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Abstract- We present an integrated THz waveguide packaging 

solution based on the combination of all-metal micro-machined 

THz waveguide technology and active component chip layouts 
suitable for the realization of systems from 200 up to 5000 GHz. 
This packaging solution is compatible with different THz 

component technologies, for room temperature and cryogenic 
operations and employs space-qualified wire-bonding for 
electrical contacting. The THz waveguide packaging provides 

possibility of making 3-dimensional structures via facilitating of 
multi-level (layered) designs. The surface roughness of the 
fabricated THz waveguide structure was demonstrated to be 20 

nm, while the alignment accuracy of the active component chip 
was measured to be about 2 µm. Some of the demonstrators are 
already in used, at.e.g., APEX telescope in the SHeFI receiver [1].  

I. INTRODUCTION AND BACKGROUND 

Regardless of the core technology for Terahertz sources and 

detectors (e.g, Schottky diodes, MMIC, SIS or HEB mixers), 

the components have to be integrated into THz electromagnetic 

guiding structures, in order to produce complete THz systems, 

which in this context is defined as THz packaging.  

Waveguides are widely used in the industry and are 

particularly attractive guiding systems for electromagnetic 

waves, since they are relatively broadband and low loss 

transmission lines. Furthermore, waveguides provides 

complete confinement of the EM field inside a hollow structure 

and thus have negligible sensitivity to RF interference and limit 

RFI/EMI in the systems.  

The challenges for THz waveguide are the small waveguide 

dimensions (~100x200 µm
2
 and ~20x40 µm

2
 at 1 THz and 5 

THz, respectively) and the required nanometric surface 

roughness of the waveguide walls. The small dimensions 

originate from the scaling of the solutions of Maxwell’s 

equation with the wavelength. The surface roughness 

limitations are coupled to the submicron size of the skin depth 

at these frequencies, and directly responsible for the RF losses. 

In any case, both these constraints are completely out of reach 

for conventional machining even with the latest CNC 

technology, even though slightly more tolerant designs of 

components have been introduced for hybrids [2]. 

Besides, handling the substrate-based active components and 

mounting them into a waveguide structure becomes really 

demanding at THz frequencies when the dimensions of such 

“substrate” becomes as small as e.g, 1000x70x17µm [3].  

In this paper, we present a complete waveguide packaging 

technology suitable for frequencies up to 5000 GHz, 

combining all-metal THz waveguide technology [4] based on 

micromachining, for ultimate waveguide quality and a novel 

chip layout  based on SOI structure [5], forming a Π-frame 

supporting the active devices on a thin cross beam, for simple, 

fast and accurate chip positioning. 

II. ALL METAL WAVEGUIDE TECHNOLOGY 

Multi-level (layered) waveguide structures were fabricated 

using the GARD process [3] for different SIS and HEB mixers 

for frequencies ranging from 350 GHz to 2 THz [1],[5-6] 

(Fig.1 and Fig 2).  

The process is based on copper electroforming over 

sacrificial layered mold made out of SU-8 and pattern by 

conventional photolithography. As a result, submicron linear 

accuracy and surface roughness of the waveguide walls down 

to 20 nm were verified [4] on the fabricated waveguide 

structures. Furthermore, the fabricated hardware is already in 

use on the SHeFI receiver of the APEX telescope [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. SEM image of the fabricated multi-level structure: a back-piece of 

the APEX T2 1.3 THz HEB mixer block, with chip schematic overlayed. [4] 

 

Importantly, the photolithographic nature of the GARD 

process makes this fabrication technique very attractive in for  

volume production due to its throughput and reproducibility, 

compared to the competing technologies. 

Even though Silicon micromachining [7]-[8] has been used 

to produce waveguide structures for THz receivers, this 

technique is largely limited to fabrication of 2 layer structures, 

with inherent difficulty of making evenly deep grooves of 

different width, and, generally, the process somewhat 

cumbersome. Direct laser ablation has also been demonstrated 



on Silicon [9] but requires extremely long processing time and 

thus has inherently low throughput.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SEM picture of the 1.6-2.0 THz hybrid made as waveguide 

branch-line coupler in split-block technology (60×60 µm in every split half) [5] 

 

Alternatively, waveguide structures defined and processed 

exclusively out of thick SU-8 photoresist [10] or combining Si 

etching and thick photoresist [11] are almost incompatible with 

cryogenic operation due to the large mismatch between the 

their thermal expansion coefficients and Copper. 

All-metal multilayer structures opens new possibilities for 

millimeter and THz cryo-receivers both for ground based and 

space borne observations, since it permits the realization of 

large mixer block parts and hence simplifies the assembly and 

eradicate thermal differential contraction problems, unlike 

other Silicon waveguide micromachining technologies.  

Furthermore, the availability of split block technology at 

THz frequencies naturally, along with achieving extremely 

high waveguide surface quality and thus low RF loss and 

possibility of using multi-level designs, the suggested 

technology opens solid prospects for building complex 

waveguide circuits (Fig. 3). This would naturally increases the 

level of integration in THz systems, making them more 

compact and eventually lighter, which might be very relevant 

from space borne observatories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SEM picture of the micro-fabricated 600-750 GHz 2SB SIS Mixer.  

 

Even though the all-metal waveguide technology was largely 

demonstrated on cryogenic receivers, it is not limited to low 

temperature hardware. In fact, it is fully compatible with room 

temperature technologies such as MMICs or Schottky diodes. 

The presented micromachining technique faces though 

different limitations in reproduction of structures’ geometry 

depending on the frequency. For Sub-Millimetre wave 

components with bigger waveguide dimensions, some specifics 

of the photolithography process should be taken into account. 

In particular, the verticality of the SU-8 pattern walls and 

internal photoresist stress issues could be challenging. During 

our initial experiments, we have fabricated a waveguide circuit 

for 2SB SIS mixer with even larger waveguide dimensions. 

The measured depth of the processed waveguides structure was 

350 µm, which suggests that, used in a split-block layout the 

waveguide circuits down to 200 GHz could be fabricated using 

the proposed micromachining technique. 

Towards higher THz frequencies, the availability of active 

elements, e.g., Schottky mixers. HEB, SIS and constrains 

coming from the handling and mounting of these extremely 

small and fragile components into the waveguide mixer block, 

would be the limiting factor, rather than the waveguide 

dimensions, which can easily be pushed down with the use of 

DUV lithography. Therefore we envisage that this proposed 

technology could be advantageously used at frequencies up to 

6-7 THz. 

III. ACTIVE COMPONENT INTEGRATION 

The all-metal waveguide technology opens solid prospects 

for building split block complex waveguide circuits by 

employing a single photo-mask set, e.g., a balanced receiver 

scheme comprising the hybrid, bends and waveguides 

providing interfaces to the input horns and to the mixers.  

3D FEM electromagnetic simulations for such a split.block 

waveguide balanced HEB mixer resulted in a mixer chip 

dimensions of 360 × 50 × 2 μm and clearly would be extremely 

difficult to manipulate and integrate in the mixer block [4].  

Earlier suggested beam-leads and membrane solutions [12-

14] partly solve the problem of the electrical interfacing the 

device but do not provide improved handling by leaving the 

substrate size as small as it is. Another proposed solution 

would employ a micro-machined frame supporting the mixer 

substrate [15-16], providing far more possibilities to handle the 

mixer chip. However this type of design requires a back-piece 

configuration making it incompatible with the split-block 

technique.  

In our novel approach, atarting from SOI wafers, a Π-shaped 

bulk silicon frame is formed, providing alignment reference for 

the active device fabricated on a cross beam as outlined in Fig. 

4. The shape of the HEB mixer chip is defined via 

micromachining, photolithography and consequent etching, 

while the thickness of the beam and the supporting frame 

depends on the SOI substrate. Consequently, in order to 



integrate the HEB mixer chips having this novel layout into the 

mixer block does not require any additional lapping and dicing. 

 

 

 

 

 

 

 

 

 

 

 

 

RF&LO in

HEB mixer

Waveguide split

RF choke, ground

RF choke, DC&IF WG backshort

SOI beam½ waveguide 60x120 mm

High impedance line

Supporting half-frame SOI

y

x

z

 

Figure 4. Illustration of the HEB mixer chip with supporting half-frame [5]. 

 

This chip layout ease the handling, electrical contacting and 

mounting of the active device in the waveguide. The shape and 

the dimensions of the supporting Π-frame are chosen such that 

it provides alignment reference with respect to the 

corresponding recess in the mixer housing where it should be 

integrated. Based on this approach we have fabricated a 

technology demonstrator for 1.6 – 2.0 THz receiver (Fig 5.), 

where an alignment accuracy of about 2 micrometers has been 

confirmed (Fig 6.). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Technology demonstrator for 1.6 – 2.0 THz receiver [5].  

 

IV. CONCLUSIONS 

 

In this paper, we presented a complete waveguide packaging 

technology, suitable for all millimeter and THz device 

technology with the considerable advantage of being reliably 

compatible with cryogenic operating conditions. The presented 

packaging technology takes full advantages of all-metal 

waveguide combined with a novel component design. This 

design uses a novel layout for the HEB mixer employing bulk 

Si Π-frame, supporting a cross beam accommodating the active 

devices. We successfully demonstrated all technological steps 

and final integration of a balanced THz mixer. We believe that 

the demonstrated approach is suitable for building a single-end 

deep-terahertz mixer operating at up to 5 THz. The confirmed 

ease of integration by means of self-aligning of the mixer chip 

in the mixer housing opens prospective for making moderately 

large heterodyne terahertz array receivers. The proposed 

technology does not limit the number of pixels, which is rather 

constrained by a possibility to generate enough LO power.  

Even though demonstrated for HEB, the technology is suitable 

for other active mixer components such as Schottky diode- and 

SIS mixers or terahertz. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Aligned HEB mixer beam crossing the waveguide [5].  
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