : ∗. λx : a. xK a (Eq a x)x (refl a x)

= λa.λx.(λa.λȧ.λx.λẋ.ẋ) a (Eq a x)x (refl a x)

→β λa.λx.refl a x

D. Internalization

We have seen that the abstraction theorem (Th. 1) for PTSs
gives us something very close to Prop. 1, except that for each
free variable x : A in Γ, we need an explicit witness that x is
parametric (ẋ : x ∈ JAK) in the environment.

However, we know that every closed term is parametric.
Therefore, ultimately, we know that for each possible concrete
term a that can be substituted for a free variable x, it is possible
to construct a concrete term JaK to substitute for ẋ. This means
that the witness of parametricity for x does not need to be
given explicitly (if x is bound). Therefore we allow to access
such a witness via the new syntactic form ddxee. This intuition
justifies the addition of the substitution rule

ddxee[x 7→ a] = JaK

as well as the following typing rule, expressing that if x is
found in the context, then it is valid to use ddxee, which is the
witness that x satisfies the parametricity condition of its type.

Γ ` A : s

Γ, x : A ` ddxee : x ∈ JAK

At the same time, we must amend the parametric interpretation
to remember which variables are assigned an explicit witness,
and which variables must wait for a concrete term. We write
the list of variables given an explicit witness as an index to
J·K. For example, abstraction is translated as follows:

Jλx : A.BKξ = λx : A. λẋ : x ∈ JAKξ. JBKξ,x
and other cases are modified accordingly. In particular, the
interpretation of variables becomes2:

JxKξ = ẋ if x ∈ ξ
JxKξ = ddxee if x /∈ ξ

(From here on, we may omit the index JAK to mean JAK∅.)
The above construction solves the issue of context extension.

That is, every term A of a PTS Q can be proven parametric by
using JAK without extending the context where A is typeable.
Another aspect of the result is that, assuming parametricity on
variables, we have parametricity for all terms. This means that,
in a practical language featuring parametricity, the parametric
construction can be used on any term, but in normal forms dd·ee
only appears on variables, maybe in a nested way.

Unfortunately, Prop. 1 does not quite hold at this stage,
because there is an issue in applying abstraction to the new
dd·ee construct, as we show on an example in the next section.

E. Parametricity of parametricity

The fact that all values are parametric is also captured by
the following theorem (inside the calculus):

parametricity : ∀A : ∗.∀(a : A). a ∈ JAK
parametricity = λA. λa : A. ddaee

Since all terms are assumed parametric, in particular it should
be possible to apply J·K to the above term. For some closed
type A, consider the term Jparametricity AK. It is convertible
to λx : A. λẋ : x ∈ JAK. JJxKK{x}.

So far, we have not specified how to reduce the subterm
JJxKK{x} (where x is a free variable). Indeed, it is actually not
possible to substitute x for a value in it, because x also appears
as an index of J·K, and only variables can appear there (not
arbitrary terms). This means that JJxKK{x} is not an acceptable
normal form: it must reduce to something else. A perhaps
natural idea is to modify the reduction rules in such a way
as to allow the following reduction, which exchanges the two
occurrences of the parametric interpretation:

JJxKK{x} −→ JJxK{x}K.

2Careful readers might worry that we discard the index in the second case.
An informal justification is that if x has no explicit witness, then the free
variables of its type do not either. Therefore, types are preserved when doing
the substitution.

In that case the expression further reduces to ddẋee, which is
a proper normal form. Unfortunately, this reduction does not
preserve types. This can be checked by assuming x : A, and
by computing the types of the expression before and after
reduction. By Prop. 1 we have JxK : JAK x. By Abstraction
(giving an explicit parametric witness for x), we get

JJxKK{x} : JJAK xK{x} JxK

: JJAKK{x} x JxK{x} JxK

: JJAKKx JxK{x} JxK

: JJAKKx ẋ JxK

On the other hand, by Abstraction we have JxK{x} : JAK x,
and by application of Prop. 1, we get

JJxK{x}K : JJAK xK JxK{x}
: JJAKK x JxK JxK{x}
: JJAKK x JxK ẋ

That is, in the above example, the reduction rule suggested
above has the effect to swap the second and third arguments to
JJAKK in the type, which means that subject reduction would
not hold if we were to have the above, naive rule.

However, one observes that, for a closed type A, the relation
JJAKK x is symmetric: a proof of JJAKK xB C is logically
equivalent to a proof of JJAKK xC B. Thus the swapping
observed above is harmless, and it is suffices to deal with
it in a technical fashion.

Example 2. The relation JJ(a : ∗)→ a→ aKK f is symmetric
for any f .

In the light of this observation, we introduce a special-
purpose operator (pronounced exchange) · ‡π , which applies a
permutation to the arguments of relations, and which permutes
their types in the same way.

Γ ` A : B

Γ ` A ‡π : B ‡π

Thanks to this operation we can now have a reduction relation
that preserves types in the above situation:

JJxKK{x} −→ JJxK{x}K ‡
(1,2) .

Supporting this operation requires deep changes in the syntax,
exposed in the next section.

F. A syntax for hypercubes

In order to support the swapping operation, we need to
indicate the role of each of the arguments to the relations
explicitly, in the syntax. That is, the type of JJxKK{x} should
be written

JJAKK•
(
x ẋ

JxK ·

)
.

Then, we can arrange to have the following:(
JJAKK•

(
x ẋ

JxK ·

))
‡(1,2) =β JJAKK•

(
x JxK
ẋ ·

)

In general, we need to remember the grouping of arguments
when applying the relational interpretation. Essentially, one
iteration of the relational interpretation transforms an applica-
tion of an argument into application of two arguments. After
a second iteration, there will be four arguments, and 2n after
n iterations. We must change the syntax of the application to
make these 2n arguments appear grouped together. Abstraction
and product follow the same pattern as application. Hence, we
can arrange our bindings as oriented n-cubes in general. Using
overbar to denote cube meta-variables, the syntax becomes the
following:

Term = AB̄
| λx̄ : Ā. B
| ∀x̄ : Ā. B
. . .

A binding x̄ : B̄ introduces 2n variables xi, where i is any
bit-vector of size n, and n is the dimension of B̄. Consider
the binding x̄ : B̄. If B̄ has dimension zero, it stands for a
single binding x : B. If it has dimension 1, it contains a type
B0, and a predicate B1 over B0. Abusing matrix notation, one
could write

x̄ :

(
B0

B1

)
'
(

x0 : B0

x1 : B1 x0

)
At dimension two, the cube B̄ contains a type B00, two
predicates B01 and B10 over B00, and a relation B11, between
B00, B10 x00, and B01 x00.

x̄ :

(
B00 B01

B10 B11

)
'
(

x00 : B00 x01 : B01 x00

x10 : B10 x00 x11 : B11 x00 x01 x10

)
We furthermore need a special syntax for the introduction,
elimination and formation of relations, which correspond to
application, abstraction and quantification over incomplete
cubes (those that lack an element at index 1...1). Such a cube
is found for example in the type of x11 above. Using a check
to denote incomplete cube meta-variables:

Term = A•B̌
| λ•x̌ : Ǎ. B

| Ǎ
•→ B

. . .

Using this syntax, we can finally write the type of x11 in

the form we need: B11•

(
x00 x01

x10 ·

)
. The type of B11 is(

B00 B01

B10 ·

)
•→ s. For a cube of arbitrary dimension, x1...1 :

B1...1•(x̄//1...1) and Bi : (B̄//i)
•→ s, where B̄//1...1 denotes

the cube B̄ with the top vertex removed. Further generalizing,
xi is a witness that the sub-cube found by removing all the
dimensions d such that id = 0 satisfies the relation Bi:

xi : Bi•(x̄//i)

where B̄//i is the cube obtained by discarding the elements
of the cube B̄ for each dimension d where id = 0, and then
removing the top vertex.

B̄//i =
[
j 7→ Bj&i

⌋||i||
j∈2||i||−1

where ||i|| =
∑
d id and

j&(0i) = 0(j&i)
(bj)&(1i) = b(j&i)

Bi is then a relation over corresponding sub-cube of B̄,
which is written formally:

Bi : (B̄//i)
•→ s

G. The interpretation of hypercubes

Having given the new syntax of terms, we can express the
relational interpretation using this new syntax. The interpre-
tation of a cube increases its dimension; to each element is
associated its interpretation:

JĀKξ =

[
0i 7→ {Ai}ξ
1i 7→ JAiKξ

]dim Ā+1

i∈2dim Ā

where {A}ξ = A[xi 7→ x0i,∀x ∈ ξ] undoes the renaming
from i to 0i performed above; However, we will freely omit
this detail from here on, and ignore the leading 0’s of our
bit-vectors, identifying 0i with i.

If a binding x̄ has been extended by the interpretation, a
variable xi is then interpreted as x1i.

JxiKξ,x = x1i

The interpretation of terms mentioning full cubes (of size 2n

for some n) is the following:

JAB̄Kξ = JAKξ JB̄Kξ
Jλx̄ : Ā. BKξ = λx̄ : JĀKξ. JBKξ,x

C ∈ J∀x̄ : Ā. BKξ = ∀x̄ : JĀKξ. (C (x̄/01...1)) ∈ JBKξ,x
The interpretation of the cubes of size 2n−1 used for relations
requires some care. Because the index 1...1 is missing in
such a cube, applying the same method as for full cubes
leaves two elements missing, at indices 1...1 and 01...1. The
former is supposed to be missing (because the resulting cube
is also incomplete), but the latter is dependent on the context.
Hence we introduce the following notation for interpretation
of incomplete cubes where the “missing element” is explicitly
specified to be B:

(JǍKξ ⊕B) =

 0i 7→ {Ai}ξ
1i 7→ JAiKξ
01...1 7→ B

dim Ǎ+1

i∈2dim Ǎ−1

The parametric interpretation of the special forms for relation
formation, membership and product are as follows.

C ∈ JǍ •→ sKξ = (JǍKξ ⊕ C)
•→ s

C ∈ JA•B̌Kξ = JAKξ•(JB̌Kξ ⊕ C)

Jλ•x̌ : Ǎ. BKξ = λ•x̌ : (JǍKξ ⊕ (λ•x̌ : Ǎ. B)). x01...1 ∈ JBKξ,x
They are a straightforward consequence of the usual parametric
interpretation and our choice of grouping arguments in cubes.
Readers familiar with realizability interpretations (in the
style for example of [21]) will notice a similarity here: the
interpretation of a function space adds a quantification; and
the other forms behave accordingly. Note that the form A•B̌
is always a type, and therefore we interpret it as such.

Example 3 (Repeated application of J·K).

Jparametricity AK = λā : J(A)K. dda1ee ‡(01)

where ā : J(A)K can be understood as
(
a0

a1

)
:

(
A

a0 ∈ JAK

)
.

H. Exchanging dimensions

Given the above definition of cubes, it is straightforward to
define an operation that applies an arbitrary permutation of
its dimensions. For dimension n = 0 or n = 1, there is no
non-trivial permutation. In the case of a square (n = 2), there
is only one permutation, which is a simple swapping of the
elements at indices 01 and 10. For higher dimensions (n ≥ 3),
the elements of the cube are multidimensional themselves (the
dimension of an element at index i is ||i||). Thus, one must
take care to perform the exchange properly for each element.
For instance, performing an exchange of dimensions 1 and 2 in
a cube x̄ for n = 3 involves exchanging dimensions 0 and 1 of
the element x011. Indeed, exchanging the dimensions 1 and 2
in the cube has the effect to exchange dimensions in the square
occupied by x011; so an exchange has to be performed on x011

to restore the cube structure. Geometrically, exchanging the
dimensions as above corresponds to twisting the cube: two
faces are swapped, and another is twisted. The situation is
shown graphically in the following picture.

x000 x001

x010 x011

x100 x101

x110 x111

=

x000 x010

x001 x011 ‡(01)

x100 x110

x101 x111 ‡(12)

In general, applying a permutation π on the dimensions of a
cube C̄ is done as follows:

Definition 1 (Cube exchange).

C̄ ‡π =
[
i 7→ Cπ(i) ‡π/i

]dim C̄

i∈2dim C̄

Where π/i stands for the permutation π restricted to the
dimensions d where id = 1.
Incomplete cubes are permuted in the same way (simply
omitting the top vertex).

Definition 2. If π is a permutation {d 7→ xd},
π/i = canon{d 7→ xd | id = 1}, where canon maps the
domain and co-domain of the function {d 7→ xd | id = 1} to
the set {0..||i|| − 1}, preserving the order.

Example 4. If π = {0 7→ 0, 1 7→ 2, 2 7→ 1} swaps dimensions

1 and 2, we have
i {d 7→ π(d) | id = 1} π/i

001 {2 7→ 1} {0 7→ 0}
010 {1 7→ 2} {0 7→ 0}
100 {0 7→ 0} {0 7→ 0}
011 {1 7→ 2, 2 7→ 1} {0 7→ 1, 1 7→ 0}
101 {0 7→ 0, 2 7→ 1} {0 7→ 0, 1 7→ 1}
110 {0 7→ 0, 1 7→ 2} {0 7→ 0, 1 7→ 1}

Applying a permutation to terms is then a matter of
permuting all the cubes encountered:

(AB̄) ‡πξ = A ‡πξ B̄ ‡
π
ξ

(λx̄ : Ā. B) ‡πξ = λx̄ : Ā ‡πξ . B[x̄ 7→ x̄ ‡π] ‡πξ,x
(∀x̄ : Ā. B) ‡πξ = ∀x̄ : Ā ‡πξ . B[x̄ 7→ x̄ ‡π] ‡πξ,x

(and similarly for the incomplete cubes). There remains to
explain the interaction with the special constructs, J·K and · ‡·
itself. We do so by listing four laws which hold in our calculus.

The first law is not surprising: the composition of exchanges
is the exchange of the composition.

A ‡ρ ‡π =β A ‡ρ◦π (1)

Regarding the interactions between J·K and · ‡π , recall first that
the relational interpretation adds one dimension to cubes. By
convention, the dimension added by J·K is at index 0, and all
other dimensions are shifted by one. Therefore, the relational
interpretation of an exchange merely lifts the exchange out,
and shifts indices by ones in its permutation, leaving dimension
0 intact.

JA ‡(x1 x2···xn)K =β JAK ‡(x1+1 x2+1···xn+1) (2)

The law that motivates the introduction of exchanges is the
following:

JJAKK
ξ

=β JJAKξK ‡
(01) (3)

This law can also be explained by the convention that J·K inserts
always dimension 0. By commuting the uses of parametricity,
dimensions are be swapped, and the exchange operator restores
the order.

Lastly, one can also simplify exchanges in the presence of
symmetric terms. We know that a term JAKn is symmetric
in its n first dimensions. Thus, applying a permutation that
touches only dimensions 0..n− 1 to such a term has no effect.
Formally, we have:

JAKn ‡(x1 x2···xm) =β JAKn if ∀i ∈ 1..m, xi < n (4)

We have seen before that it suffices to provide parametricity
only for variables, and that the construct J·K essentially acts
as a “macro” on other constructs. The situation is not changed
in the presence of dimension exchanges: (2) explains how to
compute the parametricity witness of an exchange. For the · ‡π
construct, the situation is analogous: it suffices to provide the
construct for variables, perhaps themselves enclosed by dd·ee.
The reason is that the above laws give a way to compute the
exchange for any term which is not a parametricity witness
(The result is given in Def. 4). When we want to be explicit
about exchange being the syntactic construct, we write simply

x †π . The syntax fragment for parametricity and exchanges is
as follows.
Var 3 x, y, z
Param 3 x ::= x variable

| ddxee parametric witness
Term 3 a, . . . , u ::= x †π permutation of dimensions

| . . .

I. Dimension checks
If a permutation acts on dimensions 0 to n− 1, every cube

it is applied to must exhibit at least n dimensions. So far we
have not discussed this restriction, which is the final feature
of the system to present. We choose to annotate sorts with the
dimension of the type which inhabits it. The sort s at dimension
n is written sn. Hence, we can capture the restriction in the
exchange rule.

Γ ` A : B Γ ` A : sn
dim(π) ≤ n

Γ ` A ‡π : B ‡π

If a type inhabits a sort of dimension n, all the quantifications
found inside the type must at least be over cubes of dimension
n. This is realized in the product rule as follows:

Γ ` Ā : sn1 Γ, x̄ : Ā ` B : sm2

Γ ` (∀x̄ : Ā. B) : smun3

PRODUCT (s1, s2, s3) ∈ R
Similarly, relations found in the type must be over cubes of
dimension n.

J. Our calculus
The full definition of system P , parameterized on a PTS

specification (S,A,R), is given in figures 1 and 2. For our
system, the proof of parametricity (Prop. 1) goes through even
for the case of the parametricity rule itself. The proof follows
the structure of the abstraction theorem, with the difference
that the START rule is translated to PARAM when an explicit
witness is not available, and PARAM is translated to PARAM +
EXCHANGE . (Full proofs are found in the appendix.) We have
proved confluence, subject reduction, and strong normalization
for our calculus. Since parametricity acts as a typing rule for
J·K, subject reduction for our calculus stems directly from it.
Strong normalization is proved by modeling the system in the
PTS without parametricity. This model is done by introducing
explicit witnesses of parametricity for all variables. Details of
the proofs of these theorems are delayed until the appendix.

The syntactic changes made to the system require theorems
to be adapted accordingly. In the case of Example 1,
(proving that any function of type ∀a : ∗. a → a is an
identity), the definition of Equality must be amended
to make it inhabit ∗1. This mostly involves augmenting
the dimension of cubes by adding unit types as indices:

Eq : ∀a : ∗. a→
(
a
·

)
•→ ∗1

Eq = λa : ∗. λx : A. λ
•
(
y
·

)
:

(
a
·

)
. ∀
(

–
P

)
:

 >(
a
·

)
•→ ∗1

 . >

P•

(
x
·

)→ P•

(
y
·

)

Definition 3 (Relational interpretation).

JddxeenKξ = ddxeen+1 if x 6∈ ξ

JddxieenKξ = ddx1ieen †(0..n) if x ∈ ξ
Jx †πKξ = JxKξ †

π+1

Jλx̄ : Ā. BKξ = λx̄ : JĀKξ. JBKξ,x
Jλ•x̌ : Ǎ. BKξ = λ

•
x̌ : (JǍKξ ⊕ (λ

•
x̌ : Ǎ. B)). x01...1 ∈ JBKξ,x

JAB̄Kξ = JAKξ JB̄Kξ

JT Kξ = λž :

(
T
·

)
. z0 ∈ JT Kξ if T is ∀, • or sn

C ∈ JsnKξ =

(
C
·

)
•→ sn+1

C ∈ J∀x̄ : Ā. BKξ = ∀x̄ : JĀKξ. (C (x̄/01...1)) ∈ JBKξ,x
C ∈ JǍ •→ snKξ = (JǍKξ ⊕ C)

•→ sn+1

C ∈ JA•B̌Kξ = JAKξ•(JB̌Kξ ⊕ C)

C ∈ JT Kξ = JT Kξ•
(
C
·

)
if T is not ∀, • nor sn

J−Kξ = −
JΓ, x : AKξ,x = JΓKξ, x0 : A, x1 : x0 ∈ JAKξ if x ∈ ξ

JΓ, x : AKξ = JΓKξ, x : A if x /∈ ξ

JĀKξ =

[
0i 7→ {Ai}ξ
1i 7→ JAiKξ

]dim Ā+1

i∈2dim Ā

(JǍKξ ⊕B) =

 0i 7→ {Ai}ξ
1i 7→ JAiKξ
01...1 7→ B

dim Ǎ+1

i∈2dim Ǎ−1

Definition 4 (Term exchange).

ddxeen †ρ ‡πξ = ddxeen †ρ if x ∈ ξ
ddxeen †ρ ‡πξ = ddxeen †normaln(π◦ρ) if x /∈ ξ

(AB̄) ‡πξ = A ‡πξ B̄ ‡
π
ξ

(λx̄ : Ā. B) ‡πξ = λx̄ : Ā ‡πξ . B[x̄ 7→ x̄ ‡π] ‡πξ,x
(∀x̄ : Ā. B) ‡πξ = ∀x̄ : Ā ‡πξ . B[x̄ 7→ x̄ ‡π] ‡πξ,x

(A•B̌) ‡πξ = A ‡πξ •B̄ ‡
π
ξ

(λ•x̌ : Ǎ. B) ‡πξ = λ•x̌ : Ǎ ‡πξ . B[x̄ 7→ x̄ ‡π] ‡πξ,x
(Ǎ

•→ sn) ‡πξ = Ǎ ‡πξ
•→ sn

sn ‡πξ = sn

where normaln(π) removes all cycles of π entirely contained
in 0..n− 1.

Fig. 1. Relational interpretation of terms

Definition 5 (Syntax).
Sort 3 s, s1, s2, s3 ::= S
Var 3 x, y, z
Param 3 x ::= x variable

| ddxee parametric witness
Term 3 a, . . . , u ::= x †π permutation of dimensions

A, . . . , U | sn sort at dimension n
| AB̄ application (of hypercubes)
| λx̄ : Ā. B abstraction (of hypercubes)
| ∀x̄ : Ā. B function space
| A•B̌ relation membership
| λ•x̌ : Ǎ. B relation formation
| Ǎ

•→ sn relation space
Cube 3 Ā ::=

[
i 7→ Ai

]n
i∈2n cube of size 2n

Cube′ 3 Ǎ ::=
[
i 7→ Ai

⌋n
i∈2n−1

cube of size 2n − 1

Context 3 Γ,∆ ::= − empty context
| Γ, x : A context extension

Definition 6 (Typing rules).

(s1, s2) ∈ A
` sn1 : sn2
AXIOM

Γ ` A : B Γ ` C : sn

Γ, x : C ` A : B

WEAKENING

Γ ` F : (Ǎ
•→ sn) Γ ` ǎ : Ǎ

Γ ` F •ǎ : sn

REL-ELIM

Γ, x̌ : Ǎ ` B : sn Γ ` Ǎ : sn

Γ ` (λ•x̌ : Ǎ. B) : (Ǎ
•→ sn)

REL-INTRO

Γ ` Ǎ : sn1

Γ ` (Ǎ
•→ sn1) : sn2

REL-FORM (s1, s2) ∈ A

Γ ` F : (∀x̄ : Ā. B) Γ ` ā : Ā

Γ ` F ā : B[x̄ 7→ ā]

APPLICATION

Γ, x̄ : Ā ` b : B Γ ` (∀x̄ : Ā. B) : sn

Γ ` (λx̄ : Ā. b) : (∀x̄ : Ā. B)

ABSTRACTION

Γ ` Ā : sn1 Γ, x̄ : Ā ` B : sm2

Γ ` (∀x̄ : Ā. B) : smun3

PRODUCT (s1, s2, s3) ∈ R

Γ ` A : B Γ ` B′ : sn B =β B
′

Γ ` A : B′

CONVERSION

Γ ` A : sn

Γ, x : A ` x : A

START

Γ ` x : A

Γ ` ddxee : x ∈ JAK∅
PARAM

Γ ` x : A Γ ` A : sn
dim(π) ≤ n

Γ ` x †π : A ‡π

EXCHANGE

• 2n stands for all bit-vectors of size n; and 2n − 1 stands for all bit-vectors of size n, except 1...1.
• ind(Ā) stands for 2dim Ā; and ind(Ǎ) stands for 2dim Ǎ − 1.
• x̄ : Ā stands for the bindings xi : Ai•(x̄//i) where i ∈ ind(Ā); and x̌ : Ǎ stands for the bindings xi : Ai•(x̌//i) where i ∈ ind(Ǎ).
• The typing judgement Γ ` ā : Ā stands for the conjunction of the judgements Γ ` ai : Ai•(ā//i), where i ∈ ind(Ā);

Γ ` ǎ : Ǎ stands for the conjunction of the judgements Γ ` ai : Ai•(ǎ//i), where i ∈ ind(Ǎ)
• Similarly, Ā : sn stands for Ai : Ā//i

•→ s||i|| and Ǎ : sn stands for Ai : Ǎ//i
•→ s||i||.

• The substitution x̄ 7→ ā stands for the parallel substitution xi 7→ ai for i ∈ ind(ā).

Fig. 2. Syntax and typing rules of P , parameterized on a PTS specification (S,A,R).

The proof term is almost itself needs fewer amendments:

identities : ∀f : (∀a : ∗. a→ a).

∀a : ∗.∀x : a.Eq a (f a x)•

(
x
·

)
identities = λf.λa.λx.JfK

(
a

Eq a x

)(
x

refl a x

)

JfK : ∀
(
a0

a1

)
:

(
∗

a0
•→ ∗1

)
.∀
(
x0

x1

)
:

(
a0

a1

)
. a1•(f a0 x0)

III. DISCUSSION

A. Alternative design: named dimensions

One may wonder if the introduction of the permutation
operation on cubes is strictly necessary. In fact, it is a technical
consequence of the convention that J·K always adds dimension 0.
Therefore, if we were to name dimensions, the need for
permuting dimensions would disappear. However, we would
instead have to deal with the renaming of dimensions, which
is essentially as complex as permutations.

The situation is analogous to the issue of representation of
variables in lambda-calculi. One can either use explicit names
or De Brujin indices (and we have chosen indices here). Where
abstraction introduces new variables, parametricity introduces

new dimensions. and we have chosen indices here. A difference
between variables and dimensions is that, whereas variable
names are eliminated by application, case there is no obvious
operation that eliminates dimensions.

B. Extension: n-ary parametricity

Here we have presented only unary parametricity, whereas
most of the literature deals with binary parametricity. The
generalization to arbitrary arity can be done in a straightforward
way by mere syntactic duplication of relation indices, as
detailed by Bernardy et al. [8] (Instead of x being interpreted
as and index x0 and a witness of parametricity x1, we’d have
many indices x0...xn−1 and a witness xn that they are related
by the parametric interpretation of the type.)

However, we have shown that by n iterations of unary
parametricity, one gets n-ary parametricity between the faces
of an n-cubes. If one were to erase the indices of these n
faces (which are themselves cubes of dimension n− 1), one
would recover n-ary parametricity. This insight is developed
by Bernardy and Lasson [6], with the difference that, in that
work, sorts are used to determine which parts of terms must be
erased. In future work we want to investigate the addition of
an erasure operation based on the shape of cubes, which would
make explicit the relation between parametricity at different
arities within the calculus.

C. Extension: inductive types

Even though we considered only PTSs, it is straightforward
to support the addition of inductive constructions. This can
be done in the same way as Bernardy et al. [8]. Namely, the
interpretation of an inductive definition is another inductive
definition obtained by applying relational interpretation to every
component of the original definition (type and constructors).

Example 5 (Inductive naturals and their interpretation).

data N : Type where
zer : N
suc : N→ N

data JNK :

(
N
·

)
•→ Type where

JzerK : JNK•
(
zer
·

)
JsucK :

(
n
ṅ

)
:

(
N

JNK

)
→ JNK•

(
sucn
·

)
In our case we need also to verify that repetition of the inter-

pretation yields symmetric relations, which is straightforward.
Usually, inductive definitions may inhabit any sort. In our

case, if one wishes to introduce a definition at a dimension
greater than zero, it must respect symmetry. That is, an inductive
definition I : sn is legal only if, for any permutation π of the
dimensions 0 to n− 1, I ‡π = I .

D. Implementation

An implementation of the calculus, realized in the Haskell
programming language, is available for experimentation (http:
//hackage.haskell.org/package/uAgda).

E. Related Work
The relationship between logic and programming languages

goes both ways. On the one hand, logical systems can be
given meaning by assigning a computational interpretation to
them. On the other hand, one would like to prove programs
correct within formal logical systems. This means that one
needs logical systems with enough power to support reasoning
about programs. Seminal work featuring both sides of the
connection includes [19] and [17].

The work described in this paper falls right into this tradition:
we not only attempt to improve the support for reasoning
about parametric reasoning in a logical framework, but also
give parametricity a computational meaning. Furthermore, our
parametricity construct is itself parametric. To our knowledge
this has not been achieved before. Some logical frameworks
with computational meaning have features which are related to
parametricity, without subsuming it. Some logical systems have
featured parametricity, but not in a computationally meaningful
way.

a) Inductive families: In the first category, we must first
mention inductive families, studied in different contexts by
Pfenning and Paulin-Mohring [22], and Dybjer [11].

The computational realization of the induction principle over
an inductive definition is a recursive function over the data, but
which also carries information about the data being recursed
over.

One can draw a parallel with our interpretation of terms:
computational constructs such as application and abstraction are
interpreted as application and abstraction, but with additional
information about the original term carried as an index. In
fact, by taking advantage of extensionality, it is possible to see
induction principles over data as a special case of parametricity,
as shown for example by Wadler [32].

b) Extensionality: The ability to reason about functions
can be supported not just by parametricity, but also by the
principle of extensionality, which says that two functions are
equal if they map equal inputs to equal outputs.

Altenkirch et al. [2] show how to integrate extensionality
in a computationally meaningful way. Parallels can be drawn
between the work of Altenkirch et al. and ours. Mainly, their
equality relation depends on the structure of the types that
it relates, in the same way as the interpretation of types we
propose.

c) Higher-dimensional type-theories: Recent work on
the interpretation of the equality-type in intensional type
theory suggests that it should be modeled using higher-
dimensional structures [15]. In this work we have found the
need to introduce higher-dimensional objects as well, but to
interpret parametricity instead of equality. Furthermore it has
been known since [25] that for System F, the parametric
interpretation of closed types coincides with equality. We hope
that this work will help extending the connection to intensional
type theory.

d) Meta-level reasoning: Miller and Tiu [18] propose
a logical framework where one can reason precisely about
terms and types of an object language. Their domain of

application overlaps with ours. For example, one can prove in
their framework that the object type ∀a : ?.a is uninhabited.
A characteristic of [18] is the total separation between object
and host language. Here, we are able to unify both languages.

e) Parametricity: Plotkin and Abadi [23] have formulated
a logic extended with axioms of parametricity. However, they
are content with the consistency of parametricity, and do not
give any computational interpretation for it.

As mentioned previously, it has been shown before e.g., by
Hasegawa [13], that parametricity is consistent with some mod-
els of System F. Consistency of parametricity with dependently-
typed theories does not appear to have been proved previously.

In unpublished work, Takeuti [27] attempted to extend CC
with parametricity, but Takeuti does not attempt to assign a
computational content to his parametricity axioms, and only
conjectures consistency of his system.

Bernardy et al. [8] have described logical relations from PTSs
to PTSs, but in an external fashion: the abstraction theorem
itself remains outside the system, as we have exposed in detail
in Sec. II.

F. Future Work

A natural application of this work would be to integrate it
in a real proof assistant (e.g., COQ or AGDA). One could then
experiment and analyze how much power parametricity gives
on practical examples.

We also plan to analyze the relationship parametricity
with other extensions of type-theory, such as for example
(co)inductive constructions, extensionality, etc. Because para-
metricity is a powerful reasoning principle, it might be possible
to understand other aspects of type-theory in terms of it.
In particular, understanding data in terms of their Church-
Encodings is a tempting application.

Acknowledgments We are grateful to Thierry Coquand, Peter
Dybjer and Simon Huber for helpful comments and discussions.

REFERENCES

[1] M. Abadi, L. Cardelli, and P. Curien. Formal parametric
polymorphism. In Proc. of POPL’93, pages 157–170. ACM,
1993.

[2] T. Altenkirch, C. McBride, and W. Swierstra. Observational
equality, now! In PLPV 2007, pages 57–68. ACM, 2007.

[3] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-
specific languages. In Proc. of Haskell ’09, pages 37–48. ACM,
2009.

[4] H. P. Barendregt. Lambda calculi with types. Handbook of logic
in computer science, 2:117–309, 1992.

[5] J.-P. Bernardy. A theory of parametric polymorphism and an
application. Phd thesis, Chalmers Tekniska Högskola, 2011.

[6] J.-P. Bernardy and M. Lasson. Realizability and parametricity
in pure type systems. In M. Hofmann, editor, FoSSaCS, volume
6604 of LNCS, pages 108–122. Springer, 2011.

[7] J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic
properties. In A. Gordon, editor, European Symposium on
Programming, volume 6012 of LNCS, pages 125–144. Springer,
2010.

[8] J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and
dependent types. In Proc. of ICFP 2010, pages 345–356. ACM,
2010.

[9] A. Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In Proceeding of ICFP 2008, pages
143–156. ACM, 2008.

[10] T. Coquand and G. Huet. The calculus of constructions.
Technical report, INRIA, 1986.

[11] P. Dybjer. Inductive families. Formal Aspects of Comp., 6(4):
440–465, 1994.

[12] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to
deforestation. In Proc. of FPCA, pages 223–232. ACM, 1993.

[13] R. Hasegawa. Categorical data types in parametric polymorphism.
Mathematical Structures in Comp. Sci., 4(01):71–109, 1994.

[14] P. Johann. A generalization of short-cut fusion and its correctness
proof. Higher-Order and Symbol. Comp., 15(4):273–300, 2002.

[15] D. Licata and R. Harper. Canonicity for 2-dimensional type
theory. In Proc. of POPL 2012. ACM, 2012.

[16] H. Mairson. Outline of a proof theory of parametricity. In
Proc. of FPCA 1991, volume 523 of LNCS, pages 313–327.
Springer-Verlag, 1991.

[17] P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.
[18] D. A. Miller and A. F. Tiu. A proof theory for generic judgments:

An extended abstract. In LICS 2003, pages 118–127. IEEE, 2003.
[19] R. Milner. Logic for Computable Functions: description of a

machine implementation. Artificial Intelligence, 1972.
[20] U. Norell. Towards a practical programming language based on

dependent type theory. PhD thesis, Chalmers Tekniska Högskola,
2007.

[21] C. Paulin-Mohring. Extracting Fω’s programs from proofs in
the calculus of constructions. In POPL’89, pages 89–104. ACM,
1989.

[22] F. Pfenning and C. Paulin-Mohring. Inductively defined types in
the calculus of constructions. In MFPS, volume 442 of LNCS,
pages 209–228. Springer, 1990.

[23] G. Plotkin and M. Abadi. A logic for parametric polymorphism.
In Proc. of TLCA, volume 664 of LNCS, page 361–375. Springer,
1993.

[24] N. Pouillard. Nameless, painless. In Proc. of the 16th ACM
SIGPLAN international conference on Funct. programming,
ICFP ’11. ACM, 2011. to appear.

[25] J. C. Reynolds. Types, abstraction and parametric polymorphism.
Information processing, 83(1):513–523, 1983.

[26] J. Svenningsson. Scalable Program Analysis. Phd thesis,
Chalmers Tekniska Högskola, 2007.

[27] I. Takeuti. The theory of parametricity in lambda cube.
Manuscript, 2004.

[28] The Coq development team. The Coq proof assistant, 2011.
[29] J. Voigtländer. Bidirectionalization for free! (Pearl). In Proc. of

POPL 2009, pages 165–176. ACM, 2009.
[30] D. Vytiniotis and S. Weirich. Parametricity, type equality, and

higher-order polymorphism. J. Funct. Program., 20(02):175–210,
2010.

[31] P. Wadler. Theorems for free! In Proc. of FPCA 1989, pages
347–359. ACM, 1989.

[32] P. Wadler. The Girard–Reynolds isomorphism. Theor. Comp.
Sci., 375(1–3):201–226, 2007.

IV. APPENDIX

This section contains details of our proofs.

A. Confluence

To begin, we generalize some basic properties possessed by
well-behaved λ-calculi. In particular, we prove the substitution
lemma and the confluence property. We limit the detail of the
proofs to the cases relevant to the specifics of our calculus.

Remark 1. It follows immediately by induction on the structure
of terms that substitution and reduction preserve sorts. This
result will be silently used in the present section.

Lemma 1. If x does not occur free in A, then JAKξ,x = JAKξ
and a ∈ JAKξ,x = a ∈ JAKξ for all a.

Proof: Induction on the structure of A.

Lemma 2 (J·K and substitution, part 1). If z is not in ξ, then

JA[zi 7→ E]Kξ = JAKξ,z[z0i 7→ E][z1i 7→ JEKξ]

a[z0i 7→ E] ∈ JA[zi 7→ E]Kξ = (a ∈ JAKξ,z)[z0i 7→ E]

[z1i 7→ JEKξ]

Proof: By induction on A.
Sort Trivial.
Abstraction (Product is similar)

J(λx̄ : Ā. b)[zi 7→ E]Kξ
= Jλx̄ : Ā[zi 7→ E]. b[zi 7→ E]Kξ
= λx̄ : JĀ[zi 7→ E]Kξ. Jb[zi 7→ E]Kξ,x
= λx̄ : JĀKξ,z[z0i 7→ E][z1i 7→ JEKξ].

JbKξ,x,z[z0i 7→ E][z1i 7→ JEKξ,x]

= (λx̄ : JĀKξ,z. JbKξ,x,z)[z0i 7→ E][z1i 7→ JEKξ,x]

= Jλx̄ : Ā. bKξ,z[z0i 7→ E][z1i 7→ JEKξ,x]

Rel-Intro (Rel-Form is similar)

J(λ•x̌ : Ǎ. B)[zi 7→ E]Kξ
= Jλ•x̌ : Ǎ[zi 7→ E]. B[zi 7→ E]Kξ
= λ•x̌ : (JǍ[zi 7→ E]Kξ ⊕ . . .). x01...1 ∈ JB[zi 7→ E]Kξ,x
= λ•x̌ : (JǍKξ ⊕ (λ•x̌ : Ǎ. B))[z0i 7→ E][z1i 7→ JEKξ].

(x01...1 ∈ JBKξ,x,z)[z0i 7→ E][z1i 7→ JEKξ]
= Jλ•x̌ : Ǎ. BKξ,z[z0i 7→ E][z1i 7→ JEKξ]

Application

J(F ā)[zi 7→ E]Kξ
= JF [zi 7→ E] ā[zi 7→ E]Kξ
= JF [zi 7→ E]Kξ Jā[zi 7→ E]Kξ
= F [zi 7→ E][z0i 7→ E][z1i 7→ JEKξ]

ā[zi 7→ E][z0i 7→ E][z1i 7→ JEKξ]
= F ā[z0i 7→ E][z1i 7→ JEKξ]

Rel-Elim

C[z0i 7→ E] ∈ J(A•B̌)[zi 7→ E]Kξ
= JA[zi 7→ E]Kξ•(JB[zi 7→ E]Kξ ⊕ (C[z0i 7→ E]))

= (JAKξ,z•(JB̌Kξ,z ⊕ C))[z0i 7→ E][z1i 7→ JEKξ]
= (C ∈ JA•B̌Kξ,z)[z0i 7→ E][z1i 7→ JEKξ]

Variable
It is trivial if xi 6= zi. Now if xi = zi,

Jddzieen †π[zi 7→ E]Kξ
= JJEKn ‡πK

ξ

= JJEKξK
n ‡(0...n) ‡π+1

= ddz1ieen ‡(0...n) ‡π+1[z0i 7→ E][z1i 7→ JEKξ]
= JddzieenKξ,z ‡

π+1[z0i 7→ E][z1i 7→ JEKξ]
= Jddzieen †πKξ,z[z0i 7→ E][z1i 7→ JEKξ]

Lemma 3 (J·K and substitution, part 2). If ξ does not contain
either z or any of the free variables of E, then

JA[zi 7→ E]Kξ = JAKξ[zi 7→ E], and

a[zi 7→ E] ∈ JA[zi 7→ E]Kξ = (a ∈ JAKξ)[zi 7→ E]

Proof: By induction on A. The proof is similar to the one
of Lem. 2, except for the variable case with xi = zi.

Jddzieen †π[zi 7→ E]Kξ = JJEKn ‡πK
ξ

= JJEKn ‡πK∅
= JEKn+1 ‡π+1

= ddzieen+1 †π+1[zi 7→ E]

= Jddzieen †πKξ[zi 7→ E]

Lemma 4 (Symmetry). JAKn is symmetric in its n first
dimensions: JAKnξ ‡

π
ξ = JAKnξ ‡

normaln(π)
ξ

Proof: By induction on the structure of A.

• If a is ddxieem †ρ:
– If x /∈ ξ, JAKnξ ‡

π
ξ = ddxieem+n †ρ+n ‡πξ . Since

ρ + n and (0 . . . n − 1) are disjoint, we have
normalm+n((ρ + n) ◦ π) = normalm+n((ρ + n) ◦
normaln(π)), and the result follows.

– If x ∈ ξ, we have

JAKnξ ‡
π
ξ

= ddx1...1ieem ‡(0...m)+n ‡ρ+n ‡πξ
= ddx1...1ieem ‡(0...m)+n ‡ρ+n .

• Otherwise: straightforward.

Lemma 5 (· ‡· and substitution). If ξ does not contain either
z or any of the free variables of E, then

A[zi 7→ E] ‡πξ = A ‡πξ [zi 7→ E] for all π.

Proof: By induction on A. The only interested case is the
one for variables, with xi = zi:

ddzieen †ρ[zi 7→ E] ‡πξ = JEKn ‡ρ ‡πξ
= JEKn ‡normaln(π◦ρ) by Lem. 4

= ddzieen ‡normaln(π◦ρ)[zi 7→ E]

= ddzieen †ρ ‡πξ [zi 7→ E]

Lemma 6 (Substitution).

A[z 7→ E][z′ 7→ E′] = A[z′ 7→ E′][z 7→ E[z′ 7→ E′]]

Proof: By induction on A; the only non-trivial case is for
the parametric witnesses ddzeen:

ddzeen †π[z 7→ E][z′ 7→ E′] = JEKn∅[z′ 7→ E′] ‡π

= JE[z′ 7→ E′]Kn∅ ‡
π = ddzeen †π[z′ 7→ E′][z 7→ E[z′ 7→ E′]]

by lemmas 3 and 5.
We now check the Church-Rosser property holds, that is,

we verify that the order in which the reductions are performed
does not matter. To prove this property, we define a parallel
reduction (Following the Tait/Martin-Löf technique), and show
that the diamond property holds for this reduction.

Definition 7 (Parallel nested reduction).

REFL
A . A

β
b . b′ ā . ā′

(λx̄ : Ā. b) ā . b′[x̄ 7→ ā′]

β•
b . b′ ǎ . ǎ′

(λ•x̌ : Ǎ. b)•ǎ . b′[x̌ 7→ ǎ′]

APP-CONG
F . F ′ ā . ā′

F ā . F ′ ā′

APP•-CONG
F . F ′ ǎ . ǎ′

F •ǎ . F ′•ǎ′

ABS-CONG
Ā . Ā′ b . b′

λx̄ : Ā. b . λx̄ : Ā′. b′

ABS•-CONG
Ǎ . Ǎ′ b . b′

λ•x̌ : Ǎ. b . λ•x̌ : Ǎ′. b′

ALL-CONG
Ā . Ā′ B . B′

∀x̄ : Ā. B . ∀x̄ : Ā′. B′

ALL•-CONG
Ǎ . Ǎ′

Ǎ
•→ sn . Ǎ′

•→ sn

with Ā . Ā′ iff. for all i, Ai . A′i (and similarly for Ǎ . Ǎ′).

Lemma 7 (Congruence of J·K). If A . A′, then for all ξ,
• JAKξ . JA′Kξ, and
• a ∈ JAKξ . a

′ ∈ JA′Kξ for all a . a′

Proof: By induction on A . A′:
• The case of REFL is trivial.
• For β , one expects

J(λx̄ : Ā. b) āKξ . Jb′[x̄ 7→ ā′]Kξ,

knowing b . b′ and ā . ā′.

J(λx̄ : Ā. b) āKξ
= {by def. of J·Kξ}

(λx̄ : JĀKξ. JbKξ,x) JāKξ
. {by β , REFL and IH}

Jb′Kξ,x[x̄ 7→ Jā′Kξ]
= {by Lem. 2}

Jb′[x̄ 7→ ā′]Kξ
• The cases of β• is similar.
• The cases of ?-CONG are straightforward using the

definition of J·K.

Lemma 8 (Congruence of · ‡·). If A . A′, then for all ξ and
π, one has A ‡πξ .A′ ‡

π
ξ

Proof: By induction on A.A′. The only interesting cases
are for the β and β•-reductions. For β (β• is similar), we have

((λx̄ : Ā. b) ā) ‡πξ
= {by def. of · ‡πξ }

(λx̄ : Ā ‡πξ . b[x̄ 7→ x̄ ‡πξ] ‡πξ,x) ā ‡πξ
. {by β , REFL and IH}

b′[x̄ 7→ x̄ ‡πξ] ‡πξ,x[x̄ 7→ ā′ ‡πξ]
= b′ ‡πξ,x[x̄ ‡πξ 7→ ā′ ‡πξ]
= b′[x̄ 7→ ā′] ‡πξ

Lemma 9 (Congruence of substitution). If A. A′ and E . E′,
then A[z 7→ E] . A′[z 7→ E′].

Proof: By induction on A . A′:
• For REFL, the expected result follows from an induction

on A (using n times Lem. 7 and Lem. 8 for the case
ddzeen ‡π).

• For β , one expects

((λx̄ : Ā. b) ā)[z 7→ E] . b′[x̄ 7→ ā′][z 7→ E],

knowing b . b′ and ā . ā′. We have

((λx̄ : Ā. b) ā)[z 7→ E]
= {by def. of the substitution}

(λx̄ : A[z 7→ E]. b[z 7→ E]) ā[z 7→ E]
. {by β and IH}

b′[z 7→ E′][x̄ 7→ ā′[z 7→ E′]]
= {by Lem. 6}

b′[x̄ 7→ ā′][z 7→ E′]

• The cases of β• is similar.
• The cases of ?-CONG stem from straightforward uses of

induction hypotheses.

Theorem 2 (Diamond property). The rewriting system (.) has
the diamond property. That is, for each A,B,B′ such that
B / A . B′, there exists C such that B . C / B′

Proof: By inductions on the derivations:
• If one of the derivations ends with REFL, one has either
A = B, or A = B′. We pick C = B′ in the former case
and C = B in the latter.

• If one of the derivations ends with ABS-CONG, ALL-
CONG , ABS•-CONG or ALL•-CONG , the other one has to
end with the same rule, and the result is a straightforward
use of the induction hypothesis.

• If one of the derivations ends with APP-CONG , the other
one has to end with APP-CONG , or with β . The first case
is straightforward; in the second one, one has

(λx̄ : Ā′. b′) ā′ / (λx̄ : Ā. b) ā . b′′[x̄ 7→ ā′′]
with λx̄ : Ā′. b′ / λx̄ : Ā. b, b . b′′ and ā′ / ā . ā′′

The situation is summarized in the diagram below. In more
details, the end of the derivation of λx̄ : Ā′. b′ / λx̄ : Ā. b
has to be either ABS-CONG, or REFL. In the first case
(the last one is similar), one has Ā′ / Ā and b′ / b.
By induction hypothesis there exist b′′′, ā′′′ such that
b′ . b′′′ / b′′ and ā′ . ā′′′ / ā′′.
The result follows by β and Lem. 9:

(λx̄ : Ā′. b′) ā′ . b′′′[x̄ 7→ ā′′′] / b′′[x̄ 7→ ā′′]

(λx̄ : Ā. b) ā

(λx̄ : Ā′. b′) ā′ b′′[x̄ 7→ ā′′]

b′′′[x̄ 7→ ā′′′]

ABS-C
ONG

ā
′ /
ā,
b
′ /
b βb .

b ′′, ā .
ā ′′

β

b ′
. b ′′′, ā ′

. ā ′′′ Lem
. 9

b
′′′ /

b
′′ , ā
′′′ /

ā
′′

• The case for APP•-CONG is similar.
• If both derivations end with the same β or β• rule, the

result is a straightforward use of the induction hypothesis
and Lem. 9.

Corollary 1 (Church-Rosser property). Our calculus system
has the confluence (Church-Rosser) property that is, for each
A,B,B′ such that B ←−? A −→? B′, there exists C such
that B −→? C ←−? B′

Proof: Direct consequence of Th. 2, noticing .? =−→?.

B. Abstraction

In this section we check that our main goal, the integration
of parametricity (See Prop. 1), is achieved by the design that

we propose. At the same time, we check that the abstraction
theorem also holds for our calculus. We do so by proving
Lem. 10, which subsumes both theorems.
Theorem 3 (Abstraction).

1) Γ ` A : B ⇒ JΓKξ ` JAKξ : (A ∈ JBKξ), where ξ
contains all the variables in Γ.

2) Furthermore, if the original judgement makes no use of
PARAM, the resulting judgement does not either.

Proof:
1) Direct consequence of Lem. 10.1.
2) In the proof of Lem. 10.1, if ξ is full, then the target

derivation trees contains PARAM iff PARAM occurs in the
derivation tree for Γ ` A : B.

Theorem 4 (Parametricity).

Γ ` A : B ⇒ Γ ` JAK : (A ∈ JBK)

This theorem means that every term satisfies the parametricity
condition of its type, even if it contains free variables.

Proof: Take ξ empty in Lem. 10.1.

Definition 8. ξ conforms to Γ when ξ contains exactly a suffix
of Γ.

Remark 2. If J·K preserves conforming indices: if ξ conforms
to Γ and A is well-typed in Γ, the definition of JAKξ makes
only recursive calls with conforming substitutions.

Sketch: By induction on the typing derivation. In the
definition of J·K, of every bound variable in a term is put into
the index in recursive calls.

Lemma 10 (Generalized abstraction). Assuming that ξ
conforms to Γ,

1) Γ ` A : B ⇒ JΓKξ ` JAKξ : A ∈ JBKξ
2) Γ ` A : B ⇒ JΓKξ ` A : B

3) Γ ` B : sn ⇒ JΓKξ, x : B ` x ∈ JBKξ : sn+1

Proof: The proof is done by simultaneous induction on the
derivation tree, and is similar to the proofs of the abstraction
theorem done by Bernardy and Lasson [6]. The new parts
occur in the special handling of the START and PARAM rules.
The proof of each sub-lemma can be sketched as follows:

1) The cases of abstraction and application stem from the
fact that their respective relational interpretation follows
the same pattern as the relational interpretation of the
product. The case of a variable x (START) is more tricky:
if x ∈ ξ, then the context contains an explicit witness
of parametricity for x. This witness is used to justify
the translated judgement. If x /∈ ξ, then we can use the
parametricity rule on x to translate the typing judgement.
The PARAM rule is handled similarly, with the additional
complexity that an exchange of dimensions must be added
when x /∈ ξ.

2) This sub-lemma is used to justify weakening of contexts in
the other sub-lemmas. It is a consequence of the thinning

lemma and the fact that the interpretation of types in
always well-typed (see the third item below).

3) This sub-lemma expresses that if T is a well-sorted type,
then x ∈ JT K is also well-sorted. It is easy to convince
oneself of that result by checking that the translation of a
type always yields a relation, and that the translation of a
relation is itself a relation.

Since this result is the angular stone of our development, we
give yet more detail (construction of the target derivation tree)
in the second appendix.

Remark 3. In summary, and roughly speaking, Lem. 10
replaces the occurrences of START (resp. PARAM) for variables
not in ξ by PARAM (resp. nested PARAM + EXCHANGE).
Occurrences on START (resp. PARAM) for variables in ξ are
preserved.

Lemma 11. Let π = (01) and ω = ξ ∩ ζ; then

JJAKξKζ [x̄ 7→ x̄ ‡π | x ∈ ω] ‡πω =β JJAKζKξ

Proof: By induction on the structure of A. We limit details
to a few interesting cases.

• Variable, Exchange and Param cases are treated all at one
by proving the lemma for A = ddxeen ‡ρ, for any n and ρ.
We calculate the left and right-hand-side in each of the
following cases.

– x ∈ ξ, x ∈ ζ. (then x ∈ ω)

JJddxeen ‡ρKξKζ [x̄ 7→ x̄ ‡π | x ∈ ω] ‡πω
= JJddxeen ‡ρKxKx[x̄ 7→ x̄ ‡π]

= JJddxeenKxKx ‡
ρ+2[x̄ 7→ x̄ ‡π]

= ddx11een ‡(...) ‡ρ+2[x̄ 7→ x̄ ‡π]

= ddx11een ‡(...) ‡ρ+2

= JJddxeenKxKx ‡
ρ+2

= JJddxeen ‡ρKxKx
= JJddxeen ‡ρKζKξ

– x /∈ ξ, x /∈ ζ. (then x /∈ ω)

JJddxeen ‡ρKξKζ [x̄ 7→ x̄ ‡π | x ∈ ω] ‡πω
= ddddddxeen ‡ρeeee ‡π
= ddxeen+2 ‡ρ+2 ‡π
{by π disjoint from ρ+ 2}

= ddxeen+2 ‡π ‡ρ+2

{by Eq. (4)}
= ddxeen+2 ‡ρ+2

= ddddddxeen ‡ρeeee
= JJddxeen ‡ρKζKξ

– x ∈ ξ, x /∈ ζ. (then x /∈ ω)

JJddxeen ‡ρKξKζ [x̄ 7→ x̄ ‡π | x ∈ ω] ‡πω
= ddJddxeen ‡ρKxee ‡

π

= ddJddxeenKxee ‡
ρ+2 ‡π

= ddddx1een ‡(0..n)ee ‡ρ+2 ‡π

= ddx1een+1 ‡(1..n+1) ‡ρ+2 ‡π
= {by π disjoint from ρ+ 2}
ddx1een+1 ‡(1..n+1)◦(01) ‡ρ+2

= ddx1een+1 ‡(0..n+1) ‡ρ+2

= Jddxeen+1Kx ‡
ρ+2

= JddddxeeneeKx ‡
ρ+2

= Jddddxeen ‡ρeeKx
= JJddxeen ‡ρKζKξ

– x /∈ ξ, x ∈ ζ (then x /∈ ω). Symmetric to the above
case.

• Abstraction.

JJλx̄ : A. bKξKζ [ȳ 7→ ȳ ‡π | y ∈ ω] ‡πω
= λx̄ : JJAKζKξ ‡

π
ω[ȳ 7→ ȳ ‡π | y ∈ ω].

JJbKζ,xKξ,x[ȳ 7→ ȳ ‡π | y ∈ ω][x̄ 7→ x̄ ‡π] ‡πω,x
= λx̄ : JJAKζKξ ‡

π
ω[ȳ 7→ ȳ ‡π | y ∈ ω].

JJbKζ,xKξ,x[ȳ 7→ ȳ ‡π | y ∈ ω, x] ‡πω,x
= λx̄ : JJAKξKζ . JJbKξ,xKζ,x
= JJλx̄ : A. bKζKξ

Note that (3) is a corollary of the above lemma.

C. Subject reduction

In this section we prove subject reduction (preservation
of types). We start by discussing basic properties generally
attributed to PTSs.

The weakening of contexts behaves in our calculus exactly
in the same way as in all PTSs. Indeed, the usual thinning
lemma holds.

Lemma 12 (Thinning). Let Γ and ∆ be legal contexts such
that Γ ⊆ ∆. Then Γ ` A : B =⇒ ∆ ` A : B.

Proof: As in [4, lem. 5.2.12].
The generation lemma for our calculus must account for the

new parametricity construct.

Lemma 13 (Generation). The statement of the lemma is the
same as that of the generation lemma for PTS [4, lem. 5.2.13],
but with the additional case for the PARAM rule:
• If Γ ` ddxee : C then there exists B such that Γ ` B : sn,

(x : B) ∈ Γ, and C =β x ∈ JBK.

Proof: As in [4]:
• We follow the derivation Γ ` ddxee : C until ddxee is intro-

duced. It can only be done by the following rule

∆ ` B : sn

∆, x : B ` ddxee : x ∈ JBK
PARAM

with C =β x ∈ JBK, and (∆, x̄ : B) ⊆ Γ. The conclusion
stems from Lem. 12.

Theorem 5 (Subject reduction). If A −→ A′ and Γ ` A : T ,
then Γ ` A′ : T .

Proof: Most of the technicalities of the proof by Baren-
dregt [4], concern β-reduction, and are not changed by our
addition of parametricity.

Hence we discuss here only the handling of the parametricity
construct: our task is to check that substitution a concrete term
a for x in ddxee preserves the type of the expression.

Facing a term such as ddxee in context Γ, we know by
generation that it must have type x ∈ JBK (for some type
B valid in Γ, and x : B). We can then prove that substituting
a term a of type B′ (where B′ is convertible to B) for x
preserves the type of the expression. Indeed, the expression
then reduces to JaK, which has type a ∈ JB′K by Th. 4. In
turn, a ∈ JB′K is convertible to x ∈ JBK by Lem. 7.

D. Strong normalization

In this section we present a formalization of the intuitive
model presented in Sec. II-D. We do this via a transformation,
from our system P to the naked PTS O.

Each term is mapped to a term where parametricity witnesses
are passed explicitly. Simultaneously, contexts are extended
with explicit witnesses: in a first approximation, each binding
x : A is replaced by a multiple binding x : A, x̆ : x ∈ JAK.
This means that ddxee can be interpreted by the corresponding
variable x̆ in the context. The following table shows how some
example terms3 can be interpreted (for the sake of readability
we omit type annotations in the abstractions, since they play
no role in these examples):

original term A its interpretation 〈|A|〉
λx. ddxee λx. λx̆. x̆

(λx. ddxee) (y z) (λx. λx̆. x̆) (y z) (y̆ z z̆)
(λx. ddxee)(λy. ddyee) (λx. λx̆. x̆) (λy. λy̆. y̆)

(λy. λy̆. λy̆′. λy̆′2. y̆
′
2)

Given that the interpretation (written 〈|·|〉) is sound with respect
to O (Lem. 16) and that it preserves reductions (Lem. 15), we
obtain strong normalization (Th. 6). The rest of the section
is devoted to defining the model formally, and arguing for its
soundness.

In general, the transformation is not trivial, because of the
interaction between functions and their arguments, occurring
in the APP rule. If a function uses parametricity on one of
its argument, calls to the function must also compute explicit
parametricity witnesses. (This may in turn trigger the need for
more explicit witnesses at the call site). Further, if the function
is passed to another function, this will create further needs for
explicit witnesses.

As we have seen above, each binding x : A should be
replaced be x : A, . . . , x̆n : x ∈ JAKn for some n. Our main

3The third of them demonstrates nested parametricity.

task is to compute a n that would be big enough to make all
the parametricity witnesses ddxeek explicit. To do so, we use an
intermediate representation of the typing derivation, containing
some constraints on the n’s, by annotation of the derivation
tree, as in Fig. 3. We assume without loss of generality that
variable names are distinct, so the n’s are given by a (partial)
valuation ε : ddVaree → N. This annotation of the derivation with
constraints is an instance of a technique known as type-based
analysis [26].

Γ ` F : (∀x̄ : Ā. B)
t :: Γ ` ā : Ā {e+ ε(x) ≤ ε(y) | e ≤ ε(y) ∈ t}

Γ ` F ā : B[x̄ 7→ ā]
APPLICATION

Γ ` F : (∀•x̌ : Ǎ. sn)
t :: Γ ` ǎ : Ǎ {e+ ε(x) ≤ ε(y) | e ≤ ε(y) ∈ t}

Γ ` F •ǎ : sn

REL-ELIM

Γ ` A : sm n ≤ ε(x)

Γ, xi : A ` ddxieen ‡π : (xi ∈ JAKn) ‡π
PARAM/n

dimπ ≤ m+ n

Fig. 3. Typing rules extended with constraints on the valuation ε. Rules omitted
here (see Def. 6) remain unchanged. The notation e ≤ ε(y) ∈ t expresses that
the constraint appears in the tree t. (For the sake of conciseness, we merged
the rules START , PARAM and EXCHANGE into PARAM/n here.)

The APPLICATION and REL-ELIM rules require special
care: Indeed, we need to “lift” the inequalities of the right
sub-tree t, since if F has to be extended to a term of type
∀Jx : AKn. B, then it has to be fed with n extra parametricity
witnesses JaK · · · JaKn, hence the context has to be extended
enough to contain y̆n, for each y free in a. Note that the
constraints e+ ε(x) ≤ ε(y) that we add in the APPLICATION
and REL-ELIM rule are more restrictive than the corresponding
e ≤ ε(y) that are in t, so one can simply ignore the latter.

We need to check that the system of constraints has a solution.
In fact, the simplex it defines is unbound: indeed, the only place
where a variable appears at the left-hand side of a constraint
is in APPLICATION and REL-ELIM when we “lift by x” the
constraints in the sub-tree t; It cannot create any cycle, since
x does not appear in t.

With our notion of cubes instead of usual bindings, extending
the context with an explicit witness corresponds to adding one
dimension to the cube. However, we a priory only need to
access one of the new vertices, the one that has the new
dimension set to one. Hence in general, each of the 2dim Ā

vertices xi of a binding x̄ : Ā will be extended with xji : xi ∈
JAi•(x̄//i)K

k for 0 ≤ k ≤ ε(x) and j = 0ε(x)−k1k.
Permutations on variables yield yet another difficulty, as

one can see in the example λx : A. λy1 : x ∈ JAK. ddy1ee ‡(12).
(The cubes have been flattened for the sake of readability.)
Here, ddy1ee ‡(12) : JAK2

x y1 ddxee while ddy1ee : JAK2
x ddxee y1.

Our solution is to not only extend the context with explicit
parametricity witnesses, but also with explicit permuted para-
metricity witnesses. Hence a possible interpretation of the
previous term in the naked system O is the following:

λx0 : A. λx1 : (JAK x0).

λy01 : (JAK x0). λy11 : (JAK2
x0 x1 y01).

λy
(12)
11 : (JAK2

x0 y01 x1). y
(12)
11

We are not focusing on the minimal extension here, and
we add witnesses for each possible permutation. It is however
possible to refine this extension, since for instance the relations
are symmetric in the new dimensions, hence we can ignore
permutation cycles that are entirely contained into these new
dimensions.

Definition 9 (Explicit binding of witnesses). Writing Sn to
be the group of permutations on {0, . . . , n− 1},

〈|sn|〉 = s

〈|ddxieen †π |〉 = xπji where j =

ε(x)︷ ︸︸ ︷
0 . . . 0 1 . . . 1︸ ︷︷ ︸

n

〈|λx̄ : Ā. B|〉 = λ〈|x̄ : Ā|〉. 〈|B|〉
〈|∀x̄ : Ā. B|〉 = ∀〈|x̄ : Ā|〉. 〈|B|〉
〈|F xā|〉 = 〈|F |〉 {〈|JaiKk ‡π |〉 | i ∈ ind(ā), k ≤ ε(x),

π ∈ Sk+dim ā }
〈|λ•x̌ : Ǎ. B|〉 = λ〈|x̌ : Ǎ|〉. 〈|B|〉
〈|∀•x̌ : Ǎ. sn|〉 = ∀〈|x̌ : Ǎ|〉. s

〈|F •xǍ|〉 = 〈|F |〉 {〈|JaiKk ‡π |〉 | i ∈ ind(ǎ), k ≤ ε(x),
π ∈ Sk+dim ǎ }

〈| − |〉 = −
〈|Γ, xi : A|〉 = 〈|Γ|〉, 〈|xi : A|〉

We introduce a new macro 〈|xi : A|〉, which expands to the
following multiple bindings:

〈|xi : A : sn|〉 = {xπji : 〈|(xi ∈ JAKk) ‡π |〉 | k ≤ ε(x),
j = 0ε(x)−k1k,
π ∈ Sk+n }

Bindings of cube variables are merely “flattened”, using
our previously defined macro:

〈|x̄ : Ā|〉 = {〈|xi : Ai•(x̄//i)|〉 | i ∈ ind(Ā)}
〈|x̌ : Ǎ|〉 = {〈|xi : Ai•(x̌//i)|〉 | i ∈ ind(Ǎ)}

The essence of the model defined by 〈| · |〉 is that a
parametricity witness ddxieen †π is adequately modeled by the
variable xπ0...01...1i, that is, if x has type A, then x1 : x ∈ JAK,
etc.
Lemma 14 (〈| · |〉 and substitution).
〈|A[xi 7→ ai]|〉 = 〈|A|〉[xπji 7→ 〈|JaiK

k ‡π |〉,
k ≤ ε(x), j = 0ε(x)−k1k, π ∈ . . .]

Proof: By induction on A; We illustrate how the proof
proceeds by showing (only) the case for variables, since
other cases stem from straightforward uses of the induction
hypotheses.

〈|ddxieen †π[xi 7→ ai]|〉 = 〈|JaiKn ‡π |〉
= xπji[x

π
ji 7→ 〈|JaiK

n ‡π |〉]
= 〈|ddxieen †π |〉[xπji 7→ 〈|JaiK

k ‡π |〉, . . .]

Lemma 15 (Congruence of 〈|·|〉). If Γ ` A : B with A −→ A′,
then

〈|A|〉 −→+ 〈|A′|〉

.

Proof: By induction on A −→ A′.
Finally we can show the soundness of our model, by proving

that the transformation yields well-typed terms in O.

Lemma 16. Let Γ ` A : B : sn, k such that k ≤ ε(x) for each
free variable x, and π ∈ Sn+k Then

〈|Γ|〉 `O 〈|JAKk ‡π |〉 : 〈|(A ∈ JBKk) ‡π |〉.

In particular, if Γ ` A : B then 〈|Γ|〉 `O 〈|A|〉 : 〈|B|〉.

Proof: Even though we need the stronger induction hypoth-
esis, we only prove the latter application here: Γ ` A : B =⇒
〈|Γ|〉 `O 〈|A|〉 : 〈|B|〉. By induction on the derivation:

AXIOM
Trivial.

WEAKENING

Γ ` A : B

induction
〈|Γ|〉 ` 〈|A|〉 : 〈|B|〉

Γ ` C : sn

induction
〈|Γ|〉 ` 〈|C|〉 : s

Lem. 10.3〈|Γ|〉, 〈|xi : C|〉 legal
Thinning

〈|Γ|〉, 〈|xi : C|〉 ` 〈|A|〉 : 〈|B|〉

APPLICATION (REL-ELIM is similar)
Γ ` F : (∀x̄ : Ā. B)

induction
〈|Γ|〉 ` 〈|F |〉 : (∀〈|x̄ : Ā|〉. 〈|B|〉)

by def.
〈|Γ|〉 ` 〈|F |〉 : (∀{xπji : . . . }. 〈|B|〉)

Γ ` ā : Ā by def.
Γ ` ai : Ai•(x̄//i)

induction
〈|Γ|〉 ` 〈|JaiK||j|| ‡π |〉 : 〈|(ai ∈ JAi•(x̄//i)K||j||) ‡π |〉

(many-)APP.
〈|Γ|〉 ` 〈|F |〉 {〈|JaiK||j|| ‡π |〉 | . . . } : 〈|B|〉[xπji 7→ 〈|JaiK||j|| ‡π |〉, . . .]

by def., Lem. 14
〈|Γ|〉 ` 〈|F ā|〉 : 〈|B[x̄ 7→ ā]|〉

ABSTRACTION (REL-INTRO is similar)
Γ, x̄ : Ā ` b : B

induction
〈|Γ|〉, 〈|x̄ : Ā|〉 ` 〈|b|〉 : 〈|B|〉

...
(many-)ABS.

〈|Γ|〉 ` (λ〈|x̄ : Ā|〉. 〈|b|〉 : (∀〈|x̄ : Ā|〉. 〈|B|〉
by def.

〈|Γ|〉 ` 〈|λx̄ : Ā. b|〉 : 〈|∀x̄ : Ā. B|〉

PRODUCT (REL-FORM is similar)
Γ ` Ā : sm1by def.

Γ, . . . ` Ai•(x̄//i) : sm1
induction

〈|Γ|〉, . . . ` 〈|(xi ∈ JAi•(x̄//i)K||j||) ‡π |〉 : s1

Γ, x̄ : Ā ` B : sn2
induction

〈|Γ|〉, 〈|x̄ : Ā|〉 ` 〈|B|〉 : s2
(many-)PROD.

〈|Γ|〉 ` (∀{xπji : 〈|(xi ∈ JAi•(x̄//i)K||j||) ‡π |〉 | . . . }. 〈|B|〉) : s3
by def.

〈|Γ|〉 ` 〈|∀x̄ : Ā. B|〉 : s3

CONVERSION
Γ ` A : B

induction
〈|Γ|〉 ` 〈|A|〉 : 〈|B|〉

Γ ` B′ : sn

induction
〈|Γ|〉 ` 〈|B′|〉 : s

B =β B
′

Corollary 1, Lem. 15
〈|B|〉 =β 〈|B′|〉

CONV.
〈|Γ|〉 ` 〈|A|〉 : 〈|B′|〉

START , PARAM , EXCHANGE
Γ ` A : sm

induction
〈|Γ|〉, 〈|xi : A|〉 legal

Thinning, START
〈|Γ|〉, 〈|xi : A|〉 ` xπji : 〈|(xi ∈ JAKn) ‡π |〉

by def.
〈|Γ|〉, 〈|xi : A|〉 ` 〈|ddxieen †π |〉 : 〈|(xi ∈ JAKn) ‡π |〉

Theorem 6 (Strong normalization). If O is strongly normalizing, then so is P , our system extended with PARAM.

Proof: Assume Γ ` A : B and consider a chain of reductions A −→n A′. We have 〈|A|〉 −→m 〈|A′|〉, and m ≥ n by
Lem. 15. We also have that 〈|A|〉 is typeable in O, by Lem. 16. Therefore, only finite chains of reductions are possible.

V. GENERALIZED ABSTRACTION: PROOF DETAILS

The proof depends on the following lemmas:
1) Γ ` A : B ⇒ JΓKξ ` JAKξ : A ∈ JBKξ
2) Γ ` B : sn⇒JΓKξ, x : B ` x ∈ JBKξ : sn+1

3) Γ ` A : B ⇒ JΓKξ ` A : B

The lemmas are proved by transforming derivation trees. They mutually depend on each other, (but only for structurally smaller
statements, hence the recursion is sound). For each lemma, each rule is treated. The rule being handled is written before the
corresponding part of the resulting derivation.

In the proofs, the application of each sub-lemma to an arbitrary derivation Γ ` A : B are written as follows:
1) JΓ ` A : BKξ
2) {Γ ` A : B}ξ
3) |Γ ` A : B|

We only give further details for items 1 and 2 in the following.

A. Γ ` A : B ⇒ JΓKξ ` JAKξ : A ∈ JBKξ
•AXIOM; REL-ELIM; REL-FORM; PRODUCT. In this case, the definition of JAKξ falls through: a new relation is introduced.
The proof relies on the next sub-lemma.

Γ ` A : sn

{Γ ` A : sn}ξ

JΓKξ, z0 : A ` z0 ∈ JAKξ : sn+1

|Γ ` A : sn|

JΓKξ ` A : sn

JΓKξ ` λ
•ž :

(
A
·

)
. z0 ∈ JAKξ :

(
A
·

)
•→ sn+1

Rel-I

JΓKξ ` JAKξ : A ∈ JsnKξ

def

•WEAKENING
Γ ` A : B Γ ` C : sn

Γ, x : C ` A : B
wk

-x /∈ ξ
JΓ ` A : BKξ

JΓKξ ` JAKξ : A ∈ JBKξ

|Γ ` C : sn|
JΓKξ ` C : sn

JΓKξ, x : C ` JAKξ : A ∈ JBKξ
wk

JΓ, x : CKξ ` JAKξ : A ∈ JBKξ
def

-x ∈ ξ

JΓ ` A : BKξ

JΓKξ ` JAKξ : A ∈ JBKξ

|Γ ` C : sn|

JΓKξ ` C : sn

JΓKξ, x0 : C ` JAKξ : A ∈ JBKξ

wk

JΓ ` C : snKξ

JΓKξ ` JCKξ : C ∈ JsnKξ

|Γ ` C : sn|

JΓKξ ` C : sn

JΓKξ, x0 : C ` JCKξ : C ∈ JsnKξ

wk

JΓKξ, x0 : C ` JCKξ :

(
C
·

)
•→ sn+1

def

|Γ ` C : sn|

JΓKξ ` C : sn

JΓKξ, x0 : C `
(
x0

·

)
:

(
C
·

) st

JΓKξ, x0 : C ` JCKξ•
(
x0

·

)
: sn+1

app

JΓKξ, x̄ :

(
C

JCKξ

)
` JAKξ : A ∈ JBKξ

wk

JΓ, x : CKξ ` JAKξ : A ∈ JBKξ

def

•REL-INTRO
Γ, ž : Ǎ ` B : sn Γ ` Ǎ : sn

Γ ` (λ•ž : Ǎ. B) : Ǎ
•→ sn

Rel-I

{Γ, ž : Ǎ ` B : sn}ξ
JΓKξ, ž : Ǎ, z01...1 : B ` z01...1 ∈ JBKξ : sn+1

JΓKξ, ž : (JǍKξ ⊕ (λ•ž : Ǎ. B)) ` z01...1 ∈ JBKξ : sn+1
wk

JΓKξ ` (JǍKξ ⊕ (λ•ž : Ǎ. B)) : sn+1

JΓKξ ` (λ•ž : (JǍKξ ⊕ (λ•ž : Ǎ. B)). z01...1 ∈ JBKξ) : ((JǍKξ ⊕ (λ•ž : Ǎ. B))
•→ sn+1)

Rel-I

JΓKξ ` Jλ•ž : Ǎ. BKξ : (λ•ž : Ǎ. B ∈ JǍ •→ snKξ)
def

•APPLICATION
Γ ` F : (∀x̄ : Ā. B) Γ ` ā : Ā

Γ ` F ā : B[x 7→ ā]
app

JΓ ` F : (∀x̄ : Ā. B)Kξ
JΓKξ ` JF Kξ : F ∈ J∀x̄ : Ā. BKξ

JΓKξ ` JF Kξ : (∀x̄ : JĀKξ. (F x̄) ∈ JBKξ,x)
def

JΓ ` ā : ĀKξ
JΓKξ ` JāKξ : JĀKξ

JΓKξ ` JF Kξ JāKξ : ((F x̄) ∈ JBKξ,x)[x̄ 7→ ā]
app

JΓKξ ` JF Kξ JāKξ : (F ā) ∈ JB[x̄ 7→ ā]Kξ
Lemma 2

JΓKξ ` JF āKξ : (F ā) ∈ JB[x̄ 7→ ā]Kξ
def

•ABSTRACTION
Γ, z : Ā ` b : B Γ ` (∀x̄ : Ā. B) : sn

Γ ` (λz̄ : Ā. b) : (∀x̄ : Ā. B)
abs

JΓ, z : Ā ` b : BKξ,z
JΓ, z : ĀKξ,z ` JbKξ,z : b ∈ JBKξ,z
JΓKξ, z : JĀKξ ` JbKξ,z : b ∈ JBKξ,z

def
JΓKξ ` (∀z̄ : JĀKξ. b ∈ JBKξ,z) : sn+1

JΓKξ ` (λz̄ : JĀKξ. JbKξ,z) : (∀z̄ : JĀKξ. b ∈ JBKξ,z)
abs

JΓKξ ` Jλz̄ : Ā. bKξ : (λz̄ : Ā. b) ∈ J∀z̄ : Ā. BKξ
def

•CONVERSION
Γ ` A : B′ Γ ` B : sn B′ =β B

Γ ` A : B
conv

JΓ ` A : B′Kξ
JΓKξ ` JAKξ : A ∈ JB′Kξ

{Γ ` B : sn}ξ
JΓKξ, x : B ` x ∈ JBKξ : sn+1

|Γ ` A : B′|
JΓKξ ` A : B′

|Γ ` B : sn|
JΓKξ ` B : sn B′ =β B

JΓKξ ` A : B
conv

JΓKξ ` A ∈ JBKξ : sn+1
subst

B′ =β B

A ∈ JB′Kξ =β A ∈ JBKξ
Lemma 7

JΓKξ ` JAKξ : A ∈ JBKξ
conv

•START
Γ ` A : sn

Γ, x : A ` x : A
st

-x /∈ ξ

Since ξ conforms to Γ, no variable of ξ is in Γ.
Γ ` A : sn

Γ, x : A ` x : A
st

Γ, x : A ` ddxee : x ∈ JAK
param

JΓKξ, x : A ` ddxee : x ∈ JAKξ
(conforms)

JΓ, x : AKξ ` JxKξ : x ∈ JAKξ
def

-x ∈ ξ
{Γ ` A : sn}ξ

JΓKξ, x0 : A ` x0 ∈ JAKξ : sn+1

JΓKξ, x0 : A, x1 : x0 ∈ JAKξ ` x1 : x0 ∈ JAKξ
st

JΓ, x : AKξ ` JxKξ : x ∈ JAKξ
def

•PARAM

Γ ` x : A

Γ ` ddxee : x ∈ JAK
param

Let π be (01).

JΓ ` x : AKξ

JΓKξ ` JxKξ : x ∈ JAKξ

JΓKξ ` ddJxKξee : JxKξ ∈ Jx ∈ JAKξK
param

JΓKξ ` JxKξ ‡
π : (JxKξ ∈ Jx ∈ JAKξK) ‡π

exchange

JΓKξ ` JddxeeKξ : (JxKξ ∈ Jx ∈ JAKξK) ‡π
def

JΓKξ ` ddxee ∈ Jx ∈ JAKK
ξ

: sn+1

Eq. (3)

JJAKK
ξ

=β JJAKξK ‡
π

JJAKK
ξ
•

(
x JxK

JxKξ ·

)
=β JJAKξK ‡

π•

(
x JxK

JxKξ ·

) β-Rel-Elim

JJAKK
ξ
•

(
x JxK

JxKξ ·

)
=β (JJAKξK•

(
x JxKξ

JxK ·

)
) ‡π

def

ddxee ∈ Jx ∈ JAKK
ξ

=β (JxKξ ∈ Jx ∈ JAKξK) ‡π
def

JΓKξ ` JddxeeKξ : ddxee ∈ Jx ∈ JAKK
ξ

conv

•EXCHANGE Trivial.

B. Γ ` B : sn⇒JΓKξ, x : B ` x ∈ JBKξ : sn+1

•AXIOM

` sn1 : sn2
ax

` sn1 : sn2

ax

x : sn1 ` x : sn1

st

x : sn1 `
(
x
·

)
: sn+1

1

def

x : sn1 `
(
x
·

)
•→ sn+1

1 : sn+1
2

Rel-F

x : sn1 ` x ∈ Jsn1 Kξ : sn+1
2

def

•START

Γ ` sn : sn2
Γ, y : sn ` y : sn

st

-y /∈ ξ
Γ ` sn : sn2

Γ, y : sn ` y : sn
st

Γ, y : sn ` ddyee : y ∈ JsnK
param

Γ ` sn : sn2

Γ, y : sn ` y : sn
st

Γ, y : sn, x : y ` ddyee : y ∈ JsnK
wk

Γ, y : sn, x : y ` ddyee : y
•→ sn+1

def

Γ ` sn : sn2

Γ, y : sn ` y : sn
st

Γ, y : sn, x : y ` x : y

st

Γ, y : sn, x : y ` ddyee•
(
x
·

)
: sn+1

Rel-E

JΓKξ, y : sn, x : y ` ddyee•
(
x
·

)
: sn+1

(conforms)

JΓ, y : snKξ, x : y ` x ∈ JyKξ : sn+1

def

-y ∈ ξ

Γ, y : sn, ẏ : y
•→ sn+1, x : y ` ẏ : y

•→ sn+1

Γ, y : sn, ẏ : y
•→ sn+1 ` y : sn

Γ, y : sn, ẏ : y
•→ sn+1, x : y ` x : y

st

JΓKξ, y : sn, ẏ : y
•→ sn+1, x : y ` ẏ•

(
x
·

)
: sn+1

Rel-E

JΓ, y : snKξ, x : y ` x ∈ JyKξ : sn+1

def

•WEAKENING
Γ ` B : sn Γ ` C : sm

Γ, y : C ` B : sn
wk

-y /∈ ξ
{Γ ` B : sn}ξ

JΓKξ, x : B ` x ∈ JBKξ : sn+1

|Γ ` C : sm|
JΓKξ ` C : sm

JΓKξ, y : C, x : B ` x ∈ JBKξ : sn+1
thinning

JΓ, y : CKξ, x : B ` x ∈ JBKξ : sn+1
def

-y ∈ ξ
{Γ ` B : sn}ξ

JΓKξ, x : B ` JAKξ : A ∈ JBKξ

|Γ ` C : sm|
JΓKξ ` C : sm

{Γ ` C : sm}ξ
JΓKξ, y : C ` y ∈ JCKξ : sm+1

JΓKξ, y : C, ẏ : y ∈ JCKξ, x : B ` x ∈ JBKξ : sn+1
thinning

JΓ, y : CKξ, x : B ` x ∈ JBKξ : sn+1
def

•REL-ELIM
Γ ` F : Ǎ

•→ sn Γ ` ǎ : Ǎ

Γ ` F •ǎ : sn
Rel-E

JΓ ` F : Ǎ
•→ snKξ

JΓKξ ` JF Kξ : F ∈ JǍ •→ snKξ

|Γ ` F •ǎ : sn|

JΓKξ ` F •ǎ : sn

JΓKξ, z0 : F •ǎ ` JF Kξ : F ∈ JǍ •→ snKξ
wk

JΓKξ, z0 : F •ǎ ` JF Kξ : (JǍKξ ⊕ F)
•→ sn+1

def
JΓKξ, z0 : F •ǎ ` Jǎ : ǍKξ

|Γ ` F •ǎ : sn|

JΓKξ, z0 ` F •ǎ : sn

JΓKξ, z0 : F •ǎ ` z0 : F •ǎ
st

JΓKξ, z0 : F •ǎ ` z0 : F •(JǎKξ//01...1)
def

JΓKξ, z0 : F •ǎ ` (JǎKξ ⊕ z0) : (JǍKξ ⊕ F)
def

JΓKξ, z0 : F •ǎ ` JF Kξ•(JǎKξ ⊕ z0) : sn+1
Rel-E

JΓKξ, z0 : F •ǎ ` z0 ∈ JF •ǎKξ : sn+1
def

•REL-INTRO Absurd: the type is a relation (Ǎ
•→ sn), which cannot be a sort.

•REL-FORM
Γ ` Ǎ : sn1

Γ ` (Ǎ
•→ sn1) : sn2

Rel-F

JΓKξ, z0 : (Ǎ
•→ sn1) ` JǍ : sn1 Kξ JΓKξ, z0 : (Ǎ

•→ sn1) ` z0 : Ǎ
•→ sn1

JΓKξ, z0 : (Ǎ
•→ sn1) ` (JǍKξ ⊕ z0) : sn+1

1

def

JΓKξ, z0 : (Ǎ
•→ sn1) ` (JǍKξ ⊕ z0)

•→ sn+1
1 : sn+1

2

Rel-F

JΓKξ, z0 : (Ǎ
•→ sn1) ` z0 ∈ JǍ •→ sn1 Kξ : sn+1

2

def

•APPLICATION
Γ ` Ā : sm1

Γ ` F : Ā→ sn
gen

Γ ` ā : Ā

Γ ` F Ā : sn
app

JΓ ` F : Ā→ sn : sn+1Kξ

JΓKξ ` JF Kξ : F ∈ JĀ→ snKξ

JΓKξ ` JF Kξ : ā ∈ JĀKξ → F ā ∈ JsnKξ

def

JΓ ` ā : Ā : snKξ

JΓKξ ` JāKξ : ā ∈ JĀKξ

JΓKξ ` JF Kξ JāKξ : F ā ∈ JsnKξ

app

JΓKξ ` JF Kξ JāKξ :

(
F ā
·

)
•→ sn+1

def

|Γ ` F ā : sn|

JΓKξ ` F ā : sn

JΓKξ, x : F ā ` x : F ā

st

JΓKξ, x : F ā ` JF Kξ JāKξ

(
x
·

)
: sn+1

Rel-E

JΓKξ, x : F ā ` x ∈ JF āKξ : sn+1

def

•ABSTRACTION (Absurd.)
•PRODUCT

Γ ` Ā : sm1 Γ, x : Ā ` B : sn2
Γ ` (∀x̄ : Ā. B) : smun3

(s1,s2,s3)

JΓKξ, f : (∀x̄ : Ā. B) ` JĀKξ : s1+m
1

JΓKξ, f : (∀x̄ : Ā. B), x : JĀKξ ` f x0 : B

{Γ, x : Ā ` B : sn2}ξ,x
JΓKξ, x : JĀKξ, z : B ` z ∈ JBKξ,x : s1+n

2

JΓKξ, f : (∀x̄ : Ā. B), x : JĀKξ, z : B ` z ∈ JBKξ,x : s1+n
2

wk

JΓKξ, f : (∀x̄ : Ā. B), x : JĀKξ ` (f x0) ∈ JBKξ,x : s1+n
2

subst

JΓKξ, f : (∀x̄ : Ā. B) ` (∀x̄ : JĀKξ. (f x0) ∈ JBKξ,x) : s1+mun
3

(s1,s2,s3)

JΓKξ, f : (∀x̄ : Ā. B) ` f ∈ J∀x̄ : Ā. BKξ : s1+mun
3

def

•CONVERSION
Γ ` B : sn Γ ` sn : sn+1 sn =β s

n

Γ ` B : sn
conv

Trivial.
•PARAM Absurd: the type of the parametricity witness is z ∈ JBKξ, which cannot be a sort sn.
•EXCHANGE Trivial.
•PARAM Impossible.

