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Abstract— This paper investigates how convolutional and
Reed–Solomon codes can be used to improve the performance of
multiband-OFDM by utilizing the inherent frequency diversity
of the new IEEE 802.15 UWB channel models.

A normalized amplitude autocovariance function of the
Fourier transform of the channel impulse response is defined.
Then the average coherence bandwidth of CM1, CM2, CM3,
and CM4 are estimated to be 31.6, 16.3, 11.0, 5.8 MHz, re-
spectively. Using the central limit theorem, we can expect that
the performance of an uncoded OFDM system on CM1–CM4
without shadowing is the same as on a Rayleigh fading channel
with uniformly distributed phase.

The performance of a convolutional code with rate 1/2 and
constraint length 7 on CM2–CM4 without shadowing are up to
0.4 dB worse than that of on an uncorrelated Rayleigh fading
channel. The loss for CM1 is around 1 dB. A block interleaver
with 32 rows and 24 columns was used. This result is also valid
for a convolutional code with rate 1/4 and constraint length 7.

For code rates around 2/3, the performance of a punctured
convolutional code with soft-decision decoding is much better
than that of the Reed–Solomon codes with with 6, 7, and 8 bits
per symbol and hard-decision decoding.

I. INTRODUCTION

In the near future, there will appear a demand for low cost,
high-speed, wireless links for short range (< 10 m) communi-
cation. Such links should support digital video transmission to
be able to replace impractical cables. Ultra-wideband (UWB)
systems with data rates of several hundred megabits per second
could provide those features.

UWB systems can be divided into two groups: single
band and multiband. Two commonly used single-band impulse
radio systems are time-hopping spread-spectrum impulse radio
(TH-UWB), [1], and direct-sequence spread-spectrum impulse
radio (DS-UWB). Multiband-UWB and multiband-OFDM di-
vide the spectrum into several bands, [2]–[5]. Multiband-
OFDM was proposed for the physical layer within IEEE
802.15.3 that covers UWB communication in a wireless per-
sonal area network (WPAN).

Recently, IEEE proposed a channel model for UWB systems
[6] based on the Saleh–Valenzuela model where multipath
components arrive in clusters [7]. Before this channel model,
the requirements from FCC [8] and the standardization within
IEEE 802.15.3, the term ultra-wideband was mostly used for
impulse radio. Lately, an increasing interest in achieving high
data rates and using carrier-based system have been seen and
the meaning of ultra-wideband has widened.

The IEEE UWB channel is constant during the transmission
of one packet and no inherent time diversity is available within
one packet. Fortunately, the channel is frequency selective
which creates an opportunity to use error control coding to
achieve frequency diversity.

The objective of this paper is to investigate the performance
of convolutional codes and Reed-Solonom codes with the
multiband-OFDM system on the IEEE UWB channel models
and uncorrelated Rayleigh fading channels.

II. SYSTEM MODEL

The system model consists of an outer encoder, an outer
interleaver, an inner encoder, an inner interleaver, a multiband-
OFDM modulator, a channel, a multiband-OFDM demod-
ulator, an inner deinterleaver, an inner decoder, an outer
deinterleaver, and a outer decoder.

A. Error Control Coding and Interleaving

In this paper, only block interleavers were used where the
encoded bits or symbols were written row-wise and read out
column-wise. Two convolutional codes with optimum distance
spectrum (ODS) that have rates 1/2 and 1/4 with constraint
length v = 7 are used [9]. The minimum free distance dfree

of the codes are 10 and 20, respectively. The convolutional
codes are denoted CC(2,1,7) and CC(4,1,7), respectively. Two
punctured convolutional codes with rates 2/3 and 5/6 are
used. They are obtained by puncturing the CC(2,1,7) code
and are denoted PCC(3,2,7), and PCC(6,5,7), respectively. The
puncturing matrixes employed are found in [10]. The dfree are
6 and 4 respectively. Soft-decision decoding assuming perfect
channel knowledge was used in the Viterbi algorithm.

Reed–Solomon (RS) codes have burst error correcting ca-
pabilities and might thus be useful in our studied system.
They use an alphabet of q symbols and usually q = 2l. l
bits are mapped to one of the q symbols. One code word
consists of nRS = q − 1 = 2l − 1 coded symbols and
kRS = nRS − 2t information symbols. This code can correct
t symbol errors. Three RS codes with l equal to 6, 7, and
8 bits per symbol having a rate around 2/3 are tested. A
Reed–Solomon code is denoted RS(nRS, kRS, l) and for the
investigated codes we have RS(63,41,6), RS(127,83,7), and
RS(255,169,8), respectively. Those codes can correct 11, 22,
and 43 symbol errors, respectively.



The errors in the output of a Viterbi decoder are always
appearing in bursts due to the structure of the trellis of the
code. The most probable length of a burst is equal to the
constraint length v. High-rate block codes handles burst errors
rather well. A concatenated scheme with an outer Reed–
Solomon code and an inner convolutional code could improve
the performance. If we set the number of bits in one RS symbol
l to be larger than v, the error will most likely affect only one
symbol. With this concatenated scheme, a symbol interleaver
with nRS rows and b columns could be used as the outer
interleaver. This interleaver can cope with a burst length of
b symbols. If we set l to be smaller than v, we can increase
b.

B. Multiband-OFDM

The multiband-OFDM system in [4] divides the spectrum
Btot = 1.584 GHz into Nband = 3 bands, each with a
bandwidth of B = 528 MHz. The OFDM symbol number o is
then transmitted in band b given by b ≡ o (mod Nband). Each
OFDM symbol has Nst = 128 subcarriers where the subcarrier
bandwidth is Bs = B/Nst = 4.125 MHz. One OFDM symbol
has a duration of TSYM = TFFT + Tcp + TGI = 312.5 ns where
TFFT = 1/Bs = 242.4 ns is the DFT integration time, Tcp =
60.6 ns is the length of the cyclic prefix and TGI = 9.5 ns is
the guard interval. NSD is the number of data subcarriers per
OFDM symbol. In total, there are NbandNst = 384 subcarriers
in the 3 bands.

Under the assumptions of a long enough cyclic prefix, no
doppler shift, linear hardware, and a constant channel during
TSYM, the subcarriers become independent. Then the received
signal on subcarrier k can be modeled, with complex baseband
representation, as

Rk = SkGk + nk 0 � k � NbandNst − 1 (1)

where Sk is a transmitted quadrature modulated symbol, nk

is complex valued white noise with variance N0 and Gk is a
complex subcarrier channel gain. If g(t) is the channel impulse
response, Gk = G(fk) where G(f) is the continuous time
Fourier transform of g(t) evaluated at subcarrier frequency
fk = f0 + kBs. Here f0 is set to 3.17 GHz. The values of
k for band b = 0, 1, 2 are [0, 127], [128, 255], and [256, 378],
respectively.

The investigated receiver uses coherent detection assuming
perfect channel estimates and QPSK modulation which gives

Yk = RkG∗
k = Sk|Gk|2 + nkG∗

k 0 � k � NbandNst − 1 (2)

where ∗ denotes complex conjugate. Yk is used as a deci-
sion variable for hard-decision decoding. For soft-decision
decoding, an optimum squared euclidean distance metric is
calculated based on {Yk}.

C. Channel Models

The channel model of {Gk} in frequency domain used in
(1) can be viewed as a time-frequency matrix with 378 rows.
The number of columns is equal to the number of OFDM
symbols per packet.

1) IEEE UWB Channel Model: The IEEE UWB channel
model is a block fading channel where each of the gains
{Gk} is constant during the whole packet. Moreover, channel
realizations are independent between packets.

The IEEE UWB channel model is based on the Saleh–
Valenzuela model where multipath components arrive in clus-
ters [6], [7]. This multipath channel can be expressed as

h(t) = Xc(t) = X
∑
l�0

∑
k�0

αk,lδ(t − Tl − τk,l) (3)

where the real-valued multipath gain is defined by αk,l for
cluster l and ray k. The lth cluster arrives at Tl and its
kth ray arrives at τk,l which is relative to the first path
in cluster l, i.e. τ0,l = 0. The amplitude |αk,l| has a log-
normal distribution and the phase ∠αk.l is chosen from {0, π}
with equal probability. The expected value E

(|αk,l|2
)

is
proportional to exp(−Tl/Γ − τk,l/γ), where Γ and γ denote
a cluster- and a ray-decay factor, respectively. The interarrival
time between two clusters Tl+1 − Tl or two rays within one
cluster τk+1,l − τk,l is exponentially distributed. Log-normal
shadowing is modeled with X = 10n/20 where n has a normal
distribution with mean µ = 0 and standard deviation σx = 3.

The continuous time Fourier transform of c(t) in (3) is

C(f) =
∑
l�0

∑
k�0

αk,le
−j2πf(Tl+τk,l). (4)

Note that in this article, the models are used with and without
the shadowing term X . The channel gains of {Gk} from (1)
are given by Gk = C(fk)X and Gk = C(fk) with and without
shadowing, respectively. The shadowing will scale Eb with
E
(|X|2) = 10σ2

x ln(10)/200+µ/10 ≈ 1.27 ≈ 1.04 dB.
There are four different models, CM1, CM2, CM3 and

CM4, for different channel characteristics. These are presented
in Tab. I. In the rest of this paper, IEEE UWB models without
shadowing are denoted CM1, CM2, CM3, and CM4, while
models with shadowing are referred to as CM1X, CM2X,
CM3X, and CM4X.

TABLE I

THE IEEE UWB CHANNEL MODEL

Model Characteristic CM1 CM2 CM3 CM4 unit

Tx Rx separation 0-4 0-4 4-10 m

(Non-)line of sight LOS NLOS NLOS NLOS

2) Uncorrelated Rayleigh Fading Channel: The purpose of
using an uncorrelated Rayleigh fading channel is to see how
much the coherence bandwidth and the lack of time diversity
of the IEEE UWB channels degrade the performance. The
uncorrelated Rayleigh fading channel sets the {Gk} in the
time-frequency matrix to have uncorrelated Rayleigh fading
amplitudes and uniformly distributed phases.

III. SYSTEM PARAMETERS AND ASSUMPTIONS

In this paper, we use, for simplicity, NSD = 128 of the 128
carriers per OFDM symbol for data, although only 100 are



used in the multiband-OFDM system in [4]. The convolutional
code is used with a bit interleaver with 32 rows and 24
columns. The length of the interleaver is 768 which the number
of bits in three OFDM symbols with QPSK.

Eb/N0 is defined as E
(|SkGk|2

)
/(E

(|nk|2
)
Rc log2 M)

where Rc is the channel code rate and M is the alphabet
size. This definition do not consider the energy loss due to
pilots and cyclic prefix.

The simulations of the multiband-OFDM system was per-
formed using complex baseband representation in the fre-
quency domain as given by (1). The synchronization is as-
sumed to be perfect and the effects of the antenna and other
nonlinear hardware have been neglected.

IV. ANALYSIS

A. Analysis of IEEE UWB Channel Model

The normalized amplitude autocovariance of C(f) in (4) is
defined as

ρa(v) = Cov (|C(f)|, |C(f + v)|) /Var (|C(f)|) . (5)

The coherence bandwidth Bc is defined here via ρa(Bc) = 0.5.
The mean excess delay τ̄ (i), the RMS delay spread σ

(i)
τ , and

B
(i)
c were calculated for one realization i of c(i)(t) in (3). Then

the average of τ̄ (i), σ
(i)
τ , and B

(i)
c denoted τ̄ , σ̄τ , and B̄c were

numerically estimated from a large number of realizations
{c(i)(t)}. The standard deviation of those random variables
were also estimated. Tab. II contains the estimated values. The
scaling factor q = 1/σ̄τ B̄c gives the relationship between the
coherence bandwidth and the RMS delay spread. The values
of q is between 6 and 7.3 which is close to the normal rule
of thumb that uses 2π. By dividing the average coherence
bandwidth with the subcarrier bandwidth Bs = 4.125 ·106 Hz,
the average number of correlated subcarriers, k̄, is obtained.

TABLE II

ESTIMATED MODEL CHARACTERISTICS OF CM1 TO CM4

Estimated Characteristic CM1 CM2 CM3 CM4 unit

Avg. mean excess delay τ̄ 4.85 9.57 15.58 28.47 ns

Standard deviation of {τ̄ (i)} 1.45 2.10 5.48 8.51 ns

Avg. RMS delay spread σ̄τ 5.30 8.40 14.39 25.91 ns

Standard deviation of {σ(i)
τ } 1.31 0.99 3.33 5.58 ns

Avg. coherence bandw. B̄c 31.60 16.25 11.03 5.79 MHz

Standard deviation of {B(i)
c } 10.97 3.46 3.95 2.12 MHz

q = 1/σ̄τ B̄c 5.97 7.33 6.30 6.67

k̄ = B̄c/4.125 MHz 7.7 3.9 2.7 1.4

When the number of taps is large, the central limit theorem
tells us that C(f) in (4) will converge in distribution to I +
jQ where I and Q are normally distributed random variables
with zero mean and variance σ2. The zero mean is due to
the fact that E (αk,l) = 0. Consequently, we expect that the
performance of an uncoded OFDM system on CM1–CM4 and
on a Rayleigh fading channel with uniformly distributed phase
are the same.

The amplitude of the Fourier transform |H(f)| = X|C(f)|
has a Suzuki distribution [11] for each f since X is log-
normally distributed. We have numerically verified, with high
accuracy, that the estimated pdfs of the amplitude |C(f)|
and the phase ∠C(f) are Rayleigh and uniformly distributed,
respectively.

B. Analysis of Size of Block Interleaver

When designing the block interleaver, we have to consider
both k̄ and the fact that the standard deviation of {B(i)

c } is
roughly one third of B̄c. The number of columns have to be
several times larger k̄ log2 M . For the convolutional code, one
rule of thumb is that the number of rows has to be larger than
5(v − 1) so that influence of the fading dips on the Viterbi
algorithm are almost negligible.

C. Performance Analysis of Convolutional Codes

The union bound of the bit error rate of a convolutional
code is given by [12, p. 488]

Pb(Eb/N0) <
1

kCC

∞∑
d=dfree

cdP2(d,Eb/N0) (6)

where cd is the distance spectrum defined as the total number
of information bit errors for all error events of length d. The
distance spectrum for the ODS convolutional codes used in
this paper is found in [9]. P2(d,Eb/N0) is the pairwise error
probability that a correct path and an incorrect path differ in d
positions. (6) is also valid for punctured convolutional codes
and the distance spectrum for several punctured codes can be
found in [10].

Now we assume that we have coherent detection with
perfect channel estimates on a perfectly interleaved Rayleigh
fading channel and a soft-decision Viterbi decoder. With Rc

as the code rate, the pairwise error probability becomes [12,
p. 859]

P2(d,Eb/N0) = pd
d−1∑
l=0

(
d − 1 + l

l

)
(1 − p)l (7)

with

p =
1
2

(
1 −

√
RcEb/N0

1 + RcEb/N0

)
(8)

When the outer code is Reed–Solomon and the inner code is
convolutional, the knowledge of the symbol error probability,
Ps, at the output of the Viterbi decoder is valuable. One
symbol is defined as a Reed-Solomon code symbol of l bits.
A simple upper bound on Ps is

Ps � lPb (9)

A better upper bound, which is only valid for kCC = 1, con-
siders the transfer function T (D,N, J) of the convolutional
code with constraint length v and is given by [13]

Ps <

∞∑
d=dfree

fdP2(d, γb) (10)



with fd as the polynomial coefficients in

∞∑
d=dfree

fdD
d = (l − v)T (D, 1, 1) +

∂T (D,N, J)
∂J

∣∣∣∣∣
N=1,J=1

(11)

where we recognize T (D, 1, 1) =
∑∞

d=dfree
adD

d and ad as
the number of incorrect paths of Hamming weight d. Note
that the differentiation is with respect to J . The exponent of
J gives the length of the path that merges with the all-zero
path for the first time.

D. Performance Analysis of Reed–Solomon Codes

The probability of a code word error, PW , for a Reed–
Solomon code that can correct t symbols on a channel with
uncorrelated symbol errors and a symbol error probability Ps

is given by

PW = 1 −
t∑

j=0

(
nRS

j

)
P j

s (1 − Ps)nRS−j (12)

For 6, 7, and 8 bits per symbol, one RS-symbol is transmitted
on 3, 3.5 and 4 subcarriers, respectively, when QPSK is
used. Also, the length of one code word is 378, 889, 2040
bits, respectively. With 8 bits per symbol, one code word is
transmitted on almost 8 OFDM symbols. Thus, the first third
and the second third of one code word will be affected by the
same subcarrier channel gains {Gk}.

E. Performance Analysis of Concatenated Codes

When the outer code is a Reed–Solomon code and the inner
code is a convolutional code, the word error rate can be upper
bounded by substituting Ps from (9) or (10) in (12). The
performance of this RS+CC code is improved if a symbol
interleaver is used between the Viterbi decoder and the RS
decoder.

F. Diversity Order

On an uncorrelated Rayleigh fading channel, it can be
shown [14] that the average bit error rate, P̄b, approaches
K/(Eb/N0)D when Eb/N0 approaches infinity. This defines
the diversity order D. Since the bit error rate is proportional
to the word error rate, (12) shows that D = t + 1 for a
block code with hard decoding that corrects t errors. For
convolutional codes with soft decoding, D equals dfree which
can be seen from (6). Further, the concatenated Reed–Solomon
and convolutional code scheme will get a diversity order of
dfree(t + 1).

V. NUMERICAL RESULTS

For each channel model and Eb/N0, at least 500 channels
were used in the presented results. Only QPSK modulation
was used in all numerical simulations.

For all the convolutional codes, a block interleaver with 32
rows and 24 columns was used. In Fig. 1, we see that the
uncoded system on CM1 and CM4 has the same performance
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Fig. 1. The bit error rate with convolutional codes (2,1,7) and (4,1,7) on
channel models CM1–CM4 and on an uncorrelated Rayleigh fading channel.
Also the uncoded system and the union bound for convolutional codes are
shown.
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Fig. 2. The bit error rate of the with convolutional codes (2,1,7) and (4,1,7)
on channel models CM1X and CM4X with shadowing

as that on a flat Rayleigh fading, which agrees with our pre-
vious conclusion that the subcarrier channel gains, {|C(f)|},
have Rayleigh distributed amplitudes. Fig. 1 also shows the
bit error rate when the convolutional codes with a constraint
length of 7 and code rate equal to 1/2 and 1/4 on the channel
models CM1, CM2, and CM4 and on an uncorrelated Rayleigh
fading channel. The bound from (6) for the convolutional
codes is also plotted. The performance on CM2–CM4 without
shadowing are up to 0.4 dB worse than on an uncorrelated
Rayleigh fading channel. The loss for CM1 is around 1 dB at
bit error rates below 10−4.

Fig. 2 shows the bit error rates for CC(2,1,7) and CC(4,1,7)
on CM1X and CM4X with shadowing. For each code, the per-
formance on CM1X and CM4X is almost the same. Compare
this indication with the difference for the same codes on CM1
and CM4 in Fig. 1.
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Fig. 3. The bit error rate of the punctured convolutional codes with rate 2/3
and 5/6 and constraint length 7 on CM1, CM2, and CM4 without shadowing.
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Fig. 4. The bit error rate of Reed–Solomon codes with 6, 7 and 8 bits per
symbol and rates around 2/3 on CM1 and CM4 without shadowing.

The bit error rates for the punctured convolutional codes
PCC(3,2,7) and PCC(6,5,7) on CM1, CM2, and CM4 without
shadowing are shown in Fig. 3 with the union bound in (6).
Still the performance on CM1 is worse than CM2 and the
performance on CM2 is worse than on CM4.

The performance of Reed–Solomon codes without any
interleaver with l equal to 6, 7 and 8 bits per symbol with a rate
around 2/3 was investigated using QPSK and hard-decision
decoding. As seen in Fig. 4, the performance is almost the
same for 6 and 8 bits per symbol that have 378 and 2040
coded bits per codeword. It seems that the performance on
CM4 is better than on CM1. This is also valid for 7 bits per
symbol that is not shown here. Clearly, the performance of
the punctured convolutional code with rate 2/3 is much better
than those Reed–Solomon codes.

VI. CONCLUSIONS

The following conclusions are drawn from this study:

• The average coherence bandwidth of CM1, CM2, CM3,
and CM4 are 31.6, 16.3, 11.0, 5.8 MHz, respectively. The
average number of correlated subcarriers are 7.7, 3.9, 2.7,
and 1.4 for CM1–CM4, respectively.

• Using the central limit theorem, we can expect that the
performance of an uncoded OFDM system on CM1–
CM4 and on a Rayleigh fading channel with uniformly
distributed phase are the same.

• The performance of convolutional codes with rate 1/2 and
a constraint length of 7 is almost the same on CM2–CM4
and on an uncorrelated Rayleigh fading channel when
using a block interleaver with 32 rows and 24 columns.
For the same code, the difference on CM1 and CM4
that could be seen without shadowing is not visible when
shadowing is applied. Those two conclusion are also valid
for the rate 1/4 code with constraint length 7.

• For code rates around 2/3, the performance of the punc-
tured convolutional code with soft-decision decoding is
much better than the Reed–Solomon codes with hard-
decision decoding.
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