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Abstract—Joint processing between base stations is a promising
technique to improve the quality of service to users at the
cell edge, but this technique poses tremendous requirements on
the backhaul signaling capabilities. Partial joint processing is a
technique aimed to reduce feedback load, in one approach the
users feed back the channel state information of the best links
based on a channel gain threshold mechanism. However, it has
been shown in the literature that the reduction in the feedback
load is not reflected in an equivalent backhaul reduction, unless
additional scheduling or precoding techniques are applied. The
reason is that reduced feedback from users yields sparse channel
state information at the Central Coordination Node. Under these
conditions, existing linear precoding techniques fail to remove
the interference and reduce backhaul, simultaneously, unless
constraints are imposed on scheduling. In this paper, a partial
joint processing scheme with efficient backhauling is proposed,
based on a stochastic optimization algorithm called particle
swarm optimization. The use of particle swarm optimization in
the design of the precoder promises efficient backhauling with
improved sum rate.

Index Terms—Joint Processing, Zero Forcing, Backhaul load
reduction, Particle Swarm Optimization, Stochastic Optimization

I. INTRODUCTION

Future cellular communication systems tend to have a
frequency reuse factor of one, causing intercell interference
and reducing user experience close to the cell-edge. Joint
Processing (JP) between Base Stations (BSs) is one of the tech-
niques that falls in the framework of Coordinated MultiPoint
(CoMP) transmission [1]. In downlink JP, the user receives its
data from multiple coordinating BSs.

In a typical Centralized Joint Processing (CJP) approach, the
cluster of BSs jointly coordinates and transmits the data to the
intended user, without causing interference to other users. This
poses users to feed back the Channel State Information (CSI)
of all the BSs in the cluster to their serving BS. Then, the CSI
needs to be forwarded over the backhaul towards the Central
Coordination Node (CCN) to precancel the interference via
BeamForming (BF) and power allocation. This non-casual
availability of CSI at the CCN for interference avoidance can
be treated as casual for a stationary channel, but needs regular
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updates for non-stationary channels. Nevertheless, the need
for the CSI being available at the CCN and for sending the
precoding weights and user data from the CCN to the corre-
sponding BSs puts tremendous requirements on backhauling.
To alleviate them, clusters of BSs are usually arranged. The
clustering techniques can be divided into network-centric or
user-centric, depending on where the clustering decision is
carried out. To this end, Partial Joint Processing (PJP) has
been proposed to reduce the CSI feedback load [2].

PJP can be viewed as a general framework for feedback
and backhaul reduction. In the particular approach considered
in this paper, a CCN or the serving BS might instruct the
User Equipments (UEs) to report the CSI of the links in the
cluster of BSs whose channel gain fall within an active set
threshold or window, relative to their best link (usually the
serving BS). With this PJP scheme, feedback load is reduced,
as CSI of only a subset of BSs is fed back per UE. This subset
is also referred to as an active set. Note that this user-centric
clustering technique results in the formation of overlapping
active set of BSs for each user, and the user should preferably
only receive its data from the set of BSs included in its
active set. The CSI being available at the CCN are marked as
active links and those that are not available (or not reported)
are marked inactive. The CCN forms an aggregate channel
matrix based on these active and inactive links for interference
avoidance. As a result, the aggregated channel matrix is now
sparse, due to the reduced CSI feedback giving rise to inactive
links, which are modeled as zeros.

In JP, linear BF techniques such as Zero Forcing (ZF) can
be used for interference avoidance, as long as the aggregated
channel matrix is well conditioned for inversion. It has been
shown in the literature that the reduction in the CSI feed-
back load is not necessarily reflected in an equivalent BF
backhaul reduction, unless additional scheduling or precoding
techniques are applied [3], or unless the aggregated channel
matrix is diagonal or block-diagonal. In other words, when
calculating the ZF BF based on the sparse aggregated channel
matrix, one inactive link may be mapped into a non-zero BF
weight for that link. This causes unnecessary backhauling,
since the UE has reported that link as inactive and that BS
is then outside the active set of that UE, i.e., the resources
at this BS can be used to serve other UEs. A brute force
approach would be that the CCN might resort to nulling
the BF weights where the links are inactive, but this might
lead to inefficient power allocation and increased interference,
resulting in reduced sum rate of the system in the cluster area.



To the best of our knowledge, this problem has only been
addressed in [3], where two solutions are proposed, one based
on scheduling (MAC layer approach) and the other based on
ZF precoding (PHY layer approach). In the scheduling solution
of [3], a suitable set of UEs are selected for transmission such
that the sparse aggregated channel matrix available at the CCN
is block-diagonal and hence, invertible. These suitable sets are
formed by arranging disjoint active sets in each time slot, i.e.,
each BS involved in serving a UE belongs to only one active
set. The drawback of this approach is that, in each time slot, a
given set of disjoint BS active sets is selected for transmission;
if the UEs prefer services from the same set of BSs they need
to wait for their turn to be served in a TDMA fashion. Fairness
is guaranteed but at the cost of UEs needing to wait for a long
time. In case of the ZF precoding solution in [3], no constraints
are assumed on scheduling. To reduce the backhaul load, the
zeros in the sparse aggregated channel matrix are mapped
to the aggregated BF matrix. The interference is reduced by
formulating this as a constrained optimization problem. The
proposed solution needs a well constructed aggregated channel
matrix and hence, it is heavily dependent on scheduling. On
the other hand, there is no linear technique existing in the
literature that can invert the aggregated channel matrix with
zeros (inactive links) and preserve these zeros in the transposed
version of the inverse, when the aggregated channel matrix is
not diagonal or block-diagonal.

In this paper, Particle Swarm Optimization (PSO), a stochas-
tic optimization method, is proposed as a tool to design a BF
that can achieve a backhaul reduction in terms of zero BF
weights equivalent to the CSI feedback reduction. Compared
to the ZF precoding solution in [3], this technique works on
sparse aggregated channel matrices, without any constraint on
scheduling. PSO has already been shown to obtain the optimal
multiuser MIMO linear precoding vector, where the objective
function of the PSO was to maximize the system capacity
[4]. Whereas, in our paper, the PSO is used in a multicell
scenario performing PJP CoMP with perfect CSI with the main
objective of minimizing interference.

The paper is organized as follows, in section II the system
model is described. Section III introduces PSO and discusses
how the BF weights are treated as particles. Simulation results
are presented in section IV, and section V concludes the paper.
The notation used in this paper is summarized in the footnote
below.

II. SYSTEM MODEL

Consider a cluster of K single antenna BSs involved in the
downlink transmission to M single antenna UEs located at the
cluster center, as shown in Figure 1. Any form of intercluster

Notation: Boldface upper-case letters denote matrices, X, boldface lower-
case letters denote vectors, x, and italics denote scalars, x. The Cm×n is a
complex valued matrix of size m×n. The (·)H is the conjugate transpose of
a matrix. The || · ||F is the Frobenius norm, OffDiag (X) is an operation on
the matrix X that sets the elements in the main diagonal to zero. X(i, j) is
the (i, j)th element of matrix X. vec(X) is the vector of stacked columns of
matrix X and ⊗ denotes the Kronecker product. <{X(i, j)} and ={X(i, j)}
are the real part and the imaginary parts of X(i, j).

Figure 1. The cluster layout, the hexagon in the middle denotes the cluster
area under consideration.

interference affecting the demodulation of signals at the UE
is assumed to be negligible and is thus neglected. With a
frequency reuse factor of one in this layout, the transmission
to a UE will cause interference to other UEs. Assuming CJP,
the discrete time signal received at M UEs, y ∈ CM×1 is

y = HWx + n, (1)

where H ∈ CM×K is the aggregated channel matrix of the
form [hT

1 h
T
2 . . .h

T
M ]T , hm ∈ C1×K is the channel from all

the BSs in the cluster to the mth UE, W ∈ CK×M is the
aggregated BF matrix of the form W = [w1 w2 . . . wM ],
wm ∈ CK×1 is the BF for the mth UE, x ∈ CM×1 is the
transmitted symbols to the M UEs, and n is the spatially and
temporally white receiver noise with variance σ2, and it is
uncorrelated with the transmitted symbols.

When CJP is used, the CCN has a full channel matrix H.
In the literature, a ZF BF matrix W is obtained by taking the
right inverse of H,

W = HH
(
HHH

)−1
. (2)

CJP can be seen as a particular case of PJP when the threshold
is high, such that all links are active for a given UE. For
convenience, at the CCN, the active and inactive links can be
represented as an active set, a binary matrix of size [M ×K],
whose (m, k)th element represents the (m, k)th link between
the mth user and the kth BS. These elements take the value
‘1’ and ‘0’ representing links whose CSI is available (active)
and not available (inactive), respectively [2]. Few links are
active in some scenarios, e.g., small values of the active set
threshold result in a sparse aggregated channel matrix H̃ at
the CCN. If H̃ is invertible, the W̃ thus formed may not
have zeros at places where needed, i.e., a UE will receive
its data from BSs outside its active set, corresponding to its
inactive BSs. For example, say UE1 reported CSI for BS1,
BS3 and not for BS2 i.e., BS2 falls outside the active set of
UE1, hence, H̃(1, 2) = 0. The CCN having the CSI of all
the UEs in that cluster tries to invert the aggregated channel
matrix to obtain the BF weights. These weights are only
needed at BS1 and BS3 for UE1, but they might show up
at BS2 for UE1, due to the behavior of the pseudo-inverse
involved with ZF, i.e., W̃(2, 1) 6= 0. This is highly undesirable
as it results in extra and unnecessary backhaul load on the



cluster. It should be pointed out that BS2 being inactive is
not involved in JP for serving UE1 but BS2 can be involved
in serving other UEs. A BS that is not involved in serving
any UE need not be considered in this setup at all. Due to
the overlapping clusters formed with PJP, the subset of BSs
reported by the UEs differ for a given frequency/time resource.
Hence, a BS serving only one UE at the cluster center, should
be included in the precoding design as this UE is sharing
the same frequency/time resource and the interference thus
generated needs to be accounted.

To realize the gains of the active set based PJP scheme, the
problem at the CCN under a ZF assumption, is two fold: firstly,
invert a sparse matrix and secondly, obtain null BF weights
in the correct places. Hence, BF is an important challenge to
be realized, especially without the need to have any special
constraints on scheduling.

Every BS involved in JP has a maximum per-BS power
constraint of Pmax. The precoding matrix W is realized such
that at least one of the BSs can transmit at maximum power
as defined in

W =

(√
Pmax/

(
max

k=1,...K
||W̃k||2F

))
· W̃, (3)

where W̃k stands for the BF weights of the kth BS towards
the M users.

The Signal to Interference plus Noise Ratio (SINR) for the
mth UE is given as

SINRm =
||hmwm||2

M∑
j=1,j 6=m

||hmwj ||2 + σ2

, (4)

and the sum rate per cell at the cluster center is given as

Rtot =
1

K

M∑
m=1

log2 (1 + SINRm) [bps/Hz/cell]. (5)

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a stochastic optimiza-
tion algorithm inspired from the movement of a flock of birds,
a shoal of fish, etc [5]. The birds are modeled as particles
traveling in the search space to find food or the feasible
solution of a given objective function. Their social behavior is
modeled as a swarm. In [5], the algorithm simulating the social
behavior was simplified and was observed to be performing
optimization. PSO being metaheuristic does not guarantee
a global optimum, but when implemented as a stochastic
optimization, randomness is injected into the algorithm to
move away from the local solution when searching for a
global optimum. In this paper, a basic PSO capable of finding
an equilibrium solution with inertia weight and without the
craziness operator [5], is presented. As per [6], a basic
PSO does not satisfy the convergence condition for global
search. PSO is chosen over classical optimization methods, as
the overlapping clusters (dynamic changes in the aggregated
channel matrix in every frequency/time resource) formed with

PJP make the linear ZF BF technique presented in [3] difficult
to realize.

The ZF precoding solution proposed in [3] for single
antenna systems is simplified into a classic linear algebra
problem Ax = b, where A is formed by block diagonalizing
the aggregated channel matrix; x and b are the vectorized BF
and identity matrices, respectively. The zeros in the x eliminate
the columns of A and the solution reduces to a classic right
inverse as in eqn (2). This can be written compactly as(
IM ⊗ H̃

)
· vec(W̃e) = vec(IM ), where the inactive links

or zeros in W̃e have eliminated the columns of the Kronecker
product. This elimination can give rise to an overdetermined
system and the right inverse does not exist. An overdetermined
system is encountered ∼ 83% of the time, when this approach
is applied for PJP with active set threshold of 10 dB in our
evaluation setup, see section IV. Hence, we propose PSO to
overcome the limitations in the state of the art ZF BF solution
in [3], and we later show that PSO performs better.

The BF weight matrix W̃ is stochastically initialized, and
zeros are inserted according to the active set matrix. The non-
zero BF weights are mapped to the ith particle as X(i, j)←
<{W̃(m,n)} and X(i, j + 1) ← ={W̃(m,n)}. The search
space of the particles is initially limited to [xmin, xmax], where
xmax = 1/max{|H̃(i,j)|}. This value is chosen as the starting
limit of the particles in the search space for faster convergence.
PSO stochastically changes these limits in every iteration. The
aim of the PSO is to optimize the position of the particles of
the swarm based on the objective function. The resulting best
particle is chosen as the best BF weights. In this work, two
different cases are considered:

case a) arg min
W̃a

{
||H̃W̃a − I||F

}
(6)

case b) arg min
W̃b

{
||OffDiag(H̃W̃b)||F

}
(7)

Both objective functions for the PSO are subject to ∀i, j :
H̃(i, j) = 0 maps to W̃x(j, i) = 0, where x represents case
a) or case b). In case a), the identity matrix is subtracted from
the product of the sparse aggregated channel matrix and the
aggregated BF matrix. The identity matrix tries to ensure that
all the users are fairly served, i.e., it aims for equal receive
power to all the users. This is based on the ZF philosophy that
HW = I. The interference is minimized considering fairness
between users. In case b), only the off diagonal elements
of the product of the sparse aggregated channel matrix and
the aggregated BF matrix is considered. The non-zero off
diagonal elements represent the presence of interference in
the system involved in JP. The aim of this objective function
is to minimize the interference alone.

To evaluate the objective function, the positions of the
particles are demapped to form the complex BF weight, i.e.,
W̃(m,n) ← {X(i, j)} + i · {X(i, j + 1)}, where ‘i’ is the
imaginary unit. The core of the PSO algorithm is described in
eqns (8)-(11). These equations are evaluated in every iteration,
i.e., ∀i = 1, . . . , N ; j = 1, . . . , n, where the time step length
is 4t = 1, N is the number of particles and n is the



number of variables. Eqn (8) updates the velocity of the
particle, where the term involving c1 is called the cognitive
component (weighs the self confidence of that ith particle)
and the term involving c2 is called the social component
(weighs the reliability of other particles for that ith particle).
Xpb(i, :) ← X(i, :) is the best position attained by the ith
particle itself carrying the best BF weights it could find, xsb

is the best position attained by any particle carrying the best
BF weights in the entire swarm. p and q are uniform random
numbers in [0, 1]. Eqn (9) restricts the maximum velocity of
the particle to vmax, such that the particles do not diverge and
eqn (10) updates the position of the particle. An inertia weight,
w, is used to bias the current velocity based on its previous
value in eqn (8), such that when the inertia weight is initially
1.4, being greater than 1, the particles are biased to explore
the search space. When w decays to 0.4, due to a constant
decay factor β in eqn (11), the cognitive/social components
are given more attention [7].

V(i, j)←w ·V(i, j) + c1 · p · (Xpb(i, j)−X(i, j))/∆t

+ c2 · q · (xsb(j)−X(i, j))/∆t (8)
|V(i, j)| <vmax (9)
X(i, j)←X(i, j) + V(i, j) ·∆t (10)

w ←w · β (11)

The cognitive factor, c1, and the social factor, c2, are equal to
2 as highlighted in [5], [6]. These references also indicate that
the choice of the nonlinear decreasing in the inertia weight
with an initial value of 1.4 ensures that the particles cover
a large search space and then the particles focus on refining
the solutions. The choice of the decay factor as 0.99 indicates
slow decaying in the inertia weight. The number of particles
is also fixed throughout the simulation. The choice of the
number of particles, N = 30, was found to be a reasonable
compromise with the computational complexity and the ability
of the PSO to find an equilibrium solution, see [6] and the
references therein. The values of the PSO parameters used in
this initial work are the typical values and are summarized
in Table I. The influence of the PSO parameters chosen for
the design of the precoding matrix needs to be investigated
further as part of our future work, and also with the channel
data from field measurements. PSO is preferred over other
genetic algorithms, as it has the least number of parameters
to configure and promises better computational efficiency.

IV. SIMULATION RESULTS

Consider the scenario with K = M = 3 single antenna
BSs/UEs involved in JP. Each BS covers a hexagonal cell of
radius, R = 0.5 kms. The UEs are placed at the cluster center
along an ellipse with semi-major and semi-minor axis of length
R
16 and h/2

16 , respectively, where h is the height of the hexagon,
as illustrated in Figure 1. The pathloss model in [8] is used,

γPL(dB) = 128.1 + 37.6log10R.

The channel is realized as follows, H = Γ
√
G · γPL · γSF,

where Γ ∼ CN (0, 1) are i.i.d complex Gaussian fading coef-

Table I
PARTICLE SWARM PARAMETERS

Parameters Values
Number of Particles, N 30

xmax = −xmin 1/max {|H̃(i,j)|}
Max. velocity, vmax (xmax−xmin)/∆t

Cognitive factor, c1 2
Social factor, c2 2

Inertia Weight, w 1.4→ 0.4
Constant decay factor, β 0.99
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Figure 2. Convergence behavior of PSO for 4 different channel realizations

ficients, γSF ∼ N (0, 8 dB) is the shadow fading component,
and G is the transmit antenna gain of 9 dBi. The system Signal
to Noise Ratio (SNR) or the reference value of one UE located
at the cell-edge, is fixed at 15 dB, giving rise to a maximum
BS transmit power of 0.0603 W. It has been shown that it is
difficult to estimate channels with pilot overhead for PJP with
active set threshold greater than 15 dB at the cell-edge [9].
Hence, in this setup, a PJP threshold of 10 dB is considered.

The PSO with two different objective functions with case
a) and b) can be compared with case e) based on [3]. The
case c) is a typical ZF BF as in eqn (2) obtained from limited
feedback where backhaul reduction is achieved with explicit
nulling of the BF coefficients, i.e., zeros or nulls are placed
in the BF matrix where needed. Similarly, case d) achieves
backhaul reduction with explicit nulling but this is a genie
aided case where full feedback is allowed i.e., complete CSI
is available at the CCN. CJP has the full feedback and full
backhauling, without any reduction in feedback or backhaul.

The convergence of the PSO algorithm is shown in Figure
2 for various aggregated channel matrices at CCN. The PSO
in case b) converges the fastest within 100 iterations. Once
the BFs are obtained from various algorithms, a simple power
allocation per BS as in eqn (3) is performed, where there is
at least one BS transmitting at maximum power. PSO being
an iterative procedure, the per-BS power constraint can be
applied in every iteration or after convergence. It should be
noted that in case a), as defined in eqn (6), the power constraint
is applied after the PSO algorithm has converged and in case
b), as defined in eqn (7), the power constraint is applied
after evaluating the objective function in every iteration. Other
combinations were not considered, as the convergence was
poor when the power constraint was applied in every iteration
in case a). Applying the power constraint after convergence
in case b) had more residual interference with slower conver-
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Figure 3. CDF of the BS power (PBS) transmitted with various precoding
algorithms. The kth BS power is calculated as ||Wk||2F .

gence. Hence, the best combinations were considered. Figure
3 shows the Cumulative Distribution Function (CDF) of the
BS transmit power. The values in the legend show the mean
value of a given CDF. It can be observed that the PSO in
case b) uses the BS power constraint, Pmax more effectively
compared to others, as it is the bottom-most curve and it uses
2.85% relatively more power than case e), in average. All
CDFs exhibit maximum power for 33.3% of the time, this is
due to eqn (3), as at least one of the 3 BSs is transmitting at
maximum power.

The residual interference power in the system was calculated
based on ||OffDiag(HW̃x)||2F , where H is the actual channel
and x can be any one of the cases. It was observed that
case a) trying to fairly serve all the users with equal power
leaves 0.69% relatively more interference in the system when
compared to case e). While, case b) reduces the interference
by 3.94% relatively compared to case e). The CDF of the
residual interference is not shown here, due to lack of space.

The CDF of the sum rate is shown in Figure 4. Case a)
and b) perform the best compared to the other cases, with a
PJP-10 dB threshold on CSI feedback. Case b) has a relative
improvement in the average sum rate by 2.45% compared
to case e), state of the art [3]. It should be noted that in
this simulation setup, for fair comparison, only those cases
are considered where the active set does not produce an
overdetermined system, so that the state of the art solution in
case e) works. This also means that PSO can be applied in all
the scenarios without any restriction regarding scheduling or
the need to have a well conditioned aggregated channel matrix.
Hence, PSO not only achieves the reduction in backhaul, there
is also a greater gain compared to the state of the art, as it
always finds a solution. The case b) with PSO performs 2.98%
relatively better than the genie aided full feedback case d)
with reduced backhaul. The complexity analysis of the PSO
algorithm with the constraint of backhaul load being equivalent
to feedback load is treated as part of our future work.

V. CONCLUSION

Efficient backhauling techniques are needed to realize the
gains of joint processing with reduced feedback. Existing
techniques of achieving efficient backhauling in this context
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have constraints on scheduling or need full channel state
information to be fed back. The particle swarm optimization
used in this paper, is able to perform without any such
constraints.

When the state of the art technique can find a solution,
the average sum rate of the stochastic optimization algorithm
performs 2.45% better than the state of the art solution,
without any restriction on scheduling, such that the back-
hauling load is equivalent to that of the feedback load. The
proposed algorithm is also capable of performing even when
the state of the art solution fails due to an overdetermined
system. The best algorithm proposed in this paper converges in
merely 100 iterations, with effective usage of the base station
power and lowering interference. With parallel computing
and with more improved flavors of swarm algorithms, this
complexity is feasible. Robustness of the proposed particle
swarm algorithm with optimized parameters and imperfect
channel state information will be studied as part of our future
work.
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