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Preface

Increasing requirements for a fuel economy, exhaust emissions and the output
performance and also the complexity of the automotive engines necessitate
the development of a new generation of the engine control functionality. This
book offers the solutions of a number of the engine control and estimation
problems and consists of ten Chapters grouped in four Parts. Idle speed con-
trol and cylinder flow estimation techniques are presented in the first Part of
the book; engine torque and friction estimation methods are presented in the
second Part; engine misfire and Cam Profile Switching diagnostic methods
are presented in the third Part; and engine knock detection and control algo-
rithms are discussed in the fourth Part of the book. The algorithms presented
in the first Part of the book use a mean value engine model and the tech-
niques described in the rest of the book are based on the cylinder individual
engine model. The book provides a sufficiently wide coverage of the engine
functionality.

The book also offers a tool-kit of new techniques developed by the au-
thor which was used for the problems described above. The techniques can be
listed as follows: input estimation, composite adaptation, spline and trigono-
metric interpolations, a look-up table adaptation and a threshold detection
adaptation. These methods can successfully be used for other engine control
and estimation applications. These methods are listed in Table 0.1 and Ta-
ble 0.2 which contain a brief description of the methods, application areas and
references providing a reader with the overview and a guidance through the
book.

One of the key techniques used in this book is the statistical techniques. A
periodic nature of the engine rotational dynamics and a cycle-to-cycle variabil-
ity allows the presentation of the engine signals as statistical signals utilizing
such statistical variables as mean values and standard deviations. The detec-
tion of the engine events such as misfire events, knock events and others can
be associated with the statistical hypotheses. The statistical hypotheses can
in turn be tested via decision making procedures, described in Table 0.3 for
example. Two basic types of errors can be made in the statistical tests of the



VI Preface

Technique Purpose References

Input Estimation Estimation of Unmeasured Input of a Dy-
namic System from the Output Measure-
ments

[5], [48], [49],
[85],[95],
[99], [100]

Composite Adaptation Parameter Estimation Technique Driven
by both Tracking and Prediction Error
with Improved Convergence Rate

[96], [97],
[100]

Recursive Spline Interpola-
tion

A Polynomial Fitting of Measured Signal
in the Least-Squares Sense and Analytical
Calculation of the Derivatives with a High
Accuracy.

[90], [93],
[102]

Trigonometric Interpolation Calculation of the Frequency Contents of
the Oscillating Signal in a Moving Window

[86], [87],
[88],[105]

Look-Up Table Adaptation Adaptation of the Engine Look-up Tables
with Meager New Data Representation

[89],[90],
[107], [108]

Detection Threshold Adap-
tation

Event Misdetection Avoidance via Adap-
tation of the Detection Threshold of the
Signal Using a Confidence Interval Method

[91], [92]

Table 0.1. Techniques

Technique Described
in Chap-
ter

Application Applied
in Chap-
ter

Input Estimation 2.2.1 Idle speed control, Cylinder Flow
Estimation

1, 2

Composite Adaptation 2.3.1 Cylinder Flow Estimation 2

Recursive Spline Interpola-
tion

3 Engine Acceleration Estimation 3,4

Trigonometric Interpolation 4.3, 7.2 Torque Estimation, Misfire Diag-
nostic, Knock Detection

4, 7, 9

Look-Up Table Adaptation 5.5, 6.3 Adaptation of the Engine Friction
Look-Up Table

5,6

Detection Threshold Adap-
tation

10.5 Adaptation of the Engine Knock
Detection Threshold

10

Table 0.2. Application of Different Techniques

hypotheses called α-risk and β-risk specified by the engineer. The detection
performance of the engine events such as misfire events, knock events and
others can in turn be associated with these errors, for example with α-risk.
The same detection performance (with the same α-risk) can be achieved if the
parameters of the signal such as a mean value and a standard deviation in-
volved in the detection of the engine events change due to aging of the engine
components, for example. Many types of the engine event detection problems
can be formulated as hypothesis-testing problems aiming to a robust detec-
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tion providing the same detection performance for new and aged engines.
A great potential for a robust engine control system design is in a combination
of statistical hypotheses and a feedback principle. A control aim can also be
associated with the statistical hypothesis and the feedback can be used for
either rejection or not rejection of a null hypothesis. A tracking error which

a difference between the value of the statistic associated with a hypothesis
test and a desired value of the statistic. A desirable hypothesis achieved by a
feedback when the tracking error converges to zero, in turn determines desired
statistical properties of the closed loop system. For example, the rejection of
a null hypothesis in favor of the alternative hypothesis achieved by the engine
knock feedback described in Chapter 10 offers a desired statistical separation
between a mean value of the maximum amplitude of the knock sensor signal
at a given frequency and the threshold value. This in turn, allows the design
of a robust engine knock control system with desired α-risk and probability
of the knock occurrence.
These statistical methods are not only used widely in the book in Chap-
ters 6-10, but also collected and described in Appendix as the most future
prospective methods for a new generation of a robust engine functionality.
The statistical methods are also listed in Table 0.3 providing references to the
description of the method and application areas. This book is one of the first
steps towards a statistical robustification of the engine control functionality.

The major part of the book is devoted to the real-time algorithms, and
Chapter 9 is devoted to the statistical automatic calibration of the engine
knock detection algorithm. Rising number of the engine calibration parameters
and a time and cost associated with the engine calibration necessitate the
development of a software for automatic calibration of the engine functionality.
Automatic engine calibration is a rapidly growing area and Chapter 9 of the
book shows an example for the statistical automatic calibration of the engine
knock frequency.

Practising automotive engineers should find this book useful when they
need the solutions of engine control and estimation problems described in this
book, or when they are working on a new engine control or estimation problem
and want to use the techniques described in this book. Black Belts working
in automotive industry should also find the book useful due to the compre-
hensive collection of the statistical techniques and their applications to the
automotive engines. Engine functionality forms the part of the Automotive
Engineering Courses at Universities. This book should also be useful for lec-
turers, researchers and students since it provides a sufficiently wide coverage
of the engine control and estimation problems, detailed descriptions of the
techniques useful in automotive applications, and also describes future trends
and challenges in the engine functionality.

The author is grateful to his colleagues from Chalmers University, Ford
Motor Company and Volvo Car Corporation for interesting discussions. The

is driven to zero via a proper choice of a feedback loop could be presented as
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Statistical Method Described
in Chap-
ter

Application Applied
in
Chapter

One Sample t-Test 14.1.1 Misfire Detection, Knock control 7,10

Two Sample t-Test 14.1.2 Knock detection 9

Test For Equal Variances 14.1.3 Look-up tables adaptation 6

Outlier Detection Test 14.1.6 Knock Control 10

Confidence Intervals as
Thresholds

14.1.6 Knock Control 10

Markov Inequality 10.3.2 Knock Control 10

Random Number Gener-
ators

10.2.1 Knock Modeling & Control 10

Table 0.3. Application of the Statistical Methods

statistical part of this work was carried out within the Volvo Six Sigma Pro-
gramme.



Contents

Part I Idle Speed Control, Adaptive Flow Estimation and Spline
Interpolation

1 Idle Speed Control with Estimation of Unmeasurable
Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Engine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Observer Design for Disturbance Torque Td(t) . . . . . . . . 8
1.4.2 Control Law Design for a Spark Advance . . . . . . . . . . . . . 9
1.4.3 Control Law Design for Throttle . . . . . . . . . . . . . . . . . . . . 11

1.5 Stability Analysis of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Cylinder Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Air Charge Determination Using Input Observer . . . . . . . . . . . . 19

2.2.1 Input Estimation Algorithms: General Case . . . . . . . . . . . 19
2.2.2 Input Observer Application to Charge Estimation . . . . . 23
2.2.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Composite Adaptive Engine Air Charge Estimation . . . . . . . . . . 25
2.3.1 Composite Adaptive Algorithms: General Case . . . . . . . . 27
2.3.2 Derivation of Composite Adaptive Air Charge Estimator 34
2.3.3 Improving Feedforward via Learning . . . . . . . . . . . . . . . . . 38
2.3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Air Charge Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



X Contents

3 Recursive Spline Interpolation Method . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The Estimation of the Derivatives of Signal via Spline

Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Second Order Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Spline Interpolation Method . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Combination of High Gain Observer and Spline

Interpolation Method and Their Comparative Analysis . 51
3.4 Implementation Results: Crankshaft Acceleration Estimation . 53
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Part II Engine Torque and Friction Estimation

4 Engine Torque Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Recursive Trigonometric Interpolation Method . . . . . . . . . . . . . . 64

4.3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Computationally Efficient Filtering Algorithms . . . . . . . . 67

4.4 Filtering Technique Based on the Kaczmarz Projection Method 73
4.5 Estimation of the Engine Torque via Crankshaft Speed

Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Engine Friction Estimation at Start . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Impact on Drivability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Estimation of the Friction Torque at Start . . . . . . . . . . . . . . . . . . 88
5.5 Adaptation Algorithms for Look-up Tables . . . . . . . . . . . . . . . . . 90

5.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5.2 General Adaptation Algorithms for Look-Up Tables . . . 91
5.5.3 Adaptation Algorithms of the Engine Friction Torque

Look-up Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Data-Driven Algorithms for Engine Friction Estimation . . . 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Estimation of Engine Losses During Fuel Cut Off State . . . . . . . 101

6.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.2 Filtering Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Adaptation of the Friction Torque Look-up Table . . . . . . . . . . . . 105
6.3.1 Description of Adaptation Algorithm for Look-up

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents XI

6.3.2 Adaptation Algorithm for Engine Friction Look-up
Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Part III Engine Misfire and Cam Profile Switching
State Detection

7 Statistical Engine Misfire Detection . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Recursive Trigonometric Interpolation Algorithms . . . . . . . . . . . 118

7.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Recursive Algorithms for Trigonometric Interpolation . . 119
7.2.3 Correction of the Recursive Algorithms for Round-Off

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3 Filtering Technique Based on Trigonometric Interpolation

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4 Statistical Misfire Detection Technique . . . . . . . . . . . . . . . . . . . . . 123

7.4.1 Misfire Detection at the Combustion Frequency . . . . . . . 123
7.4.2 Misfire Detection at the Half-Order Frequency . . . . . . . . 130

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 The Cam Profile Switching State Detection Method . . . . . . 131
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 The CPS State Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . 132
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Part IV Engine Knock

9 Statistical Engine Knock Detection . . . . . . . . . . . . . . . . . . . . . . . . 141
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 Recursive Trigonometric Interpolation Algorithms . . . . . . . . . . . 142

9.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.3 Knock Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3.1 Step1: Knock Detection by Using the Cylinder
Pressure Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3.2 Step2: Knock Detection by Using the Knock Sensor
Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Statistical Engine Knock Control . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.2 Statistical Models of the Knock Sensor and Microphone

Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.2.1 Generation of the Amplitude Signals . . . . . . . . . . . . . . . . . 158



XII Contents

10.2.2 Threshold Value Determination . . . . . . . . . . . . . . . . . . . . . 163
10.2.3 Knock Sound Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.3 Engine Knock Control with Desired α-risk . . . . . . . . . . . . . . . . . . 164
10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3.2 Control Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10.3.3 Trade-off Between the α-risk and Fuel Consumption . . . 167
10.3.4 Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.4 Simulation of the Closed Loop Knock Control System . . . . . . . . 169
10.5 Adaptation of the Threshold Value . . . . . . . . . . . . . . . . . . . . . . . . 170
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

11 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

13 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

14 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
14.1 Hypotheses Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

14.1.1 One Sample t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
14.1.2 Two Sample t-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
14.1.3 One Sample χ2-Test (Test on the Variance) . . . . . . . . . . . 200
14.1.4 Test for Equal Variances (F-test) . . . . . . . . . . . . . . . . . . . . 201
14.1.5 A Statistical Transient Detection . . . . . . . . . . . . . . . . . . . . 202
14.1.6 Outlier Detection and Confidence Intervals as

Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
14.1.7 Change in Mean Test Based on Neyman-Pearson

Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

15 Appendix E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



1

Idle Speed Control with Estimation of
Unmeasurable Disturbances

A new controller for throttle and spark advance to control the engine speed at
idle under unknown time varying disturbances is described in this Chapter. By
using measurements of the engine speed the disturbance estimator is designed
to reconstruct a disturbance torque. The controller is formulated so that the
throttle is used as much as possible as a main tool to produce a torque and a
spark advance is used to compensate intake to torque production delay. The
stability of the system is proved via Lyapunov function method.

1.1 Introduction

The main source of the performance deterioration of the idle speed control
(ISC) systems is disturbances such as rapid external load changes and slow
varying changes in operating conditions. External load changes are the result
of loading due to the air conditioning, battery charging etc.. Very often such
disturbances are measurable and feedforward compensation is used to improve
the performance. However, the loads applied to the engine may change in time
and more power consuming equipment may be installed in a vehicle after it
leaves the factory. In this case one must consider the ISC problem under
unmeasurable disturbances.

Although ISC is a well studied topic, see for example the comprehensive
survey [35] and references there in, many works ignore intake to torque pro-
duction delay, which is essential in this case [36] or based on linearized engine
model, which is valid locally only.

This Chapter describes a new approach to the ISC problem based on a
second order nonlinear engine model, which takes into account intake to torque
production delay and unmeasurable time varying disturbances.

Two inputs may be used to control the engine speed at idle: throttle and
spark advance. Throttle provides large variations of torque without increasing
exhaust emissions, however, the main problem of using throttle as a control is
intake to torque production delay. Spark advance can be seen as a fast control,

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 1,
c© Springer-Verlag Berlin Heidelberg 2009



4 1 Idle Speed Control with Estimation of Unmeasurable Disturbances

however, it produces limited torque and increases both emissions and fuel
consumption. In this Chapter an innovative solution for ISC is proposed. The
solution utilizes advantages and compensates disadvantages of both controls.
A similar combined spark/throttle control law was proposed in [24] (see also
[11]), however, the stability proof is based on the assumption that the spark
influence is constant when deriving the throttle control law. In other words
two controls are treated independently and it is not practical in many cases.

The key idea of our control law is the following. First, a high gain distur-
bance estimator for estimation of unknown disturbances, such that the upper
bound of the estimation error can be made arbitrarily small (this error is
compensated by spark advance) is designed. A control law is designed such
that the throttle is used as a main tool to produce the torque, while spark is
used both for compensation of throttle to torque delay and for variable struc-
ture feedback that compensates the disturbance estimation error. Since the
retarded spark increases the exhaust emissions, our control law drives spark
advance to MBT (minimum spark advance for the best torque), if the engine
speed is close to the desired engine speed and there is no need for fast control.
It is worth remarking that similar disturbance estimation technique was pro-
posed in [22],[42] for discrete time case and in [5],[85] for continuous time
adaptive control.

1.2 Engine Model

In this Section the engine model which is based on the results described in
[10] and [40] is developed.

The first equation is obtained by considering the conservation of mass

ṁa = ṁmaf − ṁcyl (1.1)

where ma is the mass of air in the intake manifold, ṁmaf is the mass rate of air
entering the manifold and ṁcyl is the mass rate of air leaving the manifold and
entering the combustion chamber. The mass rate of air entering the manifold
is modeled as

ṁmaf = a1u1pr (1.2)

where a1 = 0.3861kg
s for the engine of interest, u1 is normalized throttle char-

acteristic [0 : 1], pr is normalized pressure influence

pr =

{√
( p
p0

)1.428 − ( p
p0

)1.714 if p
p0

> 0.528
0.259 otherwise

where p is the pressure in the intake manifold, p0 is atmospheric pressure
(p0 = 1 Bar).
Pressure p in the intake manifold changes according to the following equation,
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which comes from the differentiation of the ideal gas law under the assumption
that the intake manifold temperature is constant,

ṗ = km(ṁmaf − ṁcyl) (1.3)

where
km =

RT

Vm
(1.4)

where R = 287.9 Nm/Kg/K is a gas constant, T is the intake manifold
temperature,T = 318◦K (45◦C), Vm = 5 ·10−3 m3 is intake manifold volume.
It is convenient to use the pressure ratio ( p

p0
) as a state variable. The pressure

ratio ( p
p0

) in the intake manifold changes according to the following equation

ṗ

p0
= k1(ṁmaf − ṁcyl) (1.5)

where
k1 =

T

VmT0ρ0
(1.6)

where ρ0 is the atmospheric density and T0 is the corresponding atmospheric
temperature. In our case ρ0 = 1.2 kg

m3 and T0 = 288◦K (15◦C).
The mass flow rate entering the combustion chamber satisfies the following
equation which comes from the speed density calculation [10], [40]

ṁcyl = kω
p

p0
(1.7)

where
k =

ρ0T0Vcylη

4πT
(1.8)

where ω is the engine speed (rad
s ), η is a volumetric efficiency (for simplicity

the constant value of efficiency is taken i.e., η = 0.8), Vcyl = 2.5 · 10−3 m3 is
the volume of five cylinders of the engine, π = 3.1416.

The rotational dynamics of the engine is modeled as

Jeω̇ = Tind − Tf − Td − Tp (1.9)

where Tind is indicated torque, Tf is friction torque, Tp is pump torque and
Td is disturbance torque, Je = 0.255kgm2 is the inertia moment of the engine.

Indicated Engine Torque is the following

Tind = a2
ṁcyl(t − td)
ω(t − td)

afi(t − td) fs(t − ts) (1.10)

where a2 = 8.51 · 105Nm/kg/rad represents the maximum torque capacity,
afi(t − td) is normalized air to fuel influence (in this Chapter it is assumed
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that air to fuel ratio is under control and afi(t − td) = 1), fs(t − ts) is a
function of spark influence.
Substituting (1.7) in (1.10) one gets the following expression for indicated
torque:

Tind = a2 k
p(t − td)

p0
fs(t − ts) (1.11)

At low engine speeds MBT (minimum spark advance for the best torque) is
about 20 degrees before top dead center and it is possible to retard spark up
to 10 degrees after top dead center. This means that the total range for spark
advance/retard is 30 degrees or ±15 if spark is retarded by 15 degrees from
MBT.
The following curve may be used for the spark influence [10]:

fs = (cos(−b + u2))2.875 (1.12)

where b is the position of OY axis from MBT (see Figure 1.1), measured
in radians, and u2 is our control. Notice, that the distance b can be fixed or
adjusted within the interval [0, 15◦], thereby control action u2 varies within the
interval [−b, b]. If b is fixed and u2 = 0 then spark is retarded still from MBT.
Unfortunately, retarding spark increases emissions, coefficient of variation of
engine torque and hence partial burns and misfires. Moreover, retarding spark
affects negatively the fuel economy. On the other hand when the engine speed
is close enough to the desired engine speed there is no need for spark as a
control and it should be kept at MBT whenever possible. By adjusting the
distance b it is possible to drive the spark advance to MBT when engine speed
is close to the desired engine speed. On the other hand, if the engine speed
mismatch is big enough b should be kept at 15◦ so that to provide the largest
range for control.

Since the engine torque production is a discrete process, but modeled in
the continuous time domain the following delays are introduced [10] :

td =
5.48
ω

(1.13)

ts =
1.3
ω

(1.14)

where td is intake to torque production delay, and ts is spark to torque produc-
tion delay. As can be seen from (1.13) and (1.14) intake to torque production
delay is more than four times larger than spark to torque delay. As it is ob-
served by simulations spark to torque delay can be neglected,see also [60].

Engine Friction Torque can be modeled as

Tf = (a1f + a2fω + a3fω2)
V1cyl 1000 z

4π
(1.15)

where a1f = 97 N
m2 , a2f = 0.1432 N

m2
s

rad
, a3f = 2.74 · 10−4 N

m2
s2

rad2 , V1cyl =

0.5 · 10−3m3 is the volume of one cylinder, z = 5 is the number of cylinders.
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b(t)

0-15-30

0

Spark Advance from MBT

Y

MBT

Fig. 1.1. Spark advance

Engine Pump Torque can be modeled as

Tp = (p0 − p)
V1cyl z

4π
(1.16)

Engine Disturbance Torque Td can be presented, for idle control problem,
by a class of bounded functions with bounded derivatives, i.e.,

|Td(t)| ≤ c, |Ṫd(t)| ≤ c1 (1.17)

where c and c1 are positive constants. Typical value for c is 20Nm.
Finally the engine model can be written as follows:

Jeω̇ = a2 k
p(t − td)

p0
(cos(−b + u2))2.875 − Tf − Td − Tp (1.18)

ṁcyl = k ω
p

p0
(1.19)

ṗ

p0
= k1(a1su1 − ṁcyl) (1.20)

where Tf and Tp are given by (1.15) and (1.16), k and k1 are given by (1.8)
and (1.6), a1s = a1pr.
The next step is to present the problem statement.
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1.3 Problem Statement

It is well known that the engine at idle is very sensitive to the disturbance
torques, and very often disturbances are unmeasurable so that feedforward
compensation can not be applied.
Our problem is to find controls u1 and u2 (throttle and spark advance) so
that, to achieve the following control aim:

lim
t→∞

| ω(t) − ωd |= 0 (1.21)

where ωd = 100rad
s is the idle speed, under unknown time varying distur-

bances Td(t). Engine speed ω and the intake manifold pressure p are mea-
sured. Friction torque and pump torque can be computed as well using mea-
surements of the engine speed and pressure, see (1.15) and (1.16). Modeling
errors in pump and friction torques can be considered as a disturbance torque
as well. Engine parameters are assumed to be known. The disturbance torque
is unknown and unmeasurable, but it is assumed that it is bounded with
bounded derivative.

1.4 Control Design

1.4.1 Observer Design for Disturbance Torque Td(t)

Define the following estimation error

e = α0Jeω − ε + Td(t) (1.22)

where α0 > 0 and ε(t) is the solution of the following differential equation

ε̇ = −α0ε + α0a2 k
p(t − td)

p0
(cos(−b + u2))2.875

−α0Tf − α0Tp + α2
0Jeω (1.23)

Our next aim is to show that the upperbound of the error |e(t)| can be made
arbitrarily small. Choosing the following Lyapunov like function

V =
1
2
e2 (1.24)

its derivative is evaluated along the solutions of the system (1.18), (1.22),
(1.23):

V̇ = −α0e
2 + eṪd ≤ −α0V +

c2
1

2α0
(1.25)

and the following bound for the estimation error is true:
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|e(t)| ≤
√

e2(0)e−α0t +
c2
1

α2
0

(1.26)

The bound (1.26) guarantees that the estimation error can be made arbitrarily
small by amplifying the design parameter α0. The estimate of the disturbance
torque follows from (1.22)

Td(t) = −α0Jeω + ε + e(t) (1.27)

where e(t) can be made arbitrarily small. Notice that e(t) → 0 if Td = const.
Notice, that the way of the estimation of unknown disturbances presented
above is equivalent to the estimation of ω̇ via a “ dirty differentiator“. In this
case Td can be computed via (1.18).
Substituting (1.27) in (1.18) one gets the following:

Jeω̇ = a2 k
p(t − td)

p0
(cos(−b + u2))2.875

− Tf − Tp + α0Jeω − ε − e(t) (1.28)

ṁcyl = k ω
p

p0
(1.29)

ṗ

p0
= k1(a1su1 − ṁcyl) (1.30)

1.4.2 Control Law Design for a Spark Advance

Define the spark advance, u2, as a solution of the following algebraic equation:

p(t−td)(cos(−b+u2))2.875 = p(t)(cos(−b+u2b))2.875−γssign(ω−ωd) (1.31)

where u2b = 0 corresponds to the case where spark advance is not controlled,
γs > 0. The physical meaning of the spark advance control gets clear by
substituting (1.31) into (1.28). Then,

Jeω̇ =
a2 k p(t) ca

p0
− a2kγs

p0
sign(ω−ωd)−Tf−Tp+α0Jeω−ε−e(t) (1.32)

where ca = cos(−b+u2b))2.875. It is clear that the first term in the right hand
side of (1.31) compensates the time delay td for p(t− td), and the second term
gives a relevant variable structure feedback which drives ω to ωd. Unfortu-
nately, the spark influence on the torque production is limited and γs should
be chosen sufficiently small.
Resolving (1.31) with respect to the control one gets

u2 = b − acos({ p(t)
p(t − td)

ca − γs

p(t − td)
sign(ω − ωd)}

1
2.875 ) (1.33)
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Notice that, if there is no time delay td = 0, and ω = ωd then u2 = u2b

and spark is retarded on b radians from MBT.
Remark As was already mentioned the distance b from MBT to OY axis (see

Figure 1), can be fixed or adjusted. Below the following adjustment law for the
moving axis is proposed:

ḃ = − 1

τ
(b − 0.2618sat(ω − ωd)), b(0) = 0 (1.34)

where τ > 0, b is measured in radians and sat(ω − ωd) is the following saturation
function

sat(ω − ωd) =

{ 1
λ0

|ω − ωd| if |ω − ωd| < λ0

1 otherwise

where λ0 > 0 is the size of the boundary layer. Finally, the spark advance is
limited by taking into account the adjustable offset. Redenoting u2 defined in (1.33)
as u20, the bounded spark control law is the following:

u20 = b − acos({ p(t)

p(t − td)
ca − γs

p(t − td)
sign(ω − ωd)}

1
2.875 ) (1.35)

and

u2 =

{
b if u20 ≥ b
u20 if −b ≤ u20 ≤ b
−b if u20 ≤ −b

The physical meaning of the adjustable axis is the following. If (ω − ωd) is out of
the boundary layer λ0, then the axis moves to the 15 degrees (0.2618[radians]) from

MBT, exponentially, according to the differential equation (1.34) with the rate 1
τ .

The position of the axis at 15◦ corresponds to the maximal control power. If (ω−ωd)
is within the boundary layer λ0 then b is adjusted as follows

ḃ = − 1

τ
(b − 0.2618

λ0
|ω − ωd|) (1.36)

and as soon as (ω(t) − ωd) → 0 then b and u2 tend to zero, and spark advance

tends to MBT. Notice that, only the sum (−b+u2) defines the position of the spark

advance from MBT (if −b + u2 = 0 then the spark advance is at MBT). ♦ ♦
Due to the choice of the spark advance the system (1.28), (1.30) can be

written in the following form:

Jeω̇ =
a2 k p(t) ca

p0
− a2kγs

p0
sign(ω − ωd)

− Tf − Tp + α0Jeω − ε − e(t) (1.37)

ṁcyl = k ω
p

p0
(1.38)

ṗ

p0
= k1(a1su1 − ṁcyl) (1.39)
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1.4.3 Control Law Design for Throttle

First, the desired pressure ratio ( p
p0

)d is defined,

(
p

p0
)d =

1
caa2k

{−α1ω̃ + Tf + Tp + ε − α0Jeω} (1.40)

where ω̃(t) = ω − ωd, α1 > 0. The physical meaning of the desired pressure
ratio ( p

p0
)d gets clear if p

p0
= ( p

p0
)d, then substituting (1.40) into (1.37), one

gets,

Jeω̇ = − α1ω̃ − a2kγs

p0
signω̃ − e(t) (1.41)

Notice, that the upper bound of the estimation error e(t) can be made ar-
bitrarily small, so that even small γs is able to compensate the estimation
error.
Now the aim is to choose the throttle position so as to drive the pressure
ratio to the desired one. Substituting (1.38) in (1.39) one gets the following
equation for the pressure evolution:

ṗ

p0
= k1a1su1 − k1kω

p

p0
(1.42)

Choosing the throttle position as follows

u1 =
1

a1s
kω

p

p0
+

1
a1sk1

(−α2(
p

p0
− (

p

p0
)d) +

˙
(

p

p0
)d) (1.43)

one gets
ṗ

p0
− ˙

(
p

p0
)d = −α2(

p

p0
− (

p

p0
)d) (1.44)

where α2 > 0.
Notice, that the implementation of (1.43) requires measurements of ˙( p

p0
)d.

The derivative can be estimated via a sliding mode observer which guarantees
the convergence of the estimation error in a finite time, see [19] and [94] for
details, or via a spline interpolation method described in Chapter 3.

1.5 Stability Analysis of the System

Finally the error model of the system can be written in the following form:

Je
˙̃ω = − α1ω̃ − a2kγs

p0
signω̃ + caa2ep − e(t) (1.45)

ėp = −α2ep (1.46)

where ep = p
p0

− ( p
p0

)d. In order to study the stability of the system (1.45),
(1.46) the following Lyapunov function candidate is evaluated
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V =
Je

2
ω̃2 +

1
2
e2

p (1.47)

Differentiating (1.47) along the solutions of (1.45), (1.46) one gets

V̇ ≤ −α1ω̃
2 + |ω̃|(−a2kγs

p0
+ |e|)

+ |ω̃||ep|a2 − α2e
2
p (1.48)

Now it is clear how to choose γs. Substituting the bound (1.26) in the deriva-
tive of the Lyapunov function γs is chosen as

γs =
p0

a2k

√
e2(0)e−α0t +

c2
1

α2
0

(1.49)

Notice that, the power of the spark advance as a control is limited and γs

should be chosen sufficiently small so as not to force the spark advance into
saturation. This can be achieved by choosing sufficiently large α0, or in other
words for any sufficiently small γs there exists α0 satisfying (1.49). Notice
also that, the estimation error (1.26) gets smaller via amplifying the design
parameter α0.
Substituting (1.49) in (1.48) one gets

V̇ ≤ ω̃2(−α1 +
a2

2
) + e2

p(−α2 +
a2

2
) (1.50)

If the algorithm parameters are chosen in order to satisfy the following in-
equalities

α1 >
a2

2
+ κ

Je

2
α2 >

a2

2
+

κ

2
(1.51)

where κ > 0, then the following inequality holds

V̇ ≤ −κV (1.52)

and our control aim (1.21) is reached.

1.6 Simulation Results

The system (1.18) - (1.20) is simulated with the throttle control (1.43) and
the spark advance control (1.33),(1.34). The algorithm is tested under the
following disturbances:

Td(t) =
{

0 if t < 2.5[sec]
20 otherwise
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Simulation results are presented in Figure 1.2 and Figure 1.3.
Figure 1.2 demonstrates the performance of the disturbance estimation.

Idle speed control performance together with the control variables, throttle
and spark advance, are demonstrated in Figure 1.3. It is worth remarking that
the separation between b and u2 in our spark control loop is artificial, and
despite the fact that it plays an important role in our control design procedure,
only the sum −b + u2 gives information about the position of spark advance
from MBT ( if −b + u2 = 0 then the spark advance is at MBT).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10

15

20

25

time, sec

Fig. 1.2. Disturbance (Nm): solid line. Disturbance estimate (Nm): dotted line

1.7 Conclusion

In this Chapter a new solution for the ISC problem under unknown time vary-
ing disturbances is proposed. The solution is based on explicit identification
of the unknown disturbance and uses advantages and compensates disadvan-
tages of throttle and spark advance as controls. The result allows to improve
the performance of ISC systems.
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Fig. 1.3. Engine Speed ω
100(rad

sec ): solid line. Throttle position: dashed line. −b+u2

(rad) : dotted line. Position of the axis b (rad): dashdotted line.



2

Cylinder Flow Estimation

The performance of air charge estimation algorithms in spark ignition au-
tomotive engines can be significantly enhanced using advanced estimation
techniques available in the controls literature. This Chapter illustrates two
approaches of this kind, that can improve the engine cylinder flow estimation.
The first approach is based on an input observer while the second approach
relies on an adaptive estimation. Assuming that the cylinder flow is nominally
estimated via a speed-density calculation, and that the uncertainty is additive
to the volumetric efficiency, the straightforward application of an input ob-
server provides an easy-to-implement algorithm that corrects the nominal air
flow estimate. The experimental results presented in this Chapter point to a
sufficiently good transient behavior of the estimator. The signal quality may
be deteriorating, however, for extremely fast transients. This motivates the
development of an adaptive estimator that relies mostly on the feedforward
speed-density calculation during transients while during engine operation close
to steady-state conditions, it relies mostly on the adaptation. In our deriva-
tion of the adaptive estimator the uncertainty is modeled as an unknown
parameter multiplying the intake manifold temperature. The tracking error
between the measured and modeled intake manifold pressure together with
an appropriately defined prediction error estimate are used in the adaptation
algorithm with the improved identifiability and convergence rate. A robust-
ness enhancement, via a σ-modification with the σ-factor depending on the
prediction error estimate, ensures that in transients the parameter estimate
converges to a pre-determined a priori value. In close to steady-state condi-
tions, the σ- modification is rendered essentially inactive and the evolution of
the parameter estimate is determined by both tracking error and prediction
error estimate. Further enhancements are made by incorporating a functional
dependence of the a priori value on the intake manifold pressure. The co-
efficients of this function can be learned in the process of engine operation
from the values to which the parameter estimate happens to converge in close
to steady-state conditions. This feedforward learning functionality improves

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 2,
c© Springer-Verlag Berlin Heidelberg 2009
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transient estimation accuracy and reduces the convergence time of the param-
eter estimate.

2.1 Introduction

The accuracy of engine air charge determination has a direct impact on the
quality of the air-to-fuel ratio control, on the torque estimation and hence on
the engine output performance. Good air charge estimation accuracy is there-
fore necessary to meet ever more aggressive emission and drivability targets.
Inaccurate air charge estimation may also negatively affect a fuel economy
if the spark timing is not set to the best efficiency at given engine operat-
ing conditions. With the introduction of new technologies such as variable
valve timing, continuously variable valve lift, cam profile switching, variable
geometry intake manifold, cylinder deactivation, boost on demand, variable
geometry turbocharging, etc., a renewed interest is now paid to improving
charge estimation algorithms to enable them to handle significant variations
in volumetric efficiency and intake manifold temperature that may occur dur-
ing transient operation of advanced engines. Of particular importance is also
the ability of the algorithms to correct on-line for calibration inaccuracy that
may be caused by part-to-part hardware variability, late in the development
process hardware changes, aging, shortened development times.

The engine configuration considered in this work is shown schematically
in Figure 2.1. Note that the engine has no external exhaust gas recircula-
tion (EGR): Three-Way Catalyst and internal exhaust gas recirculation via,
for example, an optimized valve timing schedule are assumed to sufficiently
reduce feedgas emissions of nitric oxides. On the intake side, the engine is
equipped with the mass air flow (MAF) sensor and with the intake manifold
pressure (MAP) sensor. The temperature of air in the intake manifold is either
measured or estimated.

Based on the intake manifold pressure measurement, the cylinder air flow
can be estimated using the so called speed-density equation:

mcyl = ηv
ne

2
Vd

p

RT
, (2.1)

where mcyl is the mean-value of the flow into the engine cylinders (g/s), ne

is the engine speed ( rev/s), p is the intake manifold pressure (kPa), T is
the intake manifold temperature (deg K), R is the difference of specific heats
(kJ/kg/K), ηv is the volumetric efficiency, and Vd is the displacement volume,
i.e., the volume displaced by the engine cylinders during one engine cycle. The
air charge per cylinder for a four stroke engine is estimated as

Mcyl = mcyl
2

nencyl
,
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where ncyl is the number of running engine cylinders. From the idealized
thermodynamic analysis [110], the volumetric efficiency is determined by the
following expression

ηv = 1 − 1
γ(CR − 1)

(
pe

p
− 1), (2.2)

where γ ≈ 1.4 is the ratio of specific heats for the air, CR is the engine com-
pression ratio, and pe is the engine exhaust pressure but this tends to give
large errors on the real engines and does not reflect other key dependencies
such as on valve timing, intake and exhaust temperatures, etc. Hence, in prac-
tice, the volumetric efficiency is correlated to key engine operating parameters
such as ne, p, T , intake and exhaust valve opening and closing timing, etc.,
based on the regressions of the data collected from the engine in the process
of engine mapping. See, for example, [28], [69], [78].

The filling and emptying of the intake manifold can be modelled by a
mean-value isothermal model that immediately follows from the ideal gas law
and mass balance under the assumption of constant temperature,

ṗ =
RT

VIM
(mth − mcyl) (2.3)

where R is the gas constant, VIM is the intake manifold volume, and mth is the
actual flow through the throttle. The isothermal assumption used in deriving
the model (2.3) from the ideal gas law is only valid when the intake manifold
temperature changes slowly. It turns out that the filling and emptying process
observed on the real engine is in-between isothermal and adiabatic [9],[65],
the latter is characterized by zero heat transfer from the intake manifold. It
is possible to achieve a close match with the real measurements in transients
with a more complex model, but significant time and efforts are required to
accurately identify the heat transfer parameters; these parameters are also
sensitive to ambient conditions. In practice, a simple approximation (2.3) is
frequently utilized on non-boosted engines but VIM may be treated as an
adjustable parameter tuned to the best match of measured data.

Sensors for both flow through the throttle and intake manifold pressure are
installed in modern engines to improve the robustness of engine air charge es-
timation and provide additional opportunities for diagnostics, see Figure 2.1.
In steady-state conditions, the MAF sensor accurately predicts the flow into
the engine cylinders, since by mass conservation, mth = mcyl. Errors in the
model (2.1) caused by calibration inaccuracies, aging, or incorrect estimation
of the key engine operating variables such as intake temperature may ren-
der (2.1) less accurate in steady-state conditions than the direct MAF sensor
reading. Because of the filling and emptying dynamics, the MAF sensor, lo-
cated upstream of the intake manifold, is not an accurate predictor for the
cylinder flow in transients. In transients conditions, the reading of the MAP
sensor (which measures p) and the speed-density calculation (2.1) provide a
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more accurate estimate of mcyl. It is, therefore, clear that an air charge esti-
mation algorithm must provide an estimate that matches more closely MAF
sensor in conditions close to steady-state but matches more closely the speed-
density calculation in transient conditions, and, if necessary, corrects it for
inaccuracies or long-term aging effects.

In this Chapter two techniques from the theory of input observers and
adaptive estimation are used to develop two estimation algorithms. Both al-
gorithms ensure a seamless transition between an estimate which is closer
to (2.1) in transients and an estimate which is closer to MAF sensor read-
ing in conditions close to steady-state operation and, in addition, correct for
inaccuracies. The algorithms can be further enhanced with the steady-state
feedforward learning functionality.

Intake Manifold
mthThrottle

Spark plug

UEGO

 MAF

MAP

 p

Fuel Injector

Fig. 2.1. Schematic diagram of a spark-ignition engine.

In recent years a number of observer-based and adaptive techniques have
been already proposed for engine air charge estimation (see, for example, re-
cent papers [43], [44], [45], [46], [84], [99],[111], [98] and references therein).
Two algorithms described in this Chapter follow from two distinct approaches
and two different assumptions about the nature of the uncertainty. Specifi-
cally, the first algorithm is based on an input observer that estimates an
additive error in volumetric efficiency as in [99]. The second algorithm is
based on the use of an adaptive estimator to determine an unknown factor
multiplicative to the intake manifold temperature. A preliminary version of
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the adaptive estimation work appeared as a conference paper [98] and as a
journal paper [100]. This application of adaptation for air charge estimation
goes well beyond the prior literature due to several enhancements. These in-
clude fast composite adaptation driven by both tracking error and by the
prediction error estimate, robustification with a special σ-modification, and
learning in close to steady-state operation to improve the feedforward part of
the algorithm. The adaptive estimator that finally emerges can outperform an
input-observer based algorithm in fast transients. The input observer-based
algorithm is detailed in Section 2.2 while the adaptive estimator is described
in Section 2.3.

The degree to which the improved air charge estimates can influence the
overall system performance depends on the engine configuration. For direct
injection (DI) engines, the spark timing and the injected fuel quantity can
be set more accurately using the improved estimates. In port-fuel injection
(PFI) engines the ignition system benefits the same way but the fuel injection
system may not be able to take full advantage of the improved estimates
during extremely fast transients because of the delay between the fuel injection
and cylinder induction. In advanced PFI engines, if the air charge is rapidly
increasing the fueling system may be able to compensate by adding fuel via an
open valve post-injection; but still the fuel cannot be taken out of the intake
manifold once injected so the fuel injection system of PFI engines may not be
able to react to rapidly decreasing air charge. The detrimental effect of the
delay in PFI engines can be mitigated by predicting air charge several events
into the future. This prediction functionality is briefly discussed in Section 2.4.
Concluding remarks are made in the end of this Chapter.

2.2 Air Charge Determination Using Input Observer

Input observers estimate an unknown input to a dynamic system using state or
output measurements. Input observer enhances the performance of a charge
estimation algorithm according to implementation results presented in this
Section. A number of input estimation algorithms is reviewed, and one is
chosen for application to the problem at hand.

2.2.1 Input Estimation Algorithms: General Case

The purpose of this Section is to review several algorithms for input esti-
mation, point out similarities and differences between them. The collection
of input estimation algorithms presented in this Section is a useful tool-kit
in automotive applications where the input and the state are frequently re-
lated by the first order differential equation. A comparison of different input
estimation techniques is also given in [99].
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Problem Statement

Consider a first order dynamic system

ż = y + x, (2.4)

where x is the unknown time-varying input (disturbance) which has to be esti-
mated on-line using measured signals z and y. This type of problems appears
frequently in automotive applications i.e, flow rate estimation from the pres-
sure measurements described in Section 2.2.2, engine torque estimation from
the engine speed measurements described in Chapter 1 and others. A num-
ber of different techniques which solve the problem stated above are reviewed
below.

High Gain Observer

The input high gain observer is described first. It is also shown that the
estimation algorithm is robust with respect to a sensor noise.

The input observer is defined in terms of the auxiliary variables v and ε,
where

v = γz − ε − x, (2.5)

and ε satisfies
ε̇ = −γε + γy + γ2z. (2.6)

Here γ is a positive observer gain. Evaluating the derivative of v along the
solutions of the system (2.5) one obtains

v̇ = −γv − ẋ. (2.7)

Assume now that ẋ is bounded, i.e., that there exists a positive constant
b1 such that supt |ẋ(t)| ≤ b1. Then the following transient bound for the
estimation error is valid

|v(t)| ≤

√
v(0)2e−γt +

b2
1

γ2
. (2.8)

Transient bound (2.8) implies that the upper bound on the estimation
error for any t > 0 can be made arbitrarily small by increasing the design
parameter γ > 0. Then, the estimate of x can be found from (2.5) as

x̂ = γz − ε. (2.9)

Note that if one defines ẑ = ε
γ , then equation (2.6) reduces to ˙̂z = −γ(ẑ−

z) + y. Thus ẑ can be viewed as an estimate of z, provided that γ > 0 is
sufficiently large.

The same result can be obtained by filtering both sides of equation (2.4)
with a low pass filter. Indeed, from (2.4) it follows that
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x = ż − y, (2.10)

and by filtering both sides of equation (2.10) with a low pass filter one obtains

1
τs + 1

x =
1

τs + 1
(sz − y), (2.11)

where τ > 0 is the filter time time constant and s = jω is the Laplace variable.
Then the following holds:

1
τs + 1

x =
1

τs + 1
(sz − y) =

z

τ
− 1

τs + 1
(
z

τ
+ y). (2.12)

Denoting

ε =
1

τs + 1
(
z

τ
+ y), (2.13)

it follows that the estimate of x can be found as

x̂ =
1
τ

z − ε, (2.14)

which is the same as (2.9) with γ = 1
τ . To summarize, equation (2.13) is

realized as (2.6) with γ =
1
τ

.
Suppose now that the sensor noises w1 and w2 affect y and z variables,

respectively, so that the observer equations become

ε̇ = −γε + γ(y + w1) + γ2(z + w2),

x̂ = γ(z + w2) − ε.

Assume that supt |ẇ2(t) − w1(t)| ≤ bw for some bw > 0. Then, the following
upper bound on the estimation error v = x̂ − x can be derived:

|v(t)| ≤

√
v(0)2e−γt +

(b1 + γbw)2

γ2
. (2.15)

This estimate implies that for large γ the asymptotic estimation error may be
of the order of the above noise bound bw.

Dirty Differentiation Observer

The unknown variable x can also be estimated by evaluating the so called
“dirty derivative” of z , i.e.,

x̂ =
sz

τs + 1
− y =

z

τ
− z

τ(τs + 1)
− y. (2.16)

One difference between (2.9) and (2.16) is that the known variable y is
filtered by a low-pass filter in (2.9), but there is a direct coupling between x̂ and
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y in (2.16). Experimental results show that (2.9) provides a smoother estimate
than (2.16). Moreover, by evaluating the estimation error of the algorithm
(2.16) it follows that the upper bound of the estimation error depends on the
upper bound on the second derivative of z, z̈, i.e.,

|x(t) − x̂(t)| ≤
√

(x(0) − x̂(0))2e−γt + τ2b2
2, (2.17)

where supt |z̈(t)| ≤ b2, b2 > 0. On the contrary, the upper bound (2.8) on the
estimation error for the algorithm (2.9) depends only on the upper bound on
|ẋ|.

Sliding Mode Observer

The sliding mode observer is based on the following variable structure filter,

˙̂z = y + γsign(v1), (2.18)

where γ > 0, v1 = z − ẑ, and v1 = 0 defines the sliding surface. The error
model can be written as follows

v̇1 = x − γsign(v1). (2.19)

Then for any t ≥ t∗, where t∗ = 2
γ0

|v1(0)|, the system is in the sliding

mode on the surface v1 = 0, if γ > b0 + γ0
2 , supt |x(t)| ≤ b0. The following

equivalence hold in a sliding mode:

x = (γsign(v1))eq (2.20)

defining an estimate of the input x as γsign(0). Equivalence (2.20) means
that the average of γsign(v1) is equal to the input x and hence an estimate
of x, x̂, can be extracted using a low-pass filter [112]:

˙̂x =
1
τ

(−x̂ + γsign(v1)), (2.21)

where τ > 0. The following bound can be obtained for the estimation error

|x(t) − x̂(t)| ≤
√

(x(0) − x̂(0))2e−γt + τ2b2
1, (2.22)

where supt |ẋ(t)| ≤ b1, b1 > 0. Assuming that τ = 1
γ , it can be confirmed

that the upper bounds of estimation errors for the high gain observer and the
sliding mode observer are the same. The implementation of the sliding mode
observer, however, requires two filters whereas only one filter is required for
implementing the high gain observer.

A differentiator that is based on the second order sliding mode can also
be applied for estimation of ż [54]. However, two filters are also required for
implementation of the second order sliding mode differentiator.



2.2 Air Charge Determination Using Input Observer 23

Spline Interpolation

A spline interpolation method described in Chapter 3 is based on on-line least-
squares polynomial fitting over the moving in time window of a given size. The
advantage of this method over the dirty differentiation described above is its
good transient behavior. The idea for the spline interpolation method is to fit
a polynomial of a certain order as a function of time in the least squares sense
and take the derivatives analytically. Thus the derivative ż in (2.4) can be
estimated via analytical calculation of the derivative of a polynomial approx-
imation of z. This method is recommended for applications where the signal
z is noisy. A polynomial of a certain order fitted in the least-squares sense in
the moving window filters a measurement noise. Moreover, the order of the
polynomial can also be chosen via evaluation of the residuals. The order of
the polynomial is increased until the variance of the residual is approximately
equal to the variance of the measurement noise that provides the best polyno-
mial fitting in each step of the moving window. That in turn provides optimal
attenuation of the measurement noise. A computational complexity can be
mentioned as a disadvantage of the spline interpolation method.

2.2.2 Input Observer Application to Charge Estimation

The starting point for the derivation of an input observer for the cylinder
flow is to represent the volumetric efficiency, ηv, as a sum of two terms. The
first term is known (e.g., our initial calibration that determines the volumetric
efficiency as a function of engine speed, intake manifold pressure, valve timing,
etc.) while the second term needs to be estimated:

ηv = ηvk + Δηv, (2.23)

where ηvk is the known term and Δηv needs to be estimated. The values of
the volumetric efficiency are normally calibrated on the engine dynamome-
ter under steady-state running conditions and “room temperature” ambient
conditions. Various uncertainty sources come into play when transferring the
calibration to the actual vehicle and using it during transient operation of the
engine; these uncertainties can be modelled as Δηv, an additive volumetric ef-
ficiency error. Additionally, Δηv �= 0 may reflect long term aging effects (such
as soot deposits in the intake ports) or engine-to-engine hardware variability.

The “speed-density” calculation (2.1) can be rewritten as follows

mcyl = ηvk
ne

2
Vd

p

RT
+ Δηv

ne

2
Vd

p

RT
. (2.24)

From (2.3) it follows that

ṗ = −ηvk
ne

2
Vd

p

VIM
− Δηv

ne

2
Vd

p

VIM
+

RT

VIM
mth. (2.25)



24 2 Cylinder Flow Estimation

Thus the following input estimation problem results: by measuring p,
ηvk

ne
2 Vd

p
VIM

and RT
VIM

mth, one has to estimate Δηv
ne
2 Vd

p
VIM

. It is very
easy to see that this problem is exactly the input estimation problem dis-
cussed in Subsection 2.2.1 with z = p, y = −ηvk

ne
2 Vd

p
VIM

+ RT
VIM

mth,

x = −Δηv
ne
2 Vd

p
VIM

. Hence, the flow into the engine can be estimated as

m̂cyl = ηvk
ne

2
Vd

p

RT
+ (ε − γp)

VIM

RT
, (2.26)

where ε is adjusted as follows

ε̇ = −γε − γηvk
ne

2
Vd

p

VIM
+ γ

RT

VIM
mth + γ2p (2.27)

= −γ
RT

VIM
(m̂cyl − mth).

Note that equation (2.26) estimates the flow into the engine cylinders as a sum
of the nominal “speed-density” estimate and a correction term that depends
on ε defined in equation (2.27).

The observer has several properties that are very desirable in the actual
engine application. Equations (2.26), (2.27) imply that in steady-state m̂cyl =
mth. Thus the observer estimate agrees with the throttle flow measurement
by MAF sensor in steady-state (as it should based on the mass balance). Note
that the estimate of the cylinder flow on the basis of the nominal “speed-
density” equation alone may not match mth in steady-state, if there is a sizable
discrepancy between ηv and ηvk. The observer also corrects the nominal speed-
density estimate in transients. It turns out that due to the presence of the
feedforward term, ηvk, in (2.26), the observer gain γ need not be very high to
obtain accurate estimates of the cylinder flow in transients. This property was
confirmed during the experimental evaluation of the observer. The observer
gain would have to be much higher if the feed-forward term was not used.

If
V =

1
2
(mcyl − m̂cyl)2,

then for any c > 0,

V̇ ≤ (−2γ + c) · V +
supt |Ȧ|2

2c
,

where
A = Δηv

ne

2
Vd

p

RT
.

Thus the accuracy of the estimate may deteriorate during very fast tran-
sients, when |Ȧ| is large compared to γ. Note that γ cannot be made arbitrarily
large in practice due, for example, to constraints imposed by the sample data
implementation.
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To implement the observer (2.26), (2.27), it is necessary to additionally
process the measurements, mth and p so that to compensate for a phase lag
introduced by MAF sensor dynamics and to filter out periodic oscillations in
the intake manifold pressure measurements without introducing an excessive
phase lag. The periodic oscillations in the intake manifold pressure measure-
ment are primarily caused by the cyclic nature of engine induction process.
Specifically, an input observer can be applied to a model of MAF sensor dy-
namics to estimate the actual throttle flow based on the measured throttle
flow signal. This observer serves a similar purpose as a “lead” filter introduced
in [12],[25]. The intake manifold pressure measurement can be filtered using
a state observer of the form

p̂ =
RT

VIM
(m̂th − m̂cyl) − γp(p̂ − p),

where γp > 0 and m̂th is the actual throttle flow estimated with an input ob-
server. The observer essentially combines an intake manifold pressure model
and a low pass filter. The estimate, p̂, can replace p in (2.26), (2.27). The
theoretical analysis of the estimation accuracy of the algorithm with the ad-
ditional observers is reported in [99]. The feedforward, ηvk, can be improved
on-line using values to which Δηv converges in steady-state at various en-
gine operating conditions. This functionality can be provided by a learning
algorithm similar the one described in Section 2.3.3.

2.2.3 Experimental Evaluation

The scheme has been evaluated experimentally on a vehicle. The estimate of
the air flow into the engine (normalized by the engine speed) obtained by the
input observer algorithm is compared to the one obtained by the conventional
speed-density calculation (equation (2.1)) in Figure 2.2. The equivalence ratio
(air-to-fuel ratio divided by the stoichiometric value) measured by a UEGO
sensor is shown in Figure 2.3. Note that since the actual flow into the engine
cannot be measured, the quality of the estimate can only be judged from
the air-to-fuel ratio trace. These plots represent a response to an aggressive
throttle opening (“tip-in”). Note that the undesirable upward excursion of the
air-to-fuel ratio (the so-called “lean spike”) would be much higher if our fuel
quantity calculation was based on the conventional “speed-density” cylinder
flow estimate. Note also that in steady-state the estimate of the cylinder
flow provided by our observer matches the measurement of the throttle flow
provided by the MAF sensor, as it should, based on the mass balance.

2.3 Composite Adaptive Engine Air Charge Estimation

In the derivation of the adaptive air change estimation algorithm it is assumed
that the uncertainty has an impact on the intake manifold temperature mea-
surement. The algorithm can be analogously formulated for the case of either
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Fig. 2.2. Experimental results for a different operating condition. Observer-based
and conventional estimates of flow (normalized by engine speed, i.e., in g/rev) into
the engine and MAF sensor readings in response to a “tip-in”.

additive or multiplicative uncertainty in volumetric efficiency. For example,
is some engines, the temperature sensor is combined with the MAF sensor
located upstream of the intake manifold and intake runners. In this case, the
actual intake manifold temperature may then be modelled as the upstream
temperature multiplied by an unknown parameter. While the input observer
provides a simple solution to the air charge estimation problem, the accuracy
of the estimation deteriorates in very fast transients. In this Section the theo-
retical results available in the adaptive control literature are used to develop
an adaptive air charge estimator with various enhancements. In particular,
the prediction error estimate is introduced into the adaptation law in order to
improve the convergence rate of the estimated parameters. Because the result-
ing adaptation law is driven by both the tracking error and by the prediction
error estimate, it is referred to as composite adaptive law. Nevertheless, the
composite adaptation alone cannot cope with very fast transients and fur-
ther enhancements are needed. Specifically, to find a compromise between
the speed of adaptation and the quality of the estimation signal the a pri-
ori value of the estimated parameter is used during transients and to enable
composite adaptation under close to steady-state conditions. This idea is re-
alized by introduction of a σ- modification [37] which depends on a prediction
error estimate. Then under the transient conditions the estimated parame-
ter converges to its a priori value, but under steady-state conditions the σ -
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Fig. 2.3. Experimental results for a different operating condition. Equivalence ra-
tio (air-to-fuel ratio divided by the stoichiometric value) with the observer-based
cylinder flow estimate. Lean spike would be higher if the nominal “speed-density”
estimate alone was used.

modification is not active and the adjustment law is driven by the tracking
error and by the prediction error estimate. Further improvements are made
by adapting the feedforward part. Specifically, due to modelling errors the
estimated parameter may converge to different values depending on engine
operating point. Therefore the a priori value is additionally represented as a
linear function of the intake manifold pressure and update (or learn) the two
coefficients of this function using the values to which the estimated parameter
converges under close to steady-sate conditions. In transients, the updated
feedforward provides an improved nominal estimate thereby improving the
transient estimation accuracy of the overall algorithm and also shortens time
for the convergence of the composite adaptation.

2.3.1 Composite Adaptive Algorithms: General Case

Consider a first order error system,

ė = −α0e + ζTθ̃, (2.28)

where e denotes the tracking error (e.g., the difference between the measured
and estimated state of the system), ζ ∈ Rp is a regressor, θ̃ = θ − θ∗ is the
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parameter error i.e., the error between the estimated and true parameters (un-
known), θ, θ∗ ∈ Rp. The control objective is to drive the tracking error e to
zero by choosing θ(t) appropriately. Composite adaptation defined as an adap-
tation driven by both tracking error e and prediction error which is defined as
an error directly related to the parameter error θ̃ is described in this Section.
Two types of composite adaptation which use different techniques for predic-
tion error estimation are described. The prediction error estimation technique
which offers an exponential convergence of the prediction error estimate to
its true value and the prediction error estimation technique on sliding modes
which offers the convergence of the prediction error estimate in a finite time
are described in the next two Sections. Moreover, a simultaneous disturbance
and parameter estimation technique is described in the third Section.

Composite Adaptation with Exponentially Fast Prediction Error
Estimation

The composite adaptation law [94], [96] can be defined as follows

θ̇ = −Γ (t)[ζe + α0φ(e − ε) + κα0sign(e − ε)], κ, α0 > 0 (2.29)
φ̇ = −α0φ + ζ (2.30)
ε̇ = −α0ε − φTθ̇ + κα0sign(e − ε) (2.31)

Γ̇ = −α0ΓφφTΓ + α0λ(t)Γ, ‖Γ (0)‖ ≤ k0 (2.32)
λ(t) = λ0(1 − ||Γ ||/k0), λ0 > 0, k0 > 0 (2.33)

where equation (2.29) is the equation of the adjustable parameter θ(t), equa-
tion (2.30) is the lowpass filter for the regressor ζ, equation (2.31) is the pre-
diction error estimate, equation (2.32) is the least-squares gain update with a
variable forgetting factor (2.33) [81].

Remark 1. The following least-squares gain update with the properties
similar to the properties of (2.32),(2.33) can also be used [4].:

Γ̇ = −α0ΓφφTΓ + α0(Γ + ΓTΓ/k0), (2.34)

where 0 < Γ (0) ≤ k0Ip, Ip is p×p unity matrix, k0 > 0 being an upper bound
of the gain matrix Γ .

A prediction error is defined as an error which is directly related to the
parameter error θ̃. The tracking error e is not directly related to the parameter
error θ̃ and a dynamical system between the tracking error e and the parameter
error θ̃ reduces the convergence rate of the estimated parameters to their true
values. The parameter error θ̃ is estimated via e − ε.

Defining, e1 = e− ε− φTθ̃, it is straightforward to show that ė1 = −α0e1,
with κ = 0 and therefore e− ε is an estimate of the prediction error φTθ̃ that
contains the information about the parameter error θ̃.

Thus equation (2.29) is the adaptation law driven by both tracking error,
e, and by the prediction error estimate, e − ε. One can expect that the con-
vergence speed is improved due to a feedback of θ̃ into the adaptation law
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through e − ε. An additional relay term driven by e − ε in (2.29) is beneficial
to deal with the additive unmeasurable disturbances [96].

Remark 2. Algorithm (2.29),(2.30),(2.31),(2.32) can be initialized as fol-
lows ε(0) = e(0) and φ(0) = 0. Thus e(t) − ε(t) = φT(t)θ̃(t) for ∀t ≥ 0, with
κ = 0.

Remark 3. The prediction error can also be estimated as follows. First,
equations (2.28),(2.30),(2.31) with κ = 0 are written as follows:

e =
ζTθ̃

s + α0
, φ =

ζ

s + α0
, ε = −φT[sθ]

s + α0
, (2.35)

where s = jω is a Laplace variable.
Evaluation of φTθ̃ with φ given by (2.35) yields to the prediction error esti-
mate:

φTθ̃ =
(s + α0)φTθ̃

s + α0
=

s[φTθ̃] + α0φ
Tθ̃

s + α0

=
[(s + α0)φT]θ̃ + φT[sθ] + α0φ

Tθ̃ − α0φ
Tθ̃

s + α0

=
ζTθ̃ + φT[sθ]

s + α0
=

ζTθ̃

s + α0︸ ︷︷ ︸
e

−
(
− φT[sθ]

s + α0

)
︸ ︷︷ ︸

ε

= (e − ε).

The convergence of the tracking error to zero for the system (2.28)-(2.32)
can be established with the help of the following Lyapunov function [94], [96]:

V =
1
2
e2 +

1
2
(e − ε − φTθ̃)2 +

1
2
θ̃TΓ−1θ̃ (2.36)

The first term is the term which is responsible for the convergence of the
tracking error. The derivative of this term along the solutions of (2.28) can
be evaluated as follows:

d

dt
(
1
2
e2) = −α0e

2 + eζTθ̃ (2.37)

The second term is the term which is responsible for the prediction error
estimate. The derivative of this term along the solutions of (2.28),(2.29), (2.30)
and (2.31) can be evaluated as follows:

d

dt

1
2
(e − ε − φTθ̃)2 = (e − ε − φTθ̃)

(−α0e + ζTθ̃ + α0ε + φTθ̇ − κα0sign(e − ε) − φ̇Tθ̃ − φTθ̇)
= (e − ε − φTθ̃)(−α0(e − ε − φTθ̃) − κα0sign(e − ε))
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= −α0(e − ε − φTθ̃)2 − κα0|e − ε| + θ̃Tφκα0sign(e − ε)

= −α0

2
(e − ε − φTθ̃)2 − α0

2
(e − ε)2 − α0

2
θ̃TφφTθ̃ − κα0|e − ε|

+ θ̃T(α0φ(e − ε) + φκα0sign(e − ε)) (2.38)

The last term θ̃T(α0φ(e − ε) + φκα0sign(e − ε)) should be canceled in
the derivative of the Lyapunov function due to (2.29). The negative term
−κα0|e − ε| is beneficial when dealing with additive bounded unmeasurable
disturbances.

The third term is the term which is responsible for the parameter error
convergence. The derivative of this term along the solutions of (2.29), (2.32)
and (2.33) can be evaluated taking into account that Γ̇ Γ−1 + Γ Γ̇−1 = 0 and
Γ̇−1 = α0φφT − α0λ(t)Γ−1

d

dt

1
2
θ̃TΓ−1θ̃ = θ̃TΓ−1θ̇ +

1
2
θ̃TΓ̇−1θ̃

= −θ̃T(ζe + α0φ(e − ε) + φκα0sign(e − ε))

+
α0

2
θ̃TφφTθ̃ − α0

2
λ(t)θ̃TΓ−1θ̃ (2.39)

Finally, the derivative of Lyapunov function candidate V along the solu-
tions of the system is the following sum of (2.37), (2.38) and (2.39):

V̇ = −α0e
2 − α0

2
(e − ε − φTθ̃)2 − α0

2
(e − ε)2 − κα0|e − ε| − α0

2
λ(t)θ̃TΓ−1θ̃

This implies that the tracking error, e, is bounded and square integrable.
The convergence of the tracking error is established by proving boundness of
ė from (2.28) and using Barbalat’s lemma. Convergence of θ̃ to zero follows
from the existence of the positive number λ1 such that λ(t) ≥ λ1 > 0 if φ(t)
is persistently exciting.

The Lyapunov function (2.36) allows
• the design of the filter (2.30), (2.31) for a prediction error estimate e − ε
simultaneously with the adaptive algorithm (2.29) design,
• the connection of the filter parameter α0 with the adaptive algorithm (2.29)
parameters,
• inclusion of the relay term κα0sign(e − ε) driven by the prediction error
estimate e − ε for a robustness with respect to unmeasurable disturbances,
• inclusion of the least-squares gain update (2.32) with a variable forgetting
factor (2.33) which is a useful technique in dealing with time varying param-
eters.

Composite Adaptation with Prediction Error Estimation on a
Sliding Mode

A prediction error ζTθ̃ of the system (2.28) can also be estimated by using a
sliding mode theory [112]. Introducing a filter for prediction error estimation
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ε̇ = −α0ε + γsign(e − ε), ε(0) = e(0), (2.40)

where γ = ‖ζ‖(‖θ‖ + θb) + κ
2 , ‖θ∗‖ ≤ θb, κ > 0, the derivative of the positive

define function V1 = (e− ε)2 is evaluated along the solutions of (2.28), (2.40)
as follows

V̇1 = 2(e − ε)(−α0(e − ε) + ζTθ̃ − γsign(e − ε))
≤ 2|e − ε|(‖ζ‖(‖θ‖ + θb) − γ)

≤ −κ
√

V1

Since the following inequality is valid√
V1 ≤

√
V1(0) − κ

2
t (2.41)

for all t ≥ t∗, where t∗ = 2
κ
√

V1(0) a sliding mode arises in the system
and

ė − ε̇︸ ︷︷ ︸
=0

= −α0 (e − ε)︸ ︷︷ ︸
=0

+ζTθ̃ + γsign(e − ε) (2.42)

and the following equivalence hold

γsign(e − ε)|eq = ζTθ̃ (2.43)

which gives the prediction error ζTθ̃.
The composite adaptive law can be defined as follows

θ̇ = −Γ (t)[ζe +
1
2
ζγsign(e − ε)], κ > 0 (2.44)

ε̇ = −α0ε + γsign(e − ε) (2.45)
Γ̇ = −ΓζζTΓ + λ(t)Γ, ‖Γ (0)‖ ≤ k0 (2.46)

λ(t) = λ0(1 − ||Γ ||/k0), λ0 > 0, k0 > 0 (2.47)

where equation (2.44) is the equation of the adjustable parameter θ(t) which
can also be written by taking into account (2.43) as follows θ̇ = −Γ (t)[ζe +
1
2ζζTθ̃], equation (2.45) is the filter for a prediction error estimate, and equa-
tion (2.46) is the least-squares gain update with a variable forgetting factor
(2.47).

The stability of the system (2.28),(2.44),(2.45), (2.46) can be established
using the following Lyapunov function

V2 =
1
2
e2 +

1
2
θ̃TΓ−1θ̃ (2.48)

whose derivative along the solutions of the system is the following
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V̇2 = −α0e
2 + eζTθ̃ − θ̃T(ζe +

1
2
ζζTθ̃)

+
1
2
θ̃TζζTθ̃ − 1

2
λ(t)θ̃TΓ−1θ̃

= −α0e
2 − 1

2
λ(t)θ̃TΓ−1θ̃ (2.49)

The convergence of the tracking and parameter errors can be established
using similar arguments as in the previous case.

A comparison of composite algorithms (2.29),(2.30),(2.31), (2.32) and
(2.44),(2.45), (2.46) shows that the algorithms are similar with the only differ-
ence that the regressor ζ is filtered in algorithm (2.29),(2.30),(2.31), (2.32) by
a lowpass filter (see equation (2.30)). The relay term sign(e− ε) which is use-
ful in dealing with unmeasurable disturbances in composite algorithm (2.29)
is used for both prediction error estimation and disturbance rejection in algo-
rithm (2.44) [5]. The term γsign(e − ε) in algorithm (2.44) should be filtered
via a lowpass filter in order to get an estimate of the prediction error ζTθ̃ ac-
cording to the equivalent control method [112]. In other words the equivalence
(2.43) is a definition of γsign(0), and an average of γsign(e−ε) is equal to the
prediction error ζTθ̃. Prediction error estimation by using equivalent control
method is beneficial in adaptive algorithms since adaptation mechanism (2.44)
takes a role of a filter that averages the input term γsign(e − ε) and there-
fore this lowpass filter is omitted. Undesirable chattering of the adjustable
parameters θ can be seen as a disadvantage of the algorithm (2.44).

Notice that the prediction error in the case of noisy tracking error mea-
surements can also be estimated from (2.28) via estimation of the derivative
of the tracking error ė via a spline interpolation method, which is suitable
for derivative estimation in the presence of a measurement noise. A recursive
spline interpolation method for calculation of the derivatives of the signal is
described in Chapter 3.

Composite adjustment law (2.29),(2.30),(2.31), (2.32) with Γ (t) = γI,
where Ip is p × p unity matrix, γ > 0 and κ = 0 is therefore chosen for air
charge estimation in Section 2.3.2. Moreover, a σ-modification that depends
on the prediction error estimate is introduced for separation of the transient
and steady-state conditions.

Simultaneous Disturbance/Input and Parameter Estimation

The development of a simultaneous disturbance and parameter estimation
technique is also motivated by the practical applications in the engine control
area. An example of a simultaneous estimation of the exhaust flow via the
EGR (Exhaust Gas Recirculation) valve which is treated as an unknown input
(disturbance) and the volumetric efficiency parameters is considered in [47].
Another example described there is a simultaneous estimation of unknown
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engine load torque which is treated as a disturbance, (see also Chapter 1) and
the engine brake torque parameterized by an offset and a multiplier. The key
idea of the simultaneous input and parameter estimation is a presentation of
the estimate of unknown input in terms of unknown parameters or a parameter
error. After that the problem is reduced to the parameter estimation problem.
The convergence of the tracking error can be shown, but the estimate of the
input does not converge to the true input, and unknown parameters do not
converge to their true values. This technique is therefore recommended in the
model reference adaptive control applications where the control aim is the
minimization of the tracking error i.e., the error between the system state
and the state of the reference model.

Consider a first order error system,

ė = −α0e + ζTθ̃ + d + ua, (2.50)

where e denotes the tracking error, ζ ∈ Rp is a regressor, θ̃ = θ − θ∗ is the
parameter error, d = d(t) is bounded unmeasurable time-varying disturbance,
|d(t)| ≤ d̄, |ḋ(t)| ≤ d̄1, and ua is an additional control input. The prob-
lem of simultaneous disturbance and parameter estimation can be reduced to
the problem of the design of an additional input ua for a disturbance com-
pensation. Notice that two unknown variables a prediction error ζTθ̃ and a
disturbance d can not be estimated using only one equation (2.50). There-
fore the control aim is minimization of the tracking error e. The disturbance
estimation objective can be stated as follows:

lim
t→∞

| d(t) − d̂(t) |= Δ, (2.51)

where d̂ is the disturbance estimate and Δ is a small positive number.
Consider the following disturbance estimate:

d̂ = ε + βe + ϕT θ̃ (2.52)

where β > 0, ε ∈ R1 and ϕ ∈ Rp are adjusted as follows

ε̇ = −βε + βα0e − βua − ϕT θ̇ − β2e (2.53)
ϕ̇ = −βϕ − βζ, ϕ(0) = 0, (2.54)

where θ̇ is the derivative of the adjustable parameters specified below. Con-
sider the following Lyapunov-like function candidate:

V =
1
2
(d − d̂)2 =

1
2
(d − ε − βe − ϕT θ̃)2 (2.55)

whose derivative along the solutions of (2.50),(2.52), (2.53), and (2.54) is

V̇ ≤ −β(d − ε − βe − ϕT θ̃)2 + d1 | d − d̂ |

≤ −β

2
(d − d̂)2 +

1
2

d1
2

β
(2.56)
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and

(d(t) − d̂(t))2 ≤ (d(0) − d̂(0))2e−βt +
d1

2

β2
(2.57)

Note, that the convergence of the disturbance estimate to its true value can
be obtained with any pre-specified accuracy by amplifying the design param-
eter β, but the disturbance estimate (2.52) depends on unknown parameter
mismatch θ̃. The convergence of the estimate to its true value is exponential
when d(t) = d.

Thus the compensation signal ua can be chosen as follows: ua = −ε − βe,
and (2.53) can be simplified:

ε̇ = βα0e − ϕT θ̇ (2.58)

Finally, (2.50) can be written as follows

ė = −α0e + [f + ϕ]T θ̃ + (d − d̂) (2.59)

This, in turn, represents a stable dynamics driven by the input [f +ϕ]T θ̃+(d−
d̂) whereas the upper bound of | d− d̂ | is known and can be made arbitrarily
small. The problem of a simultaneous disturbance and parameter estimation
was reduced to a well-known tracking error minimization problem. Composite
adaptive algorithms modified with a σ-modification [96] and described in the
previous Sections can now be applied for the reduction of the upper bound of
the module of the tracking error to a arbitrarily small positive constant. This
disturbance estimation technique was proposed in [5],[85]. The robustness with
respect to a measurement noise is shown in [46], [47].

Notice that the problem of simultaneous disturbance and parameter esti-
mation can also be solved by the expansion of the parameter vector i.e., via
inclusion of the disturbance estimate into the parameter vector θ.

2.3.2 Derivation of Composite Adaptive Air Charge Estimator

The derivation of the adaptive air charge estimator starts with an ideal gas
law for the intake manifold, where the intake manifold temperature is modified
by an unknown constant multiplier, θ∗,

p =
RTθ∗MIM

VIM
. (2.60)

Here MIM denotes the mass of air in the intake manifold.
Assuming that the intake manifold temperature is constant and differen-

tiating (2.60) an equation similar to (2.3) is obtained:

ṗ =
RTθ∗
VIM

(mth − mcyl). (2.61)

The flow into the engine is calculated on the basis (2.1) as



2.3 Composite Adaptive Engine Air Charge Estimation 35

mcyl = ηv
ne

2
Vd

p

RTθ∗
(2.62)

Unfortunately, (2.62) is not directly implementable since the parameter θ∗
is unknown. Our objective is, therefore, to define an adaptation law for the
parameter estimate, θ(t), such that θ(t) → θ∗.

The intake manifold pressure satisfies the following equation, which comes
from (2.61) and (2.62):

ṗ = −ηv
ne

2
Vd

VIM
p +

RT

VIM
θ∗mth. (2.63)

Consider the following adaptive observer for p,

˙̂p = −ηv
ne

2
Vd

VIM
p̂ +

RT

VIM
θmth (2.64)

where θ = θ(t) is the parameter estimate. Notice that (2.64) has the same
structure as (2.63) and, in particular, measured pressure would be used as an
input to calculate volumetric efficiency, ηv, in both cases. The tracking error
that should be driven to zero is defined as

e(t) = p(t) − p̂(t). (2.65)

From (2.63), (2.64) the following error model is obtained:

ė = −ηv
ne

2
Vd

VIM
e − RT

VIM
mthθ̃ (2.66)

where θ̃ = (θ−θ∗). From (2.66) one can define an adaptation law driven by the
tracking error, e, as has been done, for example, in [45]. Here an adaptation
law that is driven by both tracking and prediction errors is defined.

The prediction error (the error between the unknown parameter and its
estimate multiplied by the regressor) is defined according to

ep = ϕθ̃ (2.67)

and the prediction error estimate is defined according to

ees = e − ε (2.68)

where ε and ϕ are adjusted as follows

ε̇ = −ηv
ne

2
Vd

VIM
ε + α0(e − ε) − ϕθ̇ (2.69)

ϕ̇ = −(ηv
ne

2
Vd

VIM
+ α0)ϕ − RT

VIM
mth. (2.70)

Here α0 > 0 is a gain, ϕ(0) < 0 and ε(0) is arbitrary. The adaptation law that
determines θ̇ will be defined in the sequel.
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To show the convergence of the prediction error (2.67) to its estimate (2.68)
we consider the following error

e1 = e − ε − ϕθ̃. (2.71)

Straightforward calculations show that e1 satisfies the following equation

ė1 = −(ηv
ne

2
Vd

VIM
+ α0)e1 (2.72)

and, therefore,
(e − ε) → ϕθ̃ as t → ∞. (2.73)

Consider the following composite adaptation law [98] with the additional
σ-modification:

θ̇ = −γ(α0ϕ(e − ε) − RT

VIM
mthe + σ · (θ − θ)) (2.74)

where θ is an a priori estimate of θ∗ and

σ = β(e − ε)2, β > 0. (2.75)

The adjustment law that determines θ(t) is driven by the tracking error e,
the prediction error estimate (e− ε) and by the adjustable σ-modification. In
this Subsection the case when the a priori value is a constant, i.e., θ = 1 is
analyzed in details. In the next Subsection the functional dependence of θ̄ on
engine operating parameters and development of an algorithm to learn this
functional dependence on-line will be considered.

Remark: In the actual engine implementation, it is preferable to use a
calibratable lookup table with the prediction error estimate (e − ε) as an
input instead of (2.75). Such a table should have a dead-zone around 0 so
that the σ-modification is disabled in conditions close to steady-state. As a
result, during fast transients, the σ-modification dominates, and θ(t) converges
to the a priori value θ∗; in conditions close to steady-state, the composite
adaptive law dominates and the adaptation of θ(t) is driven by the tracking
error and by the prediction error estimate. Instead of (e − ε) one may also
use an estimate of the time rate of change of intake manifold pressure as an
input to σ-modification since the latter is indicative of whether the engine is in
transients. The σ-modification can also be made asymmetric to differentiate
between positive and negative transients.

Proposition: Consider the system (2.66), (2.70), (2.69), (2.74). Suppose
the system parameter α0 satisfies the constraint

α0 > 4βC2, (2.76)

where |θ∗ − θ| ≤ C and θ = 1. Then,
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lim
t→∞

e(t) → 0, (2.77)

lim
t→∞

(e(t) − ε(t)) → 0 (2.78)

lim
t→∞

ϕ(t)θ̃(t) → 0, (2.79)

lim
t→∞

θ(t) → θ∗ (2.80)

and all signals remain bounded.
Proof: Consider the following Lyapunov function candidate

V (t) =
1
2
e2 +

1
2
((e − ε) − ϕθ̃)2 +

1
2γ

θ̃2. (2.81)

Evaluating its derivative along the solutions of the system yields:

V̇ = e(−ηv
ne

2
Vd

VIM
e − RT

VIM
mthθ̃)

− (α0 + ηv
ne

2
Vd

VIM
)((e − ε) − ϕθ̃)2

− θ̃(α0ϕ(e − ε) − RT

VIM
mthe + σ(θ − θ)). (2.82)

Decomposing the third term and noting that

θ̃(θ − θ) = (θ − θ∗)(θ − θ) = θ̃2 + θ̃(θ∗ − θ̄),

yeilds

V̇ = −ηv
ne

2
Vd

VIM
e2

− α0

2
+ ηv

ne

2
Vd

VIM
)((e − ε) − ϕθ̃)2

− α0

2
((e − ε)2 − α0

2
(ϕθ̃)2

− θ̃β(e − ε)2(θ − θ)

≤ −ηv
ne

2
Vd

VIM
e2

− (
α0

2
+ ηv

ne

2
Vd

VIM
)((e − ε) − ϕθ̃)2

− (
α0

2
+ β|θ̃|2 − β

2
|θ̃|2 − βC2)(e − ε)2 − α0

2
(ϕθ̃)2.

By taking into account (2.76) it follows that

V̇ ≤ −ηv
ne

2
Vd

VIM
e2

− (
α0

2
+ ηv

ne

2
Vd

VIM
)((e − ε) − ϕθ̃)2

− α0

4
(e − ε)2 − α0

2
(ϕθ̃)2. (2.83)
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It is concluded now that e and ((e−ε)−ϕθ̃) are bounded and square-integrable,
θ̃ is bounded, and ϕθ̃ and (e − ε) are square-integrable. From (2.66) it is
concluded that ė is also bounded, and (2.77) is achieved. Using (2.69) one
can show that ε̇ and ε are also bounded. Then (2.78) and hence (2.79) are
achieved. The convergence of the parameter (see (2.80)) can be proved by
considering the following equation

θ̇ = −γ(α0ϕ
2θ̃ − RT

VIM
mthe + σ · (θ − θ)), (2.84)

which represents a stable time varying low-pass filter with a square-integrable
and convergent input and by noting that there exists a positive constant Cφ

such that ϕ2 ≥ Cφ.
Then,

ηv
ne

2
Vd

p

RTθ(t)
→ ηv

ne

2
Vd

p

RTθ∗
as t → ∞. (2.85)

Therefore the cylinder air flow (2.62) can be estimated as follows

m̂cyl = ηv
ne

2
Vd

p

RTθ(t)
, (2.86)

where θ(t) is adjusted according to (2.74), (2.70), (2.69).
For a later convenience all the equations for the composite adaptive cylin-

der flow estimation are listed:

m̂cyl = ηv
ne

2
Vd

p

RTθ(t)
(2.87)

˙̂p = −ηv
ne

2
Vd

VIM
p̂ +

RT

VIM
θmth (2.88)

ε̇ = −ηv
ne

2
Vd

VIM
ε + α0(p − p̂ − ε) − ϕθ̇ (2.89)

ϕ̇ = −(ηv
ne

2
Vd

VIM
+ α0)ϕ − RT

VIM
mth (2.90)

θ̇ = −γ(α0ϕ(e − ε) − RT

VIM
mthe

+ σ · (θ − θ)). (2.91)

The algorithm guarantees that in steady-state conditions, m̂cyl = mth. In
transient conditions, the estimator follows (2.1) more closely.

2.3.3 Improving Feedforward via Learning

Due to other, unmodelled uncertainty sources, the parameter estimate, θ(t),
produced by the adaptive estimator may converge to different values depend-
ing on the engine operating conditions. To address this issue, the a priori
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value θ, that may be viewed as a feedforward part of the algorithm, can be
additionally modelled as a static function of the intake manifold pressure, i.e.,
θ = f(p). This functional dependence can be learned on-line from the values
to which θ(t) converges.

Specifically, a linear parametrization of the following form is considered
here:

θ = k1p + k2, (2.92)

where k1 and k2 are unknown parameters to be defined. The whole intake
manifold pressure region is divided into two sub-regions corresponding to low
and high pressures: 0 < plow < pbl and pbu < phigh < pamb, where pamb is
the ambient pressure, and pbl < pbu are boundaries of the two sub-regions.
Suppose that the values θlow and θhigh to which θ(t) converges at a certain
low pressure value, plow, and at a certain high pressure, phigh are memorized.
Then the coefficients k1 and k2 can be found as solutions of the following
equations

θhigh = k1phigh + k2, (2.93)
θlow = k1plow + k2. (2.94)

Thus,

k1(t) =
θhigh − θlow

phigh − plow
(2.95)

k2(t) = θlow − k1(t)plow. (2.96)

In practice, the updates of k1(t) and k2(t) can be enabled under close to
steady-state engine operating conditions. In particular, k1(t) and k2(t) can
be recursively updated each time new close to steady-state conditions are
reached using, for example, a recursive least squares algorithm. Alternatively,
to obtain a system functioning continuously in real-time one can adapt θlow

for low pressure as:

If σ(t) < Δ and 0 < p < pbl

θ̇low = −γθ(θlow − θ), θlow(0) = 1 (2.97)
ṗlow = −γp(plow − p), plow(0) = pmp1 (2.98)
else

θ̇low = 0
ṗlow = 0

and one can adapt θhigh for high pressure as:

If σ(t) < Δ and pbu > p > pb

θ̇high = −γθ(θhigh − θ), θhigh(0) = 1 (2.99)
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ṗhigh = −γp(phigh − p), phigh(0) = pmp2 (2.100)
else

θ̇high = 0
ṗhigh = 0

where Δ,γθ, and γp are positive design parameters.
The learning process proceeds as follows. During steady-state conditions

if the intake manifold pressure is low (p < pbl), θlow is adapted according
to (2.97) and θlow converges to the value of θ, while θhigh remains constant.
Note that in practice when σ-modification with a deadzone is used, θ does
not depend on θ under close to steady-state conditions since the term σ(θ−θ)
disappears from equation (2.91) and the adaptation law is driven by tracking
and prediction errors only. Suppose that due to a positive transient the intake
manifold pressure becomes high. Then, in conditions close to steady-state,
θhigh is adapted according to (2.99), while θlow is frozen. Now the mapping
θ = f(p) is based on two recently learned values θlow and θhigh. The gradual
improvement of the feedforward part of the algorithm ensures better tran-
sient estimation accuracy (especially during fast transients) and speeds up
the convergence of the estimated parameter to its true value.

2.3.4 Evaluation

The algorithm was implemented in Matlab. The inputs to the algorithm
were based on the vehicle measurements of the intake manifold pressure, flow
through the throttle and engine speed sampled at 10 msec.

First, the behavior of the adaptive estimator (2.87) - (2.91) without the
feedforward learning functionality, i.e., with θ ≡ 1 is illustrated. Figure 2.5
compares the nominal speed-density estimate (2.1) with the response of the
adaptive estimator with and without the σ-modification. The adaptive esti-
mator and the nominal speed-density estimate converge to different values in
steady-state. This is especially pronounced in the beginning part of the trace.
Note that the adaptive estimator always agrees with the MAF sensor reading
in steady-state conditions. Therefore the adaptive estimator is more accurate
that the nominal speed-density estimate in steady-state conditions. Neverthe-
less in rapid transients, the prediction error estimate, (e − ε) is large and the
σ-modification ensures that the adaptive estimator follows closely the nominal
speed-density estimate. The nominal speed-density estimate is more accurate
than MAF sensor reading in transients. Figure 2.5 confirms that this speeds
up the parameter convergence. One may also observe from Figure 2.5 that
θ(t) converges to different values at low intake manifold pressure and high
intake manifold pressure. These values can be captured via the feedforward
learning as described in Subsection 2.3.3.

Figure 2.4 illustrates a typical iteration of the feed-forward learning. Once
operating conditions close to steady-state are reached, the values of θhigh
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and θlow are adapted. At low intake manifold pressure conditions, θlow is
adapted while θhigh is frozen. At high intake manifold pressure conditions,
θhigh is adapted while θlow is frozen. As can be seen from Figure 2.4, θlow

is rapidly adapted to a value less than 1 in low pressure conditions but a
positive transient affects the system before the adaptation is completed. The
θhigh starts at 1 and adapts to a value slightly less than 1 at the end of the
trace. Note that the speed-density calculation with the a priori value θ(t)
calculated according to (2.92) matches the output of the adaptive estimator
at the end of the trace.
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Fig. 2.4. Left: Normalized by engine speed cylinder flow estimate for (a) nominal
speed-density; (b) adaptive estimator (2.87) - (2.91) with the feedforward calculated
according to (2.92) and feedforward learning. Right: Parameter estimate for (a)
θ(t) calculated according to (2.92); (b) θ(t) for adaptive estimator with feedforward
learning; (c) θhigh; (d) θlow.
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Fig. 2.5. Adaptive estimator responses without feedforward learning: (a) nominal
speed-density estimate; (b) adaptive estimator with σ-modification; (c) adaptive
estimator without σ-modification. Normalized flow (left) and estimated parameter,
θ(t) (right).
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2.4 Air Charge Prediction

Unlike for direct injection (DI) engines, for PFI engines the delay between
fuel injection and actual induction may have a detrimental effect in very fast
transients. Air charge prediction algorithms can be used to compensate for
the effect of this delay [100]. The prediction algorithms encompass two dis-
tinct functionalities. Firstly, it predicts the throttle angle and the flow via the
throttle plate thereby compensating for the delay and dynamics in the throt-
tle system. Secondly, it uses the intake manifold dynamic equation (2.3) and
the speed-density calculation (2.1) to predict the intake manifold pressure and
cylinder air flow several events into the future. During very rapid transients,
it is advantageous to use this prediction of the cylinder air flow to determine
correctly the fuel amount to be injected. The estimated cylinder air flow can
still be used to determine the fueling rate when transients are not very fast,
and it can also be used directly by the ignition system to set correctly the
spark timing. The prediction algorithm benefits from the improved feedfor-
ward (2.92) that is achieved with our learning algorithm. Figure 2.6 illustrates
the experimental results of the prediction algorithm application in a vehicle.
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Fig. 2.6. Experimental results for the cylinder flow prediction algorithm: (a) MAF
sensor signal; (b) nominal speed-density estimate of the cylinder flow; (c) cylinder
flow estimated with an input observer based technique; (d) predicted cylinder flow
signal (made to smoothly transition to estimated cylinder flow once transient subdue.
Cylinder flow estimates are normalized by engine speeds.
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2.5 Concluding Remarks

Two powerful techniques which significantly enhance the performance of the
air charge estimation algorithms are presented in this Chapter. Both tech-
niques are theoretically justified and verified on a real vehicle. Both techniques
use the measured flow via the throttle under the steady state conditions and
the speed-density flow or input estimator during transients. The simplicity
of the input estimation technique makes the corresponding load signal very
attractive for implementation. The engine load signal based on the adaptive
estimation technique is more complicated, but can cope better with fast tran-
sients than the signal based on the input estimation technique due to the
adjustable σ - modification. Adaptive estimation technique developed here
employed methods known in the adaptive control literature such as compos-
ite adaptation and variable σ - modification to construct the sophisticated
engine load estimator.
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Recursive Spline Interpolation Method

In this Chapter new computationally efficient algorithms for spline interpo-
lation method are explained. Theoretical comparative analysis of the spline
interpolation method with combined high-gain observer and spline interpo-
lation method is presented. New spline interpolation algorithms are imple-
mented in a test vehicle for estimation of the engine angular acceleration
from the crankshaft angle measurements.

3.1 Introduction

Numerical calculation of the derivatives of a signal is an old problem in numer-
ical analysis and digital signal processing. The backward difference method
gives one of the simplest numerical differentiators. Despite the fact that it is
quite common in engineering applications the behavior of the derivative is very
often accompanied with peaking phenomena. Spline interpolation method pro-
posed in [18] is based on on-line least-squares polynomial fitting over the mov-
ing in time window of a size w. The advantage of this method over the back-
ward difference method is its good transient behavior. The idea for the spline
interpolation method is to fit a polynomial of a certain order as a function of
time in least squares sense and take the derivatives analytically. Properties of
this method are described in [14], [18]. However, several practical problems
remain. A relatively large window size w requires more on-line computations
and makes practical implementation of the method difficult. This necessitates
the development of computationally efficient recursive algorithms. Moreover,
in the papers [14], [18] only constant intersampling time is considered, which
in many practical applications is not constant. For example, crankshaft angle
measurements in automotive engines are based on the measurements of the
crankwheel tooth number and therefore the elapsed time between two teeth
passing a fixed point varies. This necessitates the development of recursive
computationally efficient algorithms for variable discretization step.

The contributions of this Chapter are the following :

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 3,
c© Springer-Verlag Berlin Heidelberg 2009
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• new computationally efficient recursive spline interpolation algorithms
for variable discretization step,

• theoretical comparative analysis of the spline interpolation method and
combined spline method with high gain observer,

• real-time implementation of the spline interpolation method for the
crankshaft acceleration estimation.

3.2 The Estimation of the Derivatives of Signal via
Spline Interpolation

The first step is to choose the interpolating polynomial as

α̂ = c0 + c1t + ... + cntn (3.1)

where α̂ is an estimate of the measured signal α, t is continuous time,
ci,i = 0, ..., n are coefficients to be found. The estimates of the derivatives are
obtained by differentiating (3.1) analytically.

Suppose that there is a measured window of data {αk−(w−1), ..., αk} of a
size w, measured discretely with variable discretization step. It is convenient
to place the origin at the point k − (w − 1), where k is the step number, then
there is a window of data {α0, ..., αw−1} measured at {0, ..., tw−1} respectively
Variable discretization step is presented as Δti = ti − ti−1, i = 1, ..., w − 1.

The sum to be minimized at every step is

S =
w−1∑
i=0

(αi − (c0 + c1ti + ... + cntni ))2 (3.2)

where ti, i = 0, ..., w − 1 is a discrete time which corresponds to the signal
measurements αi, t0 = 0.

Minimum of S is achieved when equating to zero partial derivatives of S
with respect to ci, i = 0, ..., n, i.e.,

∂S

∂ci
= 0 (3.3)

Equations (3.3) can be written as follows

c0 w + c1

w−1∑
i=0

ti + ... + cn

w−1∑
i=0

tni =
w−1∑
i=0

αi (3.4)

c0

w−1∑
i=0

ti + c1

w−1∑
i=0

t2i + ... + cn

w−1∑
i=0

tn+1
i =

w−1∑
i=0

αiti (3.5)

... ......

c0

w−1∑
i=0

tni + c1

w−1∑
i=0

tn+1
i + ... + cn

w−1∑
i=0

t2n
i =

w−1∑
i=0

αit
n
i (3.6)
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where equation (3.4) represents ∂S
∂c0

= 0, equation (3.5) represents ∂S
∂c1

= 0

and finally equation (3.6) represents ∂S
∂cn

= 0 .
The system (3.4) - (3.6) should be resolved at every step in order to find

the coefficients ci, i = 0, ..., n. It is clear that for a sufficiently large window
size w, the calculation of sums in the system (3.4) - (3.6) requires a lot of
computational power and the next step is to present recursive computationally
efficient algorithms to compute these sums.

Let us consider one step of the moving window of a size w. Suppose that at
step k−1 there is the following data {α0, ..., αw−1} measured at {0, ..., tw−1},
and at step k there is {α1, ..., αw} measured at {0, ..., tw}. The new value
αw measured at the time tw enters the window ( buffer) and the value α0

leaves the window. The problem statement is to find computationally efficient

recursive algorithms to compute the sums Smk
=

w∑
i=1

tmi via the sums at the

previous step Smk−1 =
w−1∑
i=0

tmi , where m = 1, ...2n.

Define the sum of order m at step k as follows

Smk
=

w∑
i=1

tmi = Δtm2 + (Δt2 + Δt3)m + ... + (Δt2 + Δt3 + ... + Δtw)m (3.7)

where t1 = 0.
The sum (3.7) should be computed using the same sum at a previous step
k − 1 which can written as

Smk−1 =
w−1∑
i=0

tmi = Δtm1 + (Δt1 + Δt2)m + ...

+ (Δt1 + Δt2 + ... + Δtw−1)m (3.8)

and the sums of lower order at step k which are defined as

S(m−j)k =
w∑

i=1

tm−j
i = Δtm−j

2 + (Δt2 + Δt3)m−j + ...

+ (Δt2 + Δt3 + ... + Δtw)m−j (3.9)

where 1 ≤ j ≤ (m − 1), m > 1.
Starting with (3.8) and using the following identity

(x + y)m =
m∑

j=0

Cm
j xjym−j , Cm

j =
m!

j!(m − j)!
(3.10)
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where m = 0, 1, 2, ..., one gets

Smk−1 = (w − 1)Δtm1 + Δtm2 + (Δt2 + Δt3)m + ...

+(Δt2 + Δt3 + ... + Δtw−1)m

+
m−1∑
j=1

Cm
j (Δtj1Δtm−j

2 + ... + Δtj1(Δt2 + ... + Δtw−1)m−j) (3.11)

Notice that

Δtm2 + (Δt2 + Δt3)m + ... + (Δt2 + Δt3 + ... + Δtw−1)m

= Smk − (Δt2 + Δt3 + ... + Δtw)m (3.12)

and

m−1∑
j=1

Cm
j (Δtj1Δtm−j

2 + ... + Δtj1(Δt2 + ... + Δtw−1)m−j)

=
m−1∑
j=1

Cm
j Δtj(S(m−j)k − (Δt2 + ... + Δtw)m−j) (3.13)

Substituting (3.12) and (3.13) in (3.11) one gets

Smk
= Smk−1 − (w − 1)Δtm1 −

m−1∑
j=1

Cm
j Δtj(S(m−j)k − (Δt2 + ... + Δtw)m−j)

+(Δt2 + Δt3 + ... + Δtw−1)m (3.14)

where Cm
j = m!

j!(m − j)! , 1 ≤ j ≤ (m − 1), m > 1.

The next step is to calculate the sums on the right hand side of the equation

(3.4) - (3.6). The sums Sαmk
=

w∑
i=1

αit
m
i should be calculated via the sums at

the previous step Sαmk−1 =
w−1∑
i=0

αit
m
i , where m = 2, ...n.

Using similar arguments one can show that

Sαmk
= Sαmk−1 − (α1 + α2 + ... + αw−1)Δtm1 −

m−1∑
j=1

Cm
j Δtj1(Sα(m−j)k − αw(Δt2 + Δt3 + ... + Δtw)m−j)

+αw(Δt2 + Δt3 + ... + Δtw)m (3.15)
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where

Sαmk−1 =
w−1∑
i=0

αit
m
i = α1Δtm1 + α2(Δt1 + Δt2)m + ...

+αw−1(Δt1 + Δt2 + ... + Δtw−1)m (3.16)

is the sum on the step (k − 1), and

Sα(m−j)k =
w∑

i=1

αit
m−j
i = α2Δtm−j

2 + α3(Δt2 + Δt3)m−j +

... + αw(Δt2 + Δt3 + ... + Δtw)m−j (3.17)

where 1 ≤ j ≤ (m − 1), m > 1.
The order of the interpolating polynomial should be so selected to be as

low as possible in order to reduce the computational burden and to filter out
measurement noise.

In the next Section the detailed solution of the interpolation problem for
the second order polynomial is presented. This example is used in Section 3.4
for the crankshaft acceleration estimation.

3.3 Second Order Example

3.3.1 Spline Interpolation Method

For the second order polynomial (3.1), where n = 2, equations (3.4) - (3.6)
can be written as follows

c0 w + c1

w−1∑
i=0

ti + c2

w−1∑
i=0

t2i =
w−1∑
i=0

αi (3.18)

c0

w−1∑
i=0

ti + c1

w−1∑
i=0

t2i + c2

w−1∑
i=0

t3i =
w−1∑
i=0

αiti (3.19)

c0

w−1∑
i=0

t2i + c1

w−1∑
i=0

t3i + c2

w−1∑
i=0

t4i =
w−1∑
i=0

αit
2
i (3.20)

The next step is to present recursive computations for all the sums in (3.18)
- (3.20). Suppose that at the first step all the sums are computed. Then

S1k
=

w∑
i=1

ti = S1k−1 − (w − 1)Δt1 + (Δt2 + Δt3 + ... + Δtw) (3.21)
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Using (3.14) one gets

S2k
=

w∑
i=1

t2i = S2k−1 − (w − 1)Δt21 − 2Δt1(S1k − (Δt2 + ... + Δtw))

+(Δt2 + Δt3 + ... + Δtw)2

S3k
=

w∑
i=1

t3i = S3k−1 − (w − 1)Δt31 − 3Δt1(S2k − (Δt2 + ... + Δtw)2)

−3Δt21(S1k − (Δt2 + ... + Δtw)) + (Δt2 + Δt3 + ... + Δtw)3

S4k
=

w∑
i=1

t4i = S4k−1 − (w − 1)Δt41 − 4Δt1(S3k − (Δt2 + ... + Δtw)3)

−6Δt21(S2k − (Δt2 + ... + Δtw)2) − 4Δt31(S1k − (Δt2 + ... + Δtw))
+(Δt2 + Δt3 + ... + Δtw)4 (3.22)

and

Sαk =
w∑

i=1

αi = Sα(k−1) + αw − α0 (3.23)

Sα1k
=

w∑
i=1

αiti = Sα1(k−1) − (α1 + α2 + ... + αw−1)Δt1

+αw(Δt2 + Δt3 + ... + Δtw) (3.24)

Sα2k
=

w∑
i=1

αit
2
i = Sα2(k−1) − (α1 + α2 + ... + αw−1)Δt21

+αw(Δt2 + Δt3 + ... + Δtw)2

−2Δt1(Sα1k
− αw(Δt2 + Δt3 + ... + Δtw)) (3.25)

Presenting equations (3.18) - (3.20) in matrix form yields

Ac = b (3.26)

where

A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠, cT = (c0, c1, c2), bT = (b1, b2, b3) . where

a11 = w, a12 = S1k, a13 = S2k

a21 = S1k, a22 = S2k, a23 = S3k

a31 = S2k, a32 = S3k, a33 = S4k

b1 = Sαk, b2 = Sα1k, b3 = Sα2k

Notice that, a12 = a21 and a22 = a31 = a13, a23 = a32.
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In order to find spline coefficients ci, i = 0, 1, 2 the matrix equation (3.26)
should be solved with respect to ci at every step ( c = A−1b). To this end
matrix A is inverted analytically.

Remark 1. This algorithm has only one parameter to be optimized, this
being the size of the moving window w. If the derivative of the measured signal
changes slowly it is advisable to have a relatively large window size to filter out
measurement noise. If the derivative changes quickly, the window size should
be sufficiently small to capture corresponding fast changes in the derivative.
The disadvantage of a small window size is the noise in the estimated signal.
Ideally, the window size should be adjustable so that it is small enough during
transients to capture fast changes in the derivative of the signal, and large
enough under steady-state conditions to filter out measurement and space-
discretization noise.

Remark 2. For a constant discretization step the sums Sm do not change
with time, matrix A is constant and computational burden is minimal.

Remark 3. The recursive computations presented above accumulate an ap-
proximation error, which increases with time. To avoid this error accumulation
problem, repeatable initialization of the algorithms is required.

3.3.2 Combination of High Gain Observer and Spline
Interpolation Method and Their Comparative Analysis

In papers [14], [18] it is mentioned that the spline interpolation method can
be combined with high-gain observers. The combined scheme shows improved
transient behavior. In this Section the comparative analysis of the spline in-
terpolation method and combined method is presented.

The signal is estimated via the second order polynomial described above

α̂(t) = c0 + c1t + c2t
2 (3.27)

where α̂(t) is the estimate of the signal α.
A combination of the spline interpolation algorithm with a simple high

gain observer is presented as follows

y(t) =
1
τ

α + y1(t) (3.28)

ẏ1(t) = −1
τ

y(t) + ˆ̈α, y1(t0) = ˆ̇α(t0) −
1
τ

α(t0) (3.29)

where y(t) is the estimate of the α̇, τ > 0 is the algorithm parameter, ˆ̇α(t0)
is the estimate of the derivative from spline interpolation method evaluated at
time t0, ˆ̈α is spline estimate of the second derivative. The condition y1(t0) =
ˆ̇α(t0) − 1

τ α(t0) corresponds to the following initial value assignment y(t0) =
ˆ̇α(t0). This means that high gain observer (3.28), (3.29) is initialized to the
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spline estimate. Moreover, the second order derivative ˆ̈α is used directly as an
input to the high gain observer. Notice that, ˆ̇α(t0) = c1 + 2c2t0 and ˆ̈α = 2c2.

Remark 4. Equations (3.28) and (3.29) represent the following estimator
of the derivative

y(p) =
p

τp + 1
α(p) (3.30)

if ˆ̈α = 0, where p = jw is a Laplace variable. Estimates from the spline
interpolation method are used as a feedforward part in the estimator (3.30).

Assuming a spline approximation error, then this error is expressed in
terms of the error in spline coefficients and the true signal can be expressed
as follows

α(t) = c0∗ + c1∗t + c2∗t
2 (3.31)

where α(t) is the signal, ci∗, i = 0, 1, 2 are true coefficients.
Assuming a constant error in the coefficients w.r.t. time one gets

ci = ci∗ + Δci (3.32)

where Δci, i = 0, 1, 2 are constant errors in spline coefficients.
Our task is to compare the following estimation errors

e1(t1) = ˆ̇α(t1) − α̇(t1) (3.33)
e2(t1) = y(t1) − α̇(t1) (3.34)

where t1 is a fixed time.
First we evaluate e1(t1)

e1(t1) = Δc1 + 2Δc2t1 (3.35)

The next step is to evaluate e2(t1). Differentiating (3.28) and taking into
account that ˆ̈α = α̈ + 2Δc2 one gets

ẏ − α̈ = −1
τ

(y − α̇) + 2Δc2 (3.36)

The solution of (3.36) is the following

y(t) − α̇(t) = (y(t0) − α̇(t0) − 2Δc2τ)e−
t − t0

τ + 2Δc2τ (3.37)

Initialization of high gain observer gives the following: y(t0) = ˆ̇α(t0). Tak-
ing into account that ˆ̇α(t0) − α̇(t0) = Δc1 + 2Δc2t0 one obtains

y(t) − α̇(t) = (Δc1 + 2Δc2t0 − 2Δc2τ)e−
t − t0

τ + 2Δc2τ (3.38)

Evaluating e2(t1) yields:
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e2(t1) = (Δc1 + 2Δc2t0 − 2Δc2τ)e−
t1 − t0

τ + 2Δc2τ (3.39)

Comparing (3.39) and (3.35), it can be seen that |e2(t1)| can always be
made smaller than |e1(t1)| by reducing the design parameter τ . However,
in the presence of noise the reduction of τ leads to a deterioration of the
signal quality. The advantages of this combined scheme can be shown if the
parameter τ can be reduced to a sufficiently small value without any signal
quality deterioration.

As the simulation results did not show any significant superiority of the
combined method over the spline interpolation method and the latter is chosen
for implementation.

3.4 Implementation Results: Crankshaft Acceleration
Estimation

In this Section the implementation results are presented for a second order
spline fitting method, as described in Section 3.1. A Volvo S80 passenger car
equipped with a crankshaft angle sensor is used for experiments. The method
described in Section 3.1 is used to estimate the crankshaft acceleration,which
gives vital information about the quality of the combustion in the engine,
from the crankshaft angle measurements.

The car is equipped with a special Engine Control Unit, which is called
Volvo Rapid Prototyping System. This system consists of the PM (Power
Module) and the AM (Application Module) connected together via a 1 Mbit/s
CAN channel.

The PM provides information based on a number of engine sensor signals.
The crankshaft wheel has 58 teeth spaced every 6 degrees and a gap corre-
sponding to two “ missing teeth “. Engine speed and cylinder position can
be calculated from the resulting crankshaft sensor signal. The PM calculates
the engine speed based on the measured time between the tooth events via
the backward difference method. This engine speed is transmitted along with
other measurements every 4th millisecond to the AM.

The 4 millisecond sampled crankshaft angle calculated from the tooth
number signal is the input to the crankshaft acceleration estimation, which
runs in the AM. The accuracy of the estimation is verified by comparing the
engine speed, calculated by the spline interpolation method, with the engine
speed calculated in the PM.

Implementation results are presented in Figure 3.1-Figure 3.3. Figure 3.1
and Figure 3.2 show engine speeds and Figure 3.3 crankshaft acceleration as
a function of time. Figure 3.1 and Figure 3.2 illustrate verification process
for spline interpolation method with the window size w = 60. The accuracy
of the estimation is verified by comparing fast engine speed measured in the
PM module ( dotted line ) and engine speed calculated via spline interpolation
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method ( solid line ). Crankshaft acceleration which corresponds to the engine
speeds plotted in Figure 3.2 is presented in Figure 3.3

Figure 3.1 shows that the spline interpolation method provides smoother
engine speed than the speed computed in the PM. However, minor deviations
between solid and dotted lines are present for the cases where the engine speed
changes rapidly.This problem, caused by a relatively large window size, can
be solved by introduction of the adjustable window size w (see Remark 1).
Notice that the high frequency oscillations in the PM signal correspond to
the combustion events of the engine and spline interpolation method with
the large window size filters out the high frequency component of the signal.
In the combustion state monitoring functions, however, the high frequency
component of the engine speed signal is widely used, and therefore the window
size w should be reduced when using spline interpolation method. In the next
example the application of the spline interpolation method for the combustion
state monitoring, namely misfire detection, is discussed.
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FIG 3.1. Experimental results. The comparison of two engine speeds as functions
of time. Engine speed computed in PM is plotted with dotted line. Engine speed
calculated with spline interpolation method is plotted with solid line.

Figure 5 shows an application of the proposed recursive spline interpola-
tion method to the misfire diagnostics. In this Figure two engine cycles of a
5 cylinder engine are shown, and the misfire is generated on the second cy-
cle of cylinder N 4. The tooth number signal is plotted with a dashdot line.
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FIG 3.2. Experimental results. The comparison of two engine speeds as functions
of time. Engine speed computed in PM is plotted with dotted line. Engine speed
calculated with spline interpolation method is plotted with solid line.
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FIG 3.3. Experimental results. Engine crankshaft acceleration as a function of time.
Crankshaft acceleration is computed with spline interpolation method.
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Crankshaft acceleration estimated by the spline interpolation method is plot-
ted with a solid line. In the event of a misfire, the crankshaft acceleration
changes dramatically, which permits the cylinder individual misfire detection.
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FIG 3.4. Experimental results. Two engine cycles of a five cylinder engine. The
misfire is generated on the second cycle in the fourth cylinder. Tooth number sig-
nal is plotted with dashdot line. Crankshaft acceleration estimated by the spline
interpolation method is plotted as a function of time with a solid line.

It is worth remarking that in production systems the time which is required
to rotate 36 degrees on a crankshaft for 5 cylinder engines is available in the
Electronic Control Unit. Discretization step w.r.t. crank angle is constant in
this case while the time between the samples varies. In this case one could
fit the following polynomial in the least squares sense to the measured data
t̂ = c0 + c1α + c2α

2, where t̂ is the time estimate and α is the crank angle.
This approach has reduced computational burden since the polynomial fitting
is done with constant discretization step w.r.t. α (see Remark 2). Then α̇ is
calculated as α̇ = 1

c1 + 2c2α
. It has a singular point c1 + 2c2α = 0. The

estimate of the derivative is not robust if c1 +2c2α is close to zero. Moreover,
the estimate of the derivative in this approach depends on the crank angle
α, while the estimate of the derivative of the method described in Section
3.1 depends on the time t. The dependence of the derivative estimate on the
crank angle makes the approach too sensitive to the missing teeth and, in
turn, makes the approach difficult for implementation.
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Further development of the crankshaft acceleration estimation method is
possible if the time between the tooth events is available in the AM. The
required discretization step w.r.t. the crankshaft angle is 6 degrees, or, in case
of the missing teeth,18 degrees. This application requires higher computational
power but in return, it gives the best estimation of the crankshaft speed and
acceleration achievable by the spline interpolation method. The compromise
is 36 degrees discretization step for 5 cylinders engine.

The crankshaft acceleration is widely used in many engine control and
diagnostic functions such as crankshaft torque estimation, which is based on
crankshaft acceleration. Crankshaft acceleration is used also in misfire diag-
nostics functions, for misfire detection and also in many combustion quality
monitoring functions. The estimation accuracy of crankshaft acceleration im-
proved by the spline interpolation method, in turn, improves the performance
of these functions as well.

The method can also be used to estimate other signals and their deriva-
tives. It has the greatest potential in diagnostics, when post processing of the
signal is allowed and the derivatives of the signal can be taken in the middle
of the moving window. That essentially improves the estimation accuracy and
hence the performance of the on-board diagnostic functions.

3.5 Conclusion

Computationally efficient algorithms for spline interpolation method allow-
ing a reduction in computational burden as well as the implementation of
the spline interpolation method are presented. A further challenge is to im-
prove the performance of these algorithms by adjusting the size of the moving
window.
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Engine Torque Estimation

Two new computationally efficient filtering algorithms for the reconstruction
of the first harmonic of a periodic signal are presented. The first algorithm is
based on the trigonometric interpolation method and the second one is based
on the Kaczmarz projection method. The algorithms allow the recovery of the
combustion quality information from the engine speed measurements which
are noise contaminated. The algorithms are verified by using eight and six
cylinder spark ignition engines in the torque estimation problem.

4.1 Introduction

Engine torque estimation function is an important function for an engine
torque model, misfire diagnostics and dependability. The engine torque esti-
mation function is based on monitoring of the cylinder individual fluctuations
of the high resolution engine speed signal (see references [23],[71], [73]). The
engine speed signal is based on the measurements of a passage time between
two subsequent teeth on a crankwheel. The passage time decreases as the ro-
tational speed increases thus the time interval errors increase. Moreover, low
frequency oscillations from the powertrain and high frequency oscillations due
to the crankshaft torsion, together with vibrations induced by the road, act
as disturbances on the crankshaft [39]. These disturbances influence directly
the performance of the engine speed signal and consequently the torque mon-
itoring function. The problem described above is more important for six and
eight cylinder engines than for five cylinder engines. This is due to a larger
amount of combustion events which should be recognized in the presence of
described disturbances.

A number of disturbance identification/rejection techniques, which is used
in the misfire detection and torque estimation functions, is known in the lit-
erature.
A disturbance identification and compensation techniques for the misfire di-
agnostic function were proposed in [70] and [72]. The engine behaviour is

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 4,
c© Springer-Verlag Berlin Heidelberg 2009



62 4 Engine Torque Estimation

learned during the fuel cut-off state and compensated when the engine is
fueled. However, the changes in the engine speed due to the unpredictable
stochastic external interference or even misfire may occur in the fuel cut-off
state. If a misfire was learned during the learning process, then it would be
compensated in the engine fueled behaviour and therefore would lead to the
deterioration of the learning accuracy. Moreover, these compensation schemes
do not cancel the crankshaft vibrations when the engine is fueled and require
significant calibration efforts for different vehicle operating conditions.
A number of torque estimation techniques known in the literature (see for
example, [72], [116], etc.) recognizes the crankshaft as a flexible body. Model
inversion techniques ( input observers ) are employed for estimation of system
inputs ( torques acting on each crank throw ) via system outputs ( angu-
lar response measurements ). In multicylinder engines, where the number of
the cylinders is larger than the number of the angular response measurement
locations, the number of unknown system inputs is larger than the num-
ber of known outputs. Pseudoinverse techniques applied to the case, do not
give accurate solution for the cylinder individual torques. A number of mis-
fire detection approaches known in the literature analyzes the engine firing
frequency through Discrete Fourier Transform (DFT) (see for example, [23],
[72], [73] and [116], etc.). The Fourier Series coefficients which represent con-
tinuous time integral functions, are approximated via discrete sums, provided
that the sampling interval is properly chosen. Many misfire diagnostic func-
tions utilize a low rate sampling of the engine crankshaft speed. Typically,
the crankshaft speed is sampled once per cylinder firing event. At such a low
rate sampling, the error between continuous time Fourier coefficients and their
discrete time approximations could be sufficiently large. Moreover, high or-
der harmonic components of the engine firing frequency, which often contain
valuable misfire ( combustion quality ) information for higher engine speeds,
are frequently folded back or aliased within the range of lower noise-related
engine frequencies. These aliased signals may cause misinterpretation of the
cylinder firing event data. In addition, the DFT approach is typically consid-
ered to be computationally complex in industry and therefore is not feasible
for the on-board real-time estimation.

The engine speed can be approximated by a trigonometric polynomial due
to the periodic nature of both engine rotational dynamics and combustion
forces as functions of a crank angle. The first filtering technique proposed
in this Chapter (see also [86]) uses the periodic signal at the combustion
frequency and the amplitudes of the trigonometric functions are updated re-
cursively according to the trigonometric interpolation method in the moving
window of a certain size. The update law in the trigonometric interpolation
method has a relatively simple form due to the orthogonality of the trigono-
metric polynomials on certain intervals. The orthogonality condition imposes
the restrictions on the window size and limits the performance of the algo-
rithm (too large window size implies relatively large estimation errors during
the engine speed transients). The second approach proposed in this Chapter
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is also based on the approximation of the engine speed via a trigonomet-
ric polynomial with known frequencies and unknown amplitudes. However,
the estimated amplitudes are updated according to the Kaczmarz projection
method, where the model matches the measured signal exactly at every dis-
crete step. The convergence of the estimated parameters to their true values is
ensured due to the richness (persistency of excitation) of the measured engine
speed signal which is approximated by the trigonometric polynomial. This
in turn implies faster convergence of the estimated parameters to their true
values and better performance of the algorithm proposed in the this Chap-
ter with respect to the trigonometric interpolation method [86]. The signal is
completely reconstructed by the trigonometric polynomial and the filter uses
a periodic signal at the firing frequency. The values of the trigonometric func-
tions are computed recursively by using Chebyshev’s three term recurrence
relations for the trigonometric functions making the algorithm computation-
ally efficient and implementable.

Notice, that the band-pass filter can also be used for filtering of the engine
speed. Ideally, band-pass filter should reject all the frequencies outside the
selected frequency (combustion frequency). In practice, the frequencies that
are close to the selected one are attenuated, but not completely rejected. This
deteriorates the performance of the filtering. The filtering approach proposed
in this Chapter uses trigonometric functions with the combustion frequency
in the explicit form that provides rejection of all the frequencies excepting the
combustion one.

Volvo passenger cars equipped with eight and six cylinder prototype en-
gines ware used in the experiments. Algorithms are implemented in Matlab1

and applied to the measured data collected from the experimental vehicle.

4.2 Problem Statement

As a rule, a passage time between two teeth on a crankwheel is measured in
production engines. The high resolution engine speed signal is then calculated
as a ratio of the length of the angular segment on the crankwheel and the
passage time for this segment.

The combustion state of the given cylinder is defined via the amplitude.
The amplitude for the cylinder, whose power stroke occurs in the interval, in
turn is defined as the difference between maximal and minimal values of the
high resolution engine speed signal. The corresponding amplitude, which is
the measure of the crankwheel speed perturbations induced by the periodic
impulsive cylinder individual torque contributions, provides a method for es-
timation of the engine torque [41]. Here and below, a non-standard definition
is used, and under the term ’amplitude’ the difference between maximal and
minimal values is understood.

1 Matlab is a registered mark of the Mathworks, Inc of Natick, MA
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Figure 4.1 shows the harmonics of the engine speed signal of a eight cylinder
engine at 1800 rpm and 5400 rpm calculated by the Discrete Fourier Trans-
form (DFT) method [58]. The input sequence was sampled with the step 30
CA ( Crank Angle ) degrees and the data was acquired over a 720 CA de-
gree window. Amplitudes are plotted as a function of a harmonic number of
a periodic signal with the period of 720 CA degrees. The harmonic number is
defined as an integer which is equal to the ratio of two periods, nh = 720o

Th
,

where Th is the period of the harmonic. Figure 4.1 shows that the engine speed
signal at low rotational speeds has a dominant component which corresponds
to the combustions events. The engine speed signal at high rotational speeds
has fluctuations which occur as a consequence of the combustion process, low
frequency oscillations from the powertrain as well as high frequency oscilla-
tions due to the crankshaft torsion. The high frequency oscillations due to the
crankshaft twist and low frequency oscillations from the powertrain could be
greater than the oscillations induced by the combustion events. Notice that,
the input sequence was sampled with the step 30o which is a relatively low
rate sampling. At this rate the high order harmonic components could be
aliased within the range of a lower frequency. Thus, the higher amplitudes at
the lower harmonics (nh < 8 ) showed in Figure 4.1, could be the superpo-
sition of low frequency torsional oscillations and the aliased high frequency
oscillations.

Figure 4.2 shows the harmonics of the engine speed signal of a six cylin-
der engine at 1200 rpm and 5000 rpm calculated by the Discrete Fourier
Transform (DFT) method. The engine speed was measured with 365C Angle
Encoder which is a high precision optical sensor for angle related measure-
ments. The angle mark resolution is 0.5 CA ( Crank Angle ) degrees. The
data was acquired over a 720 CA degree window. Figure 4.2 shows that the
engine speed signal at low rotational speeds has a dominating component
which corresponds to the combustions events. The engine speed signal at high
rotational speeds has fluctuations which occur as a consequence of the com-
bustion events, low frequency oscillations from the powertrain as well as high
frequency oscillations due to the crankshaft torsion. The high frequency os-
cillations due to the crankshaft twist and low frequency oscillations from the
powertrain could be greater than the oscillations induced by the combustion
events.

4.3 Recursive Trigonometric Interpolation Method

4.3.1 General Description

Suppose that there is a set of the Crank Angle synchronized data yl, l =
1, ..., w measured at the following points:



4.3 Recursive Trigonometric Interpolation Method 65

0 2 4 6 8 10 12 14
0

5

10

15

Harmonic Number

A
m

pl
itu

de
s,

[r
pm

]
AMPLITUDES AT THE    
COMBUSTION FREQUENCY 

ENGINE SPEED = 5400 rpm 
ENGINE SPEED = 1800 rpm 

. . . . . 

FIG 4.1. Harmonic contents of the engine speed signal at 1800 rpm and 5400
rpm computed via the DFT method. The input sequence is sampled with the step
30o. The data is acquired over 720o window. The measurements are made on the
experimental vehicle on the chassis rolls. Amplitudes are plotted as a function of
the harmonic number of the signal with the period of 720 CA degrees. The engine
is operating at 50% load. Amplitudes at 1800 rpm are plotted with solid line and
amplitudes at 5400 rpm are plotted with the dotted line.

x1 = Δ, x2 = 2Δ, .... xw = wΔ, Δ =
3600

w
(4.1)

where Δ is the gear tooth angle. The high resolution engine speed signal
is sampled on the basis of a Crank Angle (CA) at intervals Δ, namely,

Δ =
Lc

npN
(4.2)

where N is the number of the cylinders of the engine, np is the number of
points measured for each combustion event ( np ≥ 3 ), Lc is the length of
the engine cycle in CA degrees ( as a rule, Lc = 720o ). Since an engine
crankshaft is usually provided with 58 teeth and a gap corresponding to two
missing teeth, the step Δ should be a multiple of 6o. Notice that, according
to the Shannon theorem, two points per each combustion event are required
to recognize the signal of the combustion frequency. However, the phase of
the signal changes due to the cycle-to-cycle variations, oscillations due to the
crankshaft torsion and some other factors. In addition, in order to recognize



66 4 Engine Torque Estimation

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

HARMONIC NUMBER

A
M

P
LI

T
U

D
E

S
,[R

P
M

]
AMPLITUDES       
AT THE COMBUSTION
FREQUENCY        

....... ENGINE SPEED = 5000 rpm 

ENGINE SPEED = 1200 rpm 

FIG 4.2. Harmonic contents of the engine speed signal at 1200 rpm and 5000 rpm
computed via the DFT method. The input sequence is sampled with the step of
0.5o. The data is acquired over 720o window. The measurements are made on the
experimental vehicle on the chassis rolls. Amplitudes are plotted as a function of
the harmonic number of the signal with the period of 720 CA degrees. The engine
is operating at full load. Amplitudes at 1200 rpm are plotted with solid line and
amplitudes at 5000 rpm are plotted with the dotted line.

the high frequency disturbances acting on the crankshaft, it is necessary to
measure more points per each combustion event.

Assume that the number of measurements w is greater than or equal to
(2n + 1), where n is the number of the frequencies of the signal. Then there
exists the trigonometric polynomial in the following form:

Tn(x) = a0 +
n∑

q=1

(aqcos(qx) + bqsin(qx)), (4.3)

which gives the best approximation of the measured data yl at the points
xl in the least-squares sense. Notice, that the frequencies q = 1, 2, ..., n defined
in (4.3) should include the combustion frequency, as well as low powertrain
frequencies and high frequencies due to the crankshaft torsion.

Measured data should be approximated by polynomial (4.3) in the least
squares sense. The error to be minimized at every step is as follows:
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E =
w∑

l=1

(yl − (a0 +
n∑

q=1

(aqcos(qxl) + bqsin(qxl))))2. (4.4)

Straightforward calculations show that the coefficients which minimize
(4.4) are the following:

a0 =
1
w

w∑
l=1

yl (4.5)

aq =
2
w

w∑
l=1

ylcos(qxl) (4.6)

bq =
2
w

w∑
l=1

ylsin(qxl) (4.7)

The proof is given in Appendix A.
The expressions (4.3), (4.5) - (4.7) are known as the DFT method [38],

[58]. The coefficients (4.5), (4.6), (4.7) of the DFT have such a simple form due
to the property of the orthogonality of the trigonometric polynomials at the
interval [0÷ 360o). It is interesting to note that the trigonometric polynomial
can be fitted to the measured data at any interval (see Section 7.2). However,
for computation of the coefficients a0, aq, bq the matrix inversion is required,
as it is usual for the least-squares fitting. Therefore the DFT method can be
seen as a special case of the trigonometric interpolation method.

One of the main results of this Chapter is formulated below.

4.3.2 Computationally Efficient Filtering Algorithms

The amount of computation, when computing (4.5) - (4.7) can be reduced by
the introduction of the local fixed coordinates, i.e. moving window of a size
w. The same idea was proposed in the spline interpolation method described
in [18] and is based on the on-line least-squares polynomial fitting over the
window moving in time. The idea of the window moving in time is illustrated
in Figure 4.3. The window is defined in the form of the local coordinates XL,
YL. Then, the least squares curve fitting problem is solved in local coordinates
and the result is transformed into an original coordinate system. Moreover,
at every step the coefficients (4.5) - (4.7) can be computed recursively us-
ing the information from the previous step. This makes the whole scheme
computationally efficient and implementable.

Consider one step of the window moving in time. Assume that there is a
set of measurements at step (k − 1), {y(1), y(2), y(3), ..., y(w)},
which is measured in the following local coordinate system based on the crank
angle {0, Δ, 2Δ, ..., (w − 1)Δ}, where Δ is defined by (4.2).
At step k, new value y(w+1) enters the window while y(1) leaves the window.
Whence, at step k there is a set of measurements { y(2), y(3), y(4), ...,
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y(w + 1)}, measured in the same local coordinate system. One step of the
moving window is shown in Figure 4.3, where the engine speed is measured
for the V 8 engine with the step Δ = 30o.
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FIG 4.3. Measurements with the step 30 CA degrees on the V8 engine. The engine
speed is plotted with the solid line. The engine is operating at full load. A window
of the size w = 12 moving in time is defined in the form of local coordinates XL,
YL.

The coefficients (4.5) - (4.7) at step (k − 1) are defined as follows :

a0(k−1) =
1
w

w∑
i=1

y(i) (4.8)

aq(k−1) =
2
w

w∑
i=1

y(i)cos((i − 1)qΔ) (4.9)

bq(k−1) =
2
w

w∑
i=1

y(i)sin((i − 1)qΔ) (4.10)

where q denotes the frequency. The coefficients (4.8) - (4.10) at step k are
defined as follows:
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a0k =
1
w

w+1∑
i=2

y(i) (4.11)

aqk =
2
w

w+1∑
i=2

y(i)cos((i − 2)qΔ) (4.12)

bqk =
2
w

w+1∑
i=2

y(i)sin((i − 2)qΔ) (4.13)

The coefficients (4.11) - (4.13) are to be expressed via the coefficients (4.8)
- (4.10).

Straightforward calculations give the expression for the first coefficient,

a0k = a0(k−1) + cq(k−1), (4.14)

where cq(k−1) = 1
w (y(w+1)−y(1)), simply meaning that the value y(w+1)

enters the window, while the value y(1) leaves the window.
Starting with aqk, one gets,

aqk =
2
w

w+1∑
i=2

y(i)cos((i − 2)qΔ) =
2
w

y(w + 1)cos((w − 1)qΔ)

+
2
w

w∑
i=2

y(i)cos((i − 1)qΔ − qΔ) =

2
w

y(w + 1)cos((w − 1)qΔ) + cos(qΔ)(aq(k−1) −
2
w

y(1))

+ sin(qΔ)bq(k−1)

= bq(k−1)sin(qΔ) + dq(k−1)cos(qΔ) (4.15)

and

bqk =
2
w

w+1∑
i=2

y(i)sin((i − 2)qΔ) =
2
w

y(w + 1)sin((w − 1)qΔ)

+
2
w

w∑
i=2

y(i)sin((i − 1)qΔ − qΔ) =

2
w

y(w + 1)sin((w − 1)qΔ)

+ cos(qΔ)(bq(k−1) −
2
w

y(2)sin(qΔ))

− sin(qΔ)(aq(k−1) −
2
w

(y(1) + y(2)cos(qΔ))

= −dq(k−1)sin(qΔ) + bq(k−1)cos(qΔ) (4.16)
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where dq(k−1) = aq(k−1) + 2cq(k−1). Notice that (4.15), (4.16) can be ex-
pressed in a single matrix equation

sqk = Aqkzq (4.17)

where sqk = (aqk bqk)T ,

Aqk =
(

bq(k−1) dq(k−1)

−dq(k−1) aq(k−1)

)
is a skew symmetric matrix and zq = (sin(qΔ)cos(qΔ))T is a constant

vector. Implementation of the algorithms (4.14) - (4.16) requires 5 multiplica-
tions and 7 additions only at a single frequency. The algorithms are suitable for
implementation on a simple controller that has a multiply and add processor.

The number of the multiplications for the DFT computation is propor-
tional to the number of the samples of the input sequence ( the size of the
moving window w ) at a single frequency. The coefficients a0k, aqk and bqk

of the scheme proposed here are computed via (4.8) - (4.10) at the first step.
Hence the number of the arithmetical operations which is required for imple-
mentation of the algorithms proposed here and the DFT algorithms is the
same at the first step. However, the number of the arithmetical operations for
recursive algorithms (4.14),(4.15) and (4.16) does not depend on the window
size w at the subsequent steps. Then the advantage of the method proposed
here with respect to the DFT method increases with the window size w.

The algorithms proposed above can also be used in the case of the engine
speed transients, provided that a “slowly“ varying trend of the engine speed is
properly compensated. A simple compensation technique is described below.
The measured engine speed signal ωk is filtered by the following low pass filter:

ωfk = ωf(k−1) −
Δt

τf (ωk, ω̇k)
(ωf(k−1) − ωk) (4.18)

where ωfk is a filtered engine speed and τf (ωk, ω̇k) is a “time constant“
of the filter (4.18), Δt [sek] is the discretization step. The time constant is
realized as a look-up table with engine speed ωk and its derivative ω̇k, which
is estimated by the first difference method as two inputs. The look-up table
is calibrated so that the time constant is reduced under the transients to
capture fast changes in engine speed, and is increased under the steady-state
conditions. The following difference,

yk = ωk − ωfk (4.19)

between measured engine speed signal wk and filtered signal ωfk represents
the fluctuations which occur as a consequence of the combustion events, con-
taminated with errors. If this difference is approximated by the trigonometric
interpolation method, then the engine speed is approximated via the sum
of two components. The first one is the filtered engine speed ωfk which ap-
proximates “slowly“ varying trend of the engine speed. The second one is the
approximation the combustion events.



4.3 Recursive Trigonometric Interpolation Method 71

0 100 200 300 400 500 600 700
4780

4785

4790

4795

4800

4805

4810

4815

Crank Angle, degrees

E
ng

in
e 

S
pe

ed
,[r

pm
]

MEASURED 
SIGNAL 

FILTERED
SIGNAL 

AMPLITUDE 

90o 

FIG 4.4. Measurements with the step 30 CA degrees on the V8 engine. A single
engine cycle is plotted. The engine speed is plotted with the solid line. Relative load
is 45%. Filtered signal corresponding to the firing frequency is plotted with dashdot
line. The size of the moving window is equal to twelve (w = 12).

The variable yk is approximated by ŷk according to the following equation:

ŷk = a0k +
n∑

q=1

(aqkcos(q(w − 1)Δ) + bqksin(q(w − 1)Δ)) (4.20)

where the coefficients are updated as follows:

a0k = a0(k−1) + cq(k−1) (4.21)
aqk = bq(k−1)sin(qΔ) + dq(k−1)cos(qΔ) (4.22)
bqk = −dq(k−1)sin(qΔ) + bq(k−1)cos(qΔ) (4.23)

where dq(k−1) = aq(k−1) + 2cq(k−1) and cq(k−1) = 1
w (y(w + 1) − y(1)).

The value of the interpolating polynomial ŷk is taken at the end of the moving
window (w − 1)Δ. Then the engine speed can be approximated as follows:

ω̂k = ωfk + ŷk (4.24)

where ŷk is computed via (4.20) - (4.23).
Further in the Chapter, the trigonometric interpolation is used as a filter

at the combustion frequency, i.e.,
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ŷck = a0k + aqckcos(qc(w − 1)Δ) + bqcksin(qc(w − 1)Δ), (4.25)
ω̂ck = ωfk + ŷck (4.26)

where qc = Nπ
360 is the combustion frequency, and N is the number of

the engine cylinders. The combustion frequency is the frequency of the signal
whose period is 720o

N . The coefficients a0k, aqck, bqck are computed according
to the recursive formulae (4.21) - (4.23).

Figure 4.4 shows the result of filtering. It can be seen that the fluctuations
of the engine speed corresponding to the combustion events are recovered on
the signal which is filtered by the filter (4.25), (4.26).
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4.4 Filtering Technique Based on the Kaczmarz
Projection Method

In Section 4.3 is shown that the measured signal ωk can be approximated by
the following trigonometric polynomial:

ω̂k = a0k +
n∑

q=1

(aqkcos(qxk) + bqksin(qxk)), (4.27)

where q = 1, 2, ..., n, xk = kΔ, k = 1, 2, ... is updated in terms of the crank
angle with the step (4.2 ). The equation (4.27) plays a role of a model, which
has to match the measured data ωk. Assume that the measured variable ωk

can be presented as follows:

ωk = a0∗ +
n∑

q=1

(aq∗cos(qxk) + bq∗sin(qxk)), (4.28)

where a0∗, aq∗ bq∗, q = 1, ..., n are constant unknown parameters. In other
words, it is assumed that the measured signal ωk can be approximated by the
trigonometric polynomial with known frequencies and unknown amplitudes.

The equations (4.27) and (4.28) can be written in the following form:

ω̂k = ϕT
k θk, (4.29)

ωk = ϕT
k θ∗, (4.30)

where θk is the vector of the adjustable parameters

θT
k = [a0k a1k b1k a2k b2k, ..., ank bnk], (4.31)

θ∗ is the vector of true parameters,

θT
∗ = [a0∗ a1∗ b1∗ a2∗ b2∗, ..., an∗ bn∗], (4.32)

and

ϕT
k = [1 cos(xk) sin(xk) cos(2xk)
sin(2xk), ..., cos(nxk) sin(nxk)] (4.33)

is the regressor. Notice, that the regressor ϕ includes n distinct frequencies
and hence it is sufficiently rich for identification of 2n parameters of the signal
(4.28).
Then, the estimation problem can be stated as follows: to find the update law
θk, such that the following equality holds at every step

ωk = ω̂k (4.34)
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and the vector of the adjustable parameters θk converges to the vector of true
parameters θ∗. Then, the engine speed signal ωk can fully be reconstructed
by the polynomial (4.27). The components of the polynomial (4.27) which de-
scribe the combustion events can be used for the combustion state estimation.

Consider the following adjustment law

θk = θk−1 +
ϕk

ϕT
k ϕk

(ωk − θT
k−1ϕk) (4.35)

By substituting ( 4.35 ) into the right hand side of the (4.29) it is easy to
see that (4.34) is true. Notice, that ϕT

k ϕk = n + 1, where n is the number of
frequencies involved and the adjustment law has a very simple form, namely,

θk = θk−1 +
ϕk

(n + 1)
(ωk − θT

k−1ϕk) (4.36)

Algorithm (4.36) guarantees the exact approximation of the measured data
at every step, and the convergence of the parameters aq, bq, q = 1, ..., n to their
true values due to the sufficiently rich regressor ϕ which contains n distinct
frequencies. Properties of the algorithm (4.36) are described in Appendix B.

Since the algorithm (4.36) guarantees exact approximation of the measured
data at every step, the estimates obtained by using this algorithm might be
noisy. It is necessary in this case to smooth the estimates by introducing the
adjustable gain matrix. For example, by using the least squares gain update
matrix Γk, the algorithm (4.36) can be modified as follows:

θk = θk−1 +
Γkϕk

(n + 1)
(ωk − θT

k−1ϕk) (4.37)

Γk = Γk−1 −
Γk−1ϕkϕT

k Γk−1 − λ0(Γk + ΓT
k Γk

k0
)

1 + ϕT
k Γk−1ϕk

, (4.38)

where Γ (0) = γI, γ > 0, I is the unity matrix, λ0, k0 are the positive design
parameters. Gain update (4.38) is a discrete-time analog of a continuous-time
least-squares gain update (2.34).

Notice, that implementation of the algorithm (4.36) requires 3n multiplica-
tions and 2n additions, where n is the number of the frequencies. This number
of arithmetical operations is larger than a number of operations which are re-
quired for implementation of the filtering DFT algorithm at a single frequency,
described in [86]. Algorithm described in [86] has such a simple form due to
the orthogonality condition, which in turn limits the approximation perfor-
mance of the algorithm. The algorithm requires a computationally expensive
matrix inversion as is usual for the least-squares fitting, if the orthogonality
condition is violated [87].
The convergence of the estimated parameters to their true values and hence
a reconstruction of the engine speed signal is ensured due to the condition
of the persistency of excitation for the algorithm (4.36) (see Appendix B).
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The condition of the persistency of excitation is valid since the engine speed
is approximated using trigonometric polynomial. Engine speed can be ap-
proximated via a trigonometric polynomial due to the periodic nature of the
engine rotational dynamics and combustion forces as functions of a crank an-
gle. Therefore the algorithm (4.36) uses physical properties of the engine (such
as periodicity of the rotational dynamics and combustion forces) for recon-
struction of the frequency contents of the engine speed signal and hence does
not require a computationally expensive matrix inversion [87].

Since the measured signal is completely reconstructed by the polynomial
(4.27), the following filtered signal is used for the combustion state estimation:

ω̂k = a0k + ackcos(qcxk) + bcksin(qcxk) (4.39)

where qc is the combustion frequency, and a0k, ack, bck are updated ac-
cording to (4.36).

The trigonometric functions in the regressor (4.33) at step k are computed
recursively by using the values of the regressor at step k−1. It is necessary to
compute sin(qkΔ) and cos(qkΔ) which are the elements of the regressor ϕk

at step k via the elements sin(q(k− 1)Δ) and cos(q(k− 1)Δ) of the regressor
at the step (k − 1). First sin(kΔ) and cos(kΔ) (q = 1) are computed via
sin((k − 1)Δ) and cos((k − 1)Δ) and cos(Δ), sin(Δ). The remaining terms
are computed via Chebyshev’s three term recurrence relations (see Appendix
B for details):

cos(qkΔ) = 2cos(kΔ)cos((q − 1)kΔ)
− cos((q − 2)kΔ) (4.40)

sin(qkΔ) = 2cos(kΔ)sin((q − 1)kΔ)
− sin((q − 2)kΔ) (4.41)

where q = 2, ..., n.
For computation of the elements of the regressor ϕk via algorithms (4.40),

(4.41) 2 multiplications and 1 addition multiplied by 2(n − 1) are required.
Figure 4.5 shows the result of the filtering. The engine speed signal is

filtered by the filter (4.39). The engine is operating at 5000 rpm. It can be
seen that the amplitude information is recovered on the signal which is filtered
by the filter (4.39). Figure 4.6 shows the harmonics ( calculated by the DFT
method) of the original and filtered signals plotted in Figure 4.5. It can be seen
that the amplitude corresponding to the combustion events becomes dominant
after filtering.

At the end of the Section it is possible to make a comparative analy-
sis of the Kacmarz approach to filtering of the engine speed data proposed
above and the filtering approach based on the trigonometric interpolation
method described in Section 4.3. The engine speed signal is approximated by
the trigonometric polynomials with known frequencies and unknown ampli-
tudes in both approaches. However, the estimated amplitudes are updated
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FIG 4.5. Measurements with the step of 30 CA degrees on the six cylinder prototype
engine. A single engine cycle is plotted. The engine speed is plotted with the solid
line. Relative load is 100%. Filtered signal corresponding to the firing frequency is
plotted with dashdot line.

in different ways. In the trigonometric interpolation method the amplitudes
are updated so that the error between the measured signal and its approx-
imation is minimized in the least-squares sense in the moving window of a
certain size. The amplitudes estimated by the Kacmarz approach are updated
so that the model approximates the measured signal exactly at every discrete
step. The trigonometric interpolation uses the orthogonality of the trigono-
metric polynomials to simplify the update law. The parameter convergence
in the Kacmarz approach is ensured due to the richness (persistency of ex-
citation) of the measured signal which is approximated by the trigonometric
polynomial. In both approaches the estimated parameters converge to their
true values, that in its turn, allows the complete reconstruction of the engine
speed signal. The filters use the estimated amplitudes at the engine frequency
in both cases. Main limitation of the trigonometric interpolation method is
the restriction for the proper choice of the window size, which should satisfy
the orthogonality equations. This limits the approximation performance of the
trigonometric interpolation method. If the orthogonality condition is violated,
then the implementation of the trigonometric interpolation method requires
a matrix inversion, as it is usual for least-squares fitting, and this in turn,
makes the method computationally expensive. Recursive and computation-
ally efficient version of the trigonometric interpolation method is described in
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FIG 4.6. Harmonic contents of the engine speed signal at 5000 rpm computed via
the DFT method. The input sequence is sampled with the step of 30o. The data is
acquired over 720o window. Amplitudes are plotted as a function of the harmonic
number of the signal with the period of 720 CA degrees. The engine is operating
at 100% load. Amplitudes of the measured signal are plotted with the dotted line.
Amplitudes of the signal filtered by the filter (4.39) are plotted with solid line.

Section 7.2 (see also [87]). The algorithms based on the Kacmarz approach
are very simple, and do not depend on the window size selection. They have
faster convergence, but could be more sensitive to the measurement noise.
The Kacmarz algorithm can be combined with the trigonometric interpola-
tion algorithm. The amplitudes estimated by the trigonometric interpolation
algorithm can be used as a feedforward part to the Kacmarz approach. Intro-
duction of the feedforward part in the Kacmarz algorithm might essentially
reduce the convergence time of estimated parameters to their true values.

Algorithms (4.36)-(4.41) are presented in the vector form which is suitable
for easy implementation of the algorithms both in Matlab and Simulink2.
Algorithms were implemented in Matlab and Simulink and applied to the
measured data collected from the experimental vehicle. Algorithms can easily
be implemented in Engine Control Unit (ECU) using automatically generated
code from the Simulink model.

2 Simulink is an environment for multidomain simulation and model-based design
for dynamic and embedded systems.
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4.5 Estimation of the Engine Torque via Crankshaft
Speed Fluctuations

The time rate change of the crankshaft angular velocity is proportional to the
torque acting on the system. The engine rotational dynamics can be described
as follows:

Jω̇(t) = Te − Tl, (4.42)

where ω is the speed of the engine, J is the crankshaft inertia moment,
Te is the engine brake torque, and Tl is the engine load torque. Notice that,
the model (4.42) predicts neither low frequency oscillations of the driveline
nor high frequency oscillations due to the crankshaft torsion. It is assumed
here that the model (4.42) is valid at the combustion frequency only. Thus,
the filtering problem of the engine speed and the problem of the estimation
of the combustion state of a given cylinder via the amplitude are considered
separately.

Equation (4.42) can be transformed into the crank angle domain using the
chain rule of differentiation and employing the crank angle θ as an independent
variable,

ωJ
dω

dθ
= Te − Tl. (4.43)

Integrating over the crank angle interval [θs θf ], where θs is the initial
angle of the interval and θf is the final angle, when the engine speed gets
minimal and maximal values respectively, yields,

1
2 [ω2(θf ) − ω2(θs)]

=
1
2
[ω(θf ) + ω(θs)][ω(θf ) − ω(θs)]

= ω[ω(θf ) − ω(θs)] =
1
J

∫ θf

θs

(Te − Tl)dϑ. (4.44)

where ω = 1
2 [ω(θf ) + ω(θs)] is the average speed in the interval.

If the torque is a continuous function at the interval [θs, θf ] then there
exists θ1 ∈ [θs, θf ], such that the following holds:

∫ θf

θs

(Te − Tl)dϑ = (Te(θ1) − Tl(θ1))(θf − θs). (4.45)

due to the first mean value theorem for integration [50].
Substituting (4.45) into (4.44) the amplitude is defined as follows:

A = ω(θf ) − ω(θs) =
(θf − θs)

Jω
(Te(θ1) − Tl(θ1)), (4.46)
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where A is the crankshaft speed fluctuation at the crank angle interval
[θs θf ] for a certain cylinder. The amplitude can be seen as a measure of the
difference between the engine brake torque and the load torque. Cylinder indi-
vidual torque contributions are averaged by the engine crankshaft mechanism
and the torque of each cylinder can be presented as a sum of two components,
namely the mean value of the torque and the torque fluctuations. Torque
fluctuations is the rest part of the cylinder individual torque contributions
remaining after averaging. The magnitude of the torque fluctuations, as a
rest part of the cylinder individual torque contributions is proportional to the
magnitude of the average value of the torque. Mean value of the engine brake
torque is equal to the load torque during a steady-state engine operation. Thus
the amplitude is proportional to the engine brake torque fluctuations. Engine
brake torque fluctuations are in turn, proportional to the average value of
the engine brake torque. Therefore the mean value of the engine brake torque
can be correlated to the amplitude. Since measured values of the amplitudes
are noise contaminated due to the engine and driveline mechanical vibrations,
variations in the combustion pressure, and some other factors, the amplitudes
are averaged over a certain number of combustion events, typically for 8÷ 15
events. The engine torque is estimated via the average fluctuation which is de-

fined as follows Ak =
1
w

i=k∑
i=k−(w−1)

Ai, where w is the window size (w = 8÷15).

The engine brake torque as a function of the average engine speed and the
average amplitude A is plotted in Figure 4.7 for six cylinder engine.

The amplitude (4.46) may also be suitable for estimation of the engine
brake torque in transient conditions provided that the load torque is known.
The load torque may be estimated by using measurements of the speed of
the wheel. Unfortunately, the load torque depends on the vehicle mass and
the road gradient which are unknown parameters (see [114] for challenges and
methods to simultaneously estimate of the vehicle mass and the road gra-
dient). Another approach to engine torque estimation during transients is a
compensation of the transient component of the engine speed signal. The dif-
ference between the engine brake torque and the load torque during transients
results in the transients of the engine speed. Engine brake torque can also be
estimated via the amplitude during transients provided that the transient
component of the engine speed is properly compensated. A simple compensa-
tion technique of the ’slowly’ varying trend of the engine speed is described in
Section 4.3.2 (see also [86]). The performance of the engine torque estimation
in the transient conditions is limited by the performance of this compensation
technique.
Another limitation of the performance of the transient torque estimation is the
measurement noise. The amplitude signal is averaged over a certain window
of a size w for attenuation of the measurement noise. The larger the window
size w, the more information is acquired over the window that in turn allows
significant attenuation of the measurement noise. Large window size has a
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direct impact on the performance of the transient torque estimation. There-
fore, the selection of the window size w is a trade-off between the performance
of the transient torque estimation and the performance of the measurement
noise attenuation/rejection.

The engine brake torque as a function of the average engine speed and the
average amplitude A is plotted in Figure 4.7 for a six cylinder engine.
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FIG 4.7. The engine brake torque as a function of the engine speed and average
amplitude.

Since the passage time is available for measurements it is often convenient
to use the index which is proportional to the amplitude A:

Lk =
Tk−d − Tk

T 2
k Tk−d

(4.47)

where Tk is the rotational time for the segment k, which corresponds to the
maximum value of the engine speed ω(θf ), Tk−d is the rotational time for the
segment k−d, which in turn corresponds to the minimum value of the engine
speed ω(θs), d is the step number. The length of the segment is Δ CA degrees.
The index (4.47) is similar to the misfire detection index for monitoring of the
derivative of the rotational energy introduced in [52] and [68]. Then the engine
brake torque is estimated on-board by using the measurements of the average
fluctuations Lk and the engine speed ω. The engine brake torque as a function
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average engine speed and index L (4.47) for eight cylinder engine is plotted
in Figure 4.8.
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FIG 4.8. The engine brake torque for V8 engine as a function of engine speed and
index 4.47.

It is worth remarking that according to (4.46) the engine torque depends
not only on the engine speed fluctuations, but also on the inertia J , which
in turn, is gear dependent. Measurements of the engine torque for different
gears show that the gear dependence can be neglected in the torque estimation
technique proposed above, due to the elasticity of the driveline.

Figure 4.9 illustrates the verification of the proposed algorithms for V8
engine. The torque measured on a rig (chassis rolls) is plotted with the solid
line and the estimated torque obtained by using the technique proposed above,
and the filtered signal (4.25), (4.26) is plotted with a dotted line. Figure 4.9
shows a strong correlation between measured and estimated torques.

Figure 4.10 illustrates the verification of the proposed algorithms for six
cylinder engine. The torque measured via a traction force on the chassis rolls
is plotted with the solid line and the estimated torque obtained by using
the technique proposed above, and the filtered signal (4.39) is plotted with
a dotted line. Figure 4.10 shows a strong correlation between measured and
estimated torques.

Torque estimation algorithms described above were extensively tested in
the engine rig, on a vehicle running both on chassis rolls and different roads.
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FIG 4.9. Measurements on the experimental vehicle equipped with the V8 en-
gine. The measurements were made on chassis rolls. The engine speed is 4800 rpm.
Measured engine torque is plotted with solid line. Estimated torque is plotted with
dotted line.

The tests showed a satisfactory performance of both steady-state and transient
torque estimation. Estimation accuracy deteriorated, unfortunately on rough
road surfaces.

4.6 Conclusion

It has been shown that the torque estimation technique benefits from the
availability of the combustion quality information provided by the filtering
algorithms described in this Chapter. Fast and computationally efficient al-
gorithms which provide filtering at the engine firing frequency were designed
and verified for six and eight cylinder engines.
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FIG 4.10. Measurements on the experimental vehicle equipped with six cylinder
prototype engine. The measurements were made on chassis rolls. The engine speed
is 5000 rpm. Measured engine torque is plotted with the solid line. Estimated torque
is plotted with dotted line.



5

Engine Friction Estimation at Start

Errors in an estimate of friction torque in modern spark ignition automotive
engines have a direct impact on driveability performance of a vehicle and ne-
cessitate a development of real-time algorithms for adaptation of the friction
torque. The friction torque in the engine control unit is presented as a look-
up table with two input variables (engine speed and indicated engine torque).
Algorithms proposed in this Chapter estimate the friction torque during en-
gine start and idle. Newton’s second law for rotational dynamics is used as
a reference model during engine start. The friction torque is estimated via a
deviation from the reference model. The values of the friction torque at the
nodes of the look-up table are updated, if new measured data of the friction
torque is available. New recursive and computationally efficient algorithms are
developed for adaptation of the nodes of the look-up tables. The algorithms
are tested on a Volvo vehicle equipped with a six cylinder prototype engine.

5.1 Introduction

The performance of an engine control system depends on the accuracy of the
engine torque model. One of the important parts of the torque model is the
friction losses. The values of the engine friction torque, which is pre-calibrated,
are memorized in a look-up table (static map) residing in the memory of an
engine controller. Friction torque is mainly a function of engine speed, load
( engine indicated torque) and engine oil temperature. Piece-to-piece varia-
tions of the engine components, changes of the engine components over time
together with changes in the external environment, i.e. temperature varia-
tions, may result in variations in the engine friction torque. These variations
causing errors in the estimate of the friction torque, lead to deterioration
of driveability performance. Errors in the estimate of engine friction torque
have a direct impact on the behaviour of the engine speed during negative
transients ( where the driver releases the accelerator pedal and switches to
a neutral gear ). Error in the engine friction estimate results in the error in

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 5,
c© Springer-Verlag Berlin Heidelberg 2009
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actual indicated engine torque. The actual indicated engine torque ( which is
negative during a negative transient ) is higher than it would be if the losses
were estimated correctly. Therefore, the engine speed decays slowly. More-
over, overestimation of the friction torque can lead not only to slow negative
transients of the engine speed, but also to a constant offset in the steady-state
engine speed with respect to a target idle speed. The steady-state offset, due
to the errors in friction estimation, could result in a jerk behaviour of the
vehicle if a driver engages a low gear. Errors in the estimation of the friction
losses thus can lead directly to deterioration of driveability performance.
Despite the fact that engine friction modeling is a well studied field ( see for
example [76] and references therein ), very little attention has been paid to
real-time friction estimation. The facts presented above necessitate the de-
velopment of real-time adaptation algorithms to improve the accuracy of the
engine friction model. The most promising opportunity for estimating friction
is during engine idle when the engine is decoupled from the driveline [7]. The
idle state however, could give an estimate of the friction torque only at idle
speed and low indicated torque. Another opportunity for obtaining an accu-
rate estimate of the friction torque is the period following engine start. At
engine start, the engine speed increases to a relatively high ( compared with
the idle speed ) level, and then slowly decreases, converging to the desired
idle speed. This period when the engine speed decreases gives an opportu-
nity to estimate engine friction torque. Warm starts only are considered in
the present Chapter. Newton’s law for rotational dynamics can be used as
a reference model. The difference between the derivative of the engine speed
multiplied by the inertia moment and the engine brake torque can be seen
as a deviation from the reference model. The derivative of the engine speed
is estimated by using the recursive spline interpolation method described in
Chapter 3, (see also [93]). If a deviation from the reference model is detected,
then the friction look-up table is updated so that the deviation is minimized.
Notice that simple compensation techniques such as input observers can also
be applied for correction of the friction torque model [95] at engine idle. The
values of the correction parameter are not memorized in this case in the look-
up table and a certain time for correction is required after every transient.
Adaptation algorithms for look-up tables proposed in this Chapter overcome
these difficulties. Adaptation of look-up tables (static maps) is widely used
in the engine control functionality for robustness improvement [113]. How-
ever, adaptation algorithms described in [113] do not allow a prediction of
the values of the operating parameter in the regions with meager new data
representation.
In this Chapter the look-up table defines a surface for engine friction torque
in three dimensional space with engine speed and indicated torque as inde-
pendent variables. The shape of the surface reflects physical dependencies of
the friction torque as a function of speed and indicated torque. If new data is
available only in a certain operating region, then the part of the surface pa-
rameters are adapted ( for example the offset and the gradient in the engine
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speed direction). Adaptation of the look-up table is associated with a motion
of the surface in three dimensional space. The position and the orientation of
the surface in three dimensional space change only after adaptation, which in
turn, allows for a prediction of the friction torque for a wide range of speeds
and indicated torques. This prediction is possible with few measured points
by taking into account physical dependencies, which are present in the shape
of the surface. An adaptation algorithm is constructed so that only the nodes
(sites) of the look-up table are adapted, thereby the values of engine friction
torque between the nodes are computed using linear interpolation. In order
to reduce the computational burden of the processor, recursive and computa-
tionally efficient algorithms for adaptation of the nodes in the look-up table
are developed. The contributions of this Chapter are the following:

- new recursive algorithms for adaptation of the nodes of the look-up tables
- new algorithms for estimation of the engine friction torque at start.

A Volvo vehicle equipped with six cylinder prototype engine was used in the
experiments.

5.2 Impact on Drivability

Errors in the estimate of engine friction torque have a direct impact on the
behaviour of the engine speed during negative transients ( where the driver
releases the accelerator pedal and switches to a neutral gear ). The engine
speed during negative transients is governed by the torque model. Requested
indicated engine torque is calculated from the requested engine brake torque
by adding the torque losses ( friction and pump losses ). The requested en-
gine brake torque is calculated as a function of accelerator pedal position and
engine speed. The requested indicated engine torque in the negative tran-
sient of the engine speed with overestimated friction losses ( real losses are
less than estimated ), is higher than it would be if friction losses were to be
correctly estimated. The desired engine load is calculated from the desired
indicated torque. The feedback load control system regulates the engine load
to the desired load, which implies that the actual indicated torque converges
to the desired indicated torque. The actual indicated engine torque ( which is
negative during a negative transient ) is higher than it would be if the losses
were estimated correctly. Therefore, the engine speed decays slowly. Moreover,
overestimation of the friction torque leads not only to slow negative transients
of the engine speed, but also to a constant offset in the steady-state engine
speed with respect to a target idle speed. Errors in the estimation of the fric-
tion losses thus can lead directly to deterioration of driveability performance.

5.3 Problem Statement

The errors in the estimated friction losses have an effect on the behaviour of
the engine torque at start and idle. Newton’s law
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Jω̇ = Tbrake − Tacs (5.1)

can be seen as a reference model at the interval [ti tf ], where ti is the
time when the engine speed nears a maximum value at start, tf is the time
when the engine speed reaches the desired idle speed, ω is the engine speed,
J is the inertia moment of the engine, Tbrake is the engine brake torque, Tacs

is the torque corresponding to accessory loads. The engine brake torque is the
difference between the engine indicated torque and the torque corresponding
to the losses, i.e., Tbrake = Tind − Tloss, where Tind is the indicated engine
torque, Tloss = Tf +Tp , Tloss is the torque corresponding to the losses, which
in turn is the sum of the friction Tf and the pump losses Tp.

Let us introduce the following error

e(t) = Jω̇ − (Tbrake − Tacs) (5.2)

If the torque model is well calibrated, then the error |e(t)| is close to zero at
the interval of interest. Any deviation from the reference model is assumed to
be related to the friction losses, since aging of the engine components mainly
affects the friction losses. The friction torque is a function of engine speed and
indicated engine torque, Tf = f(ω, Tind). The friction torque is presented as
a look-up table with two inputs ω and Tind. The nodes of the look-up table
should be updated so that the absolute values of the error e(t) are reduced
after each start event. The control aim can be formulated as follows. It is
necessary to find an adaptation mechanism for adaptation of the nodes of the
engine friction look-up table such that the following control aim is reached:

lim
k→∞

|e(t)| ≤ Δ (5.3)

where k is the number of the start events, Δ > 0 is a small positive constant,
t ∈ [ti tf ]. The system as described can be seen as a model reference adaptive
system driven by the engine start events.

5.4 Estimation of the Friction Torque at Start

The problem stated above can be solved in two steps. In the first step, the
deviation from the engine friction torque, which is pre-calibrated in the rig,
is calculated for each start event by a comparison of Jω̇ and Tbrake − Tacs

at a certain interval. If Jω̇ significantly deviates from Tbrake − Tacs, then the
estimates of the engine friction torque are computed. These estimates of the
engine friction torque as a function of speed and indicated torque is the input
to the second step. In the second step, the nodes of the friction torque look-
up table are adapted so that the deviation between Jω̇ and Tbrake − Tacs is
reduced for the next start event.
Assume that the engine friction torque can be presented as a sum of two
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components Tfc + ΔTf , where Tfc is the engine torque pre-calibrated in the
rig, and ΔTf is the deviation from the pre-calibrated torque. The deviation
ΔTf is calculated by using an error e(t) which is evaluated at certain discrete
points tp, (p = 1, 2, ...), on a time scale, i.e.,

ΔTf (w(tp), T (tp)ind) = e(tp) − Jω̇(tp) + T (tp)ind

−Tfc(tp) − Tp(tp) − Tacs(tp) (5.4)

where tp ∈ [ti tf ]. The points tp should be well separated from each
other on the time scale, providing information about ΔTf for different values
of engine speed and indicated torque. From two to four measured points can
be obtained during a negative transient. One point is obtained at idle. The
deviation from the calibrated engine friction torque at idle ΔTf (wid, Tindid

),
where wid is the engine idle speed, Tindid

is the indicated torque at idle, is
calculated as follows:

ΔTf (wid, Tindid
) = Tindid

− Tfcid
− Tpid

− Tacsid
(5.5)

where Tfcid
, Tpid

, Tacsid
are the values of the friction torque, pump torque

and the torque corresponding to the accessory loads, respectively. If the en-
gine is idling for a relatively long period, the deviation ΔTf is averaged over
certain number of steps, providing a consistent estimate for the deviation
ΔTf (wid, Tindid

).
For calculation of ΔTf (w(tp), T (tp)ind) according to (5.4) during engine

start event, the estimate of the derivative of the engine speed is required.
The backward difference method, which is widely used for calculation of the
derivative of the signal, often gives noisy estimates. For the improvement of
the quality of the estimate of the derivative of the engine speed signal, a spline
interpolation method described in Chapter 3 (see also [18], [93]) is used. A
spline interpolation method is based on on-line least-squares polynomial fit-
ting over a moving-in-time window of a certain size [27]. Since the nodes of
the friction look-up table are adapted after the start events, a post-processing
of the signals is allowed, i.e., the signals are memorized and processed ’offline’.
The spline interpolation method gives an accurate estimate of the derivative
of the engine speed in the post-processing, since the derivative of the en-
gine speed is computed in the middle of a moving window. This technique
improves essentially the quality of the engine speed derivative signal. Other
signals in (5.4) should also be delayed. Figure 5.1 shows the behaviour of the
engine speed together with its derivative and engine brake torque during en-
gine start event where the friction losses are correctly estimated. Figure 5.2
and Figure 5.3 show the behaviour of the system where the friction losses are
overestimated, i.e., ΔTf = 10[Nm]. As can be seen from the Figure 5.2 and
Figure 5.3, two points are available for adaptation of the friction losses. The
third point for calculation ΔTf is available when engine is idling. Adaptation
algorithms for look-up tables are presented in the next Section.
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FIG 5.1. Measurements with the step of 4 ms on the prototype engine. The friction
losses are correctly estimated. Engine speed during a start is plotted with solid line.
The values of the engine speed are divided by ten. Engine brake torque is plotted with
dashdot line. The derivative of the engine speed multiplied by the inertia moment
Jω̇ is plotted with dashed line. The difference e(t) = Jω̇ − Tbrake is plotted with
dotted line. The points where e(tp) is evaluated are indicated with plus signs.

5.5 Adaptation Algorithms for Look-up Tables

5.5.1 Problem Statement

In Figure 5.4, engine friction torque is plotted as a function of engine speed
and indicated torque. The friction torque is overestimated by 10[Nm]. Two
points representing the estimated friction torque from the start are plotted
with plus signs. The point that represents the estimated friction torque at idle
is plotted with round and plus signs. The problem statement is the following. It
is necessary to design adaptation algorithms for the nodes of the look-up table
by using three measured points of the actual friction torque. Estimation of the
engine friction torque at engine start provides less consistent estimates than
estimates of the friction torque at engine idle. Therefore, the measurements
of the friction torque at idle and at start should be treated differently by
assigning different weighting factors in the adaptation algorithms.



5.5 Adaptation Algorithms for Look-up Tables 91

800 900 1000 1100 1200 1300 1400 1500

0

50

100

150

Step Number

E
ng

in
e 

S
pe

ed
/1

0,
[r

pm
],E

ng
in

e 
T

or
qu

e,
[N

m
]

ENGINE BRAKE TORQUE 

ENGINE SPEED / 10  

DERIVATIVE          
OF THE ENGINE SPEED 

DIFFERENCE BETWEEN    
THE DERIVATIVE OF THE 
ENGINE SPEED AND BRAKE
TORQUE                

FIG 5.2. Measurements with the step of 4 ms on the prototype engine. The
friction losses are overestimated by 10[Nm]. Engine speed during a start is plotted
with solid line. The values of the engine speed are divided by ten. Engine brake
torque is plotted with dashdot line. The derivative of the engine speed multiplied by
the inertia moment Jω̇ is plotted with dashed line. The difference e(t) = Jω̇−Tbrake

is plotted with dotted line. The points where e(tp) is evaluated are indicated with
plus signs.

5.5.2 General Adaptation Algorithms for Look-Up Tables

The algorithm of the adaptation of the nodes of two dimensional tables can be
divided into three steps. In the first step, the output of the look-up table is ap-
proximated by a polynomial of two independent variables in the least-squares
sense. In the second step, a recursive procedure is designed for adaptation of
the part of the coefficients of the polynomial when new data is added. In the
third step of the algorithm, the approximation error is reduced. Namely, the
differences between the polynomial approximation of original table and the
polynomial approximation after adaptation are evaluated at every node and
added to the nodes of the original look-up table. This allows a reduction of
the approximation error and usage of low order polynomials, which are more
robust with respect to the measurement errors. Only the nodes of the look-up
table are adapted as a result of the application of the algorithm described
above. The values of the friction torque between the nodes are obtained by
linear interpolation.

Suppose that there is a look-up table describing the variable z as a function
of two variables x and y. The look-up table is presented as a number of nodes
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FIG 5.3. Measurements with the step of 4 ms on the prototype engine ( the same
as Figure 5.2). The friction losses are overestimated by 10[Nm]. Engine brake torque
is plotted with dashdot line. The derivative of the engine speed multiplied by the
inertia moment Jω̇ is plotted with dashed line. The difference e(t) = Jω̇ − Tbrake

is plotted with dotted line. The points where e(tp) is evaluated are indicated with
plus signs. The left point is evaluated at ω = 1180[rpm],Tind = 23[Nm], and the
right point is evaluated at ω = 860[rpm],Tind = 43[Nm]. The friction torque at idle
is evaluated at ω = 650[rpm], Tind = 34[Nm].

(xh, yp) , h = 1, ...D, p = 1, ..., G, where the output variable zh,p is defined.
The values of the variable z between the nodes are computed via a linear
interpolation. The problem of the adaptation of a look-up table is reduced to
the adaptation of zh,p.

As it was mentioned above, the problem can be solved in three steps as
follows.

Step 1. Polynomial Approximation.
In this step, the look-up table is approximated by the following polynomial:

ẑ =
n∑

i=0

n∑
j=0

ai,jx
iyj (5.6)

where n is the order of the polynomial, ai,j are the coefficients of the
polynomial. The polynomial model (5.6) can be written in the following vector
form:
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FIG 5.4. Engine friction torque is plotted as a function of engine speed and indi-
cated engine torque. The friction torque is overestimated by 10[Nm]. Two points
which represent the estimated friction torque at start (see Figure 5.2 and Figure 5.3)
are plotted with plus signs. The point which represents the estimated friction torque
at idle is plotted with round and plus signs.

ẑ = ϕT θ (5.7)

where

ϕ = [1, y, y2, ..., yn, x, xy, xy2, ..., xyn, ...,

xn, xny, xny2, ..., xnyn]T

θ = [a00, a01, a02, ..., a0n, a10, a11, a12, ..., a1n, ....,

an0, an1, an2, ..., ann]T (5.8)

The performance index to be minimized is the following:

S =
N∑

l=1

(zl − ẑl)2wl (5.9)

where N is the number of the nodes (sites) of the look-up table, l =
1, ..., N ,N = D×G, wl is the weighting factor at every node of the table. The
parameter θ, which minimizes index (5.9) is computed as follows:

θ = [
N∑

l=1

(ϕlϕ
T
l wl)]−1

N∑
l=1

zlϕlwl (5.10)
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Assuming, the parameter vector θ has been computed according to the
formula (5.10) and memorized in the memory of the electronic control unit, the
problem of the adaptation of the look-up table can be stated as the problem of
the adaptation of the parameter vector θ for new measured data. The values
ẑ(h,p) at the nodes (xh, yp) are computed according to (5.7).

Step 2. Adaptation of the coefficients. In this step of the algorithm, the
vector θ is adapted for new data. Assuming, new measured data xm, ym, zm

with the weighting factor wm is added to the data set, the parameter vector
θ ∈ R(n+1)2 is divided into two parts: the first part θc ∈ R(n+1)2−q remains
unchanged from the previous step, and the second part θa ∈ Rq which should
be adapted, where q is the number of the parameters to be adapted. Then,

θ = [θc θa]T (5.11)
ϕ = [ϕc ϕa]T (5.12)

where ϕc is the part of the regressor, which corresponds to the parameter
vector θc, and ϕa is the part of the regressor corresponding to the parame-
ter vector, θa. New measured data xm,ym,zm is added to the data set. The
performance index to be minimized is the following:

S1 =
N∑

l=1

(zl − ẑl)2wl + (zm − ϕT
mθ)2wm (5.13)

where

ϕm = [1, ym, y2
m, ..., yn

m, xm, xmym, xmy2
m, ...,

xmyn
m, ..., xn

m, xn
mym, xn

my2
m, ..., xn

myn
m]T (5.14)

ϕm = [ϕcm ϕam]T (5.15)

The adaptive parameter θa is computed according to the following equa-
tion ∂S1

∂θa
= 0, i.e.,

θa = [
N∑

l=1

(ϕalϕ
T
al)wl + ϕamϕT

amwm]−1

N∑
l=1

(zl − ϕT
clθc)ϕT

alwl + (zm − ϕT
cmθcϕ

T
am)wm (5.16)

In order to reduce the computational burden on the engine controller, the
adjustable parameter is computed recursively. The vector of the adjustable
parameters is computed according to the following formula at step (k − 1)
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θa(k−1) = [
N∑

l=1

(ϕalϕ
T
alwl)]−1

N∑
l=1

(zl − ϕT
clθc)ϕT

alwl (5.17)

and the adjustable parameter θak at step k should be updated recursively
via θa(k−1) as soon as new data zm, ϕm with the weighting factor wm are
available. Applying the matrix inversion relation to (5.16) and taking into
account (5.17) one gets the following adjustment law for the parameter θak at
step k:

θak = [I − Γk−1wmϕamϕT
am

(1 + wmϕT
amΓk−1ϕam)

](θa(k−1) +

Γk−1(zm − ϕT
cmθc)wmϕT

am), (5.18)

Γk = Γk−1 −
wmΓk−1ϕamϕT

amΓk−1

(1 + wmϕT
amΓk−1ϕam)

, (5.19)

where Γk−1 = [
∑N

l=1(ϕalϕ
T
alwl)]−1, I is q × q identity matrix, and the

following condition for convergence of the algorithm imposes restrictions on
the weighting factors:

− Γk−1 < Γk−1 −
wmΓk−1ϕamϕT

amΓk−1

(1 + wmϕT
amΓk−1ϕam)

< Γk−1. (5.20)

Algorithm (5.18), (5.19) is easily implementable since the dimension of the
vector θa is low. As a rule, only the offset and the slope in one of the directions
are updated; i.e., q = 2.
The values ẑa(h,p) at the nodes (xh, yp) are computed according to the fol-
lowing formula ẑak = ϕT

ckθc + ϕT
akθak. The vector θc is not updated. That, in

turn, allows the shape of the surface to be maintained.
Notice, that the weighting factors wm are assigned according to the ac-

curacy of measured values of the operating parameter. Usually, the weighing
factors are inversely proportional to the variances of the measurement noise
[57], [59]. If the values of the operating parameter are measured with the same
accuracy and averaged over a certain sample size the weighting factors could
be chosen proportionally to the sample size. For example, the estimate of
the engine friction torque at idle is averaged over a certain number of steps,
providing more accurate estimate than the engine start events. Therefore,
the weighting factor for the friction torque estimate at idle should be chosen
higher than the weighting factor for the friction torque estimate at engine
start events.

Step 3. Reducing the approximation error. Low order polynomials (5.6)
is advisable to use for approximation of look-up tables. Low order polyno-
mials are robust with respect to the measurement noise compared with the
polynomials of a high order. However, approximation of a look-up table us-
ing low order polynomials could also give a relatively large approximation
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error. In order to reduce the approximation error, the following differences
ẑa(h,p) − ẑ(h,p) between the polynomial approximation of the adapted table
and the polynomial approximation of the original table are computed at ev-
ery node h = 1, ...D, p = 1, ..., G and added to the values z(h,p) of the original
look-up table. Namely, the values of variable z at the nodes of the look-up
table are updated as follows:

zf(h,p) = z(h,p) + (ẑa(h,p) − ẑ(h,p)) (5.21)

In other words the approximation error which is present in the ẑa(h,p) and
ẑ(h,p), is reduced since only the difference (ẑa(h,p) − ẑ(h,p)) (not the absolute
values ) is used for adaptation of the nodes of the look-up table. In the next
subsection the algorithm proposed above is applied to the adaptation of the
friction torque look-up table.

5.5.3 Adaptation Algorithms of the Engine Friction Torque
Look-up Table

Suppose that the engine friction torque is overestimated with an offset of
10[Nm]. Actual values (two values ) of the engine friction torque as a func-
tion of speed and indicated torque were obtained during an engine start (see
Figure 5.2 and Figure 5.3). A third value of the friction torque was obtained
at idle by averaging the values of the friction torque over a certain interval.
Weighting factors were assigned to all the values of the measured engine fric-
tion torque. The algorithm described above was applied for adaptation of the
friction look-up table. The order of the approximating polynomial is two. Only
the offset parameter a00 was adapted. The result is plotted in Figure 5.5. The
friction torques before and after adaptation were plotted as white surfaces,
and actual friction torque is plotted as black surface. The difference between
actual friction torque and the friction torque after the adaptation is 0.77[Nm].

Notice that new values of the estimated engine friction torque are closely
located to each other in the area of low speeds and torques only. Therefore
adaptation of the offset only is chosen in this example. In order to make
adaptation of the gradient in the engine speed direction more operational
points are required at high rotational speeds.

The look-up table for the friction torque was updated in the engine elec-
tronic control unit (ECU) and the measurements of the engine speed and
brake torque at the next start are plotted in Figure 5.6. The behavior of the
engine speed and torque before adaptation is plotted in Figure 5.2. A com-
parison of Figure 5.2 and Figure 5.6 shows that the error e(t) = Jω̇ − Tbrake

is reduced and the control aim (5.3) is reached with a sufficiently small Δ.
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FIG 5.5. The friction torque is plotted as a function of engine speed and indicated
engine torque. The friction torque before the adaptation and after adaptation are
plotted as white surfaces. Actual friction torque is plotted as black surface.

5.6 Conclusions

New algorithms for real-time estimation of the engine friction torque are devel-
oped. Engine friction torque is estimated at start and at engine idle. Recursive
and computationally efficient algorithms allow prediction of friction torque for
a wide range of speeds and loads even with few new measured points by tak-
ing into account physical dependencies used for adaptation of the nodes of the
look-up tables. The algorithms make it possible to avoid driveability problems
that could result from errors in estimating engine friction torque.
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FIG 5.6. Measurements with the step of 4 ms on the prototype engine. The friction
losses have been adapted. Engine speed during a start is plotted with solid line. The
values of the engine speed are divided by ten. Engine brake torque is plotted with
dashdot line. The derivative of the engine speed multiplied by the inertia moment
Jω̇ is plotted with dashed line. The difference e(t) = Jω̇ − Tbrake is plotted with
dotted line.
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Data-Driven Algorithms for Engine Friction
Estimation

The engine friction estimation algorithms described in this Chapter estimate
the engine friction torque via the crankshaft speed fluctuations at the fuel
cut off state and at idle. A computationally efficient filtering algorithm for
reconstruction of the first harmonic of a periodic signal is used to recover an
amplitude which corresponds to engine events from the noise contaminated
engine speed measurements at the fuel cut off state. The values of the friction
torque at the nodes of the look-up table are updated, when new measured
data of the friction torque are available. New data-driven algorithms which
are based on a step-wise regression method are developed for adaptation of
look-up tables. Algorithms are verified by using a spark ignition six cylinder
prototype engine.

6.1 Introduction

The most promising opportunity for estimating friction is during engine idle
when the engine is decoupled from the driveline [7] and at engine start (see
Chapter 5). These methods however, could give an estimate of the friction
torque only at the low speeds and low indicated torques. Better accuracy of
the engine torque estimation can be achieved if more measurements of the
friction torque are available at high rotational speeds.
Friction losses increase with speed and up to two thirds of engine friction can
occur in the piston and rings (see [83], page 459). The friction force on the pis-
ton assembly has a direct impact on the piston acceleration and hence on the
crankshaft speed variations. Wearing of the engine components has impact on
the friction losses and, in turn, on the crankshaft speed variations. The am-
plitude of the crankshaft speed variations, which are induced by the periodic
cylinder individual compression/expansion events, depends on a compression
pressure, a friction force and the viscosity of a lubricating oil and only provides
a method for estimation of the engine friction torque and pump torque when

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 6,
c© Springer-Verlag Berlin Heidelberg 2009
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the engine is not fueled. The same amplitude provides a method for estima-
tion of the engine brake torque, when the engine is fueled (see Chapter 4). A
fuel cut off functionality which is used to enhance a fuel economy, is activated
when the throttle valve is completely closed and the engine speed is higher
than a predetermined value (usually this threshold value of the engine speed is
around 3000 rpm). This fuel cut off operation gives an opportunity to provide
new measured data of the friction torque at high rotational speeds. The engine
friction look-up table is adapted if new data of the engine friction torque at
high rotational speeds are available. However, crankshaft torsional vibrations
at high rotational speeds, inertia torque due to reciprocating masses, piston
mass imbalance, and other mechanically induced vibrations affect the behav-
ior of the high resolution engine speed when the engine is not fueled. Therefore
the high resolution engine speed signal should be filtered in order to recover
an amplitude corresponding to engine events from a noise contaminated data.
The engine speed signal is approximated by a trigonometric polynomial with
known frequencies and unknown amplitudes (see Chapter 4). The convergence
of the estimated parameters to their true values is ensured due to the richness
(persistency of excitation) of the measured periodic engine speed signal which
is approximated by the trigonometric polynomial. The signal is completely
reconstructed by the trigonometric polynomial and the filter uses a periodic
signal at the engine frequency. The algorithm described in this Chapter is
divided in two parts. The first part is the engine friction estimation at the
fuel cut off state and idle, and the second part is the adaptation of the friction
look-up table.

Adaptation of look-up tables (static maps) is widely used in order to im-
prove the robustness of the engine control functionality [113], [117]. However,
adaptation algorithms described in [113] and [117] do not allow a prediction
of the values of the operating parameter in the regions with meager new data
representation. A new approach, described in Chapter 5 allows for a predic-
tion of the friction torque for a wide range of speeds and indicated torques,
even with few new measured points, by taking into account physical depen-
dencies. However, in this approach the parameters to be adapted (coefficients
of a polynomial) are chosen beforehand and are not coupled to the parameters
of a new data set. Accuracy of adaptation however, depends on the accuracy,
consistency and a sample size of new data of the operating parameter (friction
torque). Different driving cycles and conditions give different sets of data of
new measured friction torque. The parameters (coefficients of a polynomial)
which should be selected for adaptation depend on the parameters of new
data sets. For example, for some data sets the offset of the friction torque
look-up table should be updated only, whereas for other data sets the offset
and the gradient in the engine speed direction are updated. The adaptation
algorithm proposed in this Chapter is based on the statistical step-wise least-
squares method, and represents a flexible approach where the parameters to
be adapted are chosen in every step. Step-wise regression method described
in [20],[21],[57] examines new terms incorporated in the model at every stage
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of the regression. After each new term is selected, its contribution is reviewed
to ensure it remains statistically significant. The decision about inclusion of
a new term in the model is based on the Test for Equal Variances (the name
is carried over from [67]), where variances of the approximation errors in the
current and previous steps are compared. The Test for Equal Variances is a
hypothesis test where the hypothesis that two variances are equal is taken as
a null hypothesis. In oder to reject the null hypothesis the difference between
two compared variances with certain degrees of freedom and a level of signif-
icance should be significant. A probability of rejecting null hypothesis when
it is true is called a level of significance or α risk. The null hypothesis can
be tested provided that the approximation errors are normally distributed
in each step of the regression. F-distribution is used for hypothesis testing
of equal variances. The process is stopped if a corresponding variance and a
variance of measurement noise are approximately the same or all the terms
are used up.
Step-wise regression is defined as a data-driven automatic variable selection
scheme, which is efficient for processing of small data sets isolated from each
other. Moreover, recursive algorithm developed in this Chapter allows calcu-
lation of a parameter vector using values of the parameters in the previous
step, making the method computationally efficient and implementable.

The contributions of this Chapter are the following: 1) New algorithms
for real-time estimation of the engine friction torque. Engine friction torque
is estimated at the fuel cut off state and at engine idle, 2) New recursive
and computationally efficient data-driven algorithms for adaptation of look-
up tables.

A Volvo passenger car equipped with a six cylinder prototype engine was
used in the experiments. Algorithms are implemented in MATLAB and ap-
plied to the measured data collected from the experimental vehicle.

6.2 Estimation of Engine Losses During Fuel Cut Off
State

6.2.1 Problem Statement

In general, the elapsed time between two teeth on a crankwheel is measured in
production engines. The high resolution engine speed signal is then calculated
as a ratio of the length of the angular segment on the crankwheel and the
passage time for this segment.

The combustion state of the given cylinder is defined via the amplitude
of the engine speed signal. The amplitude which is associated with the cylin-
der, whose power stroke occurs in the corresponding time interval, in turn is
defined as the difference between maximal and minimal values of the high res-
olution engine speed signal. Here and below, a non-standard definition is used,
and under the term ’amplitude’ the difference between maximal and minimal
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values is understood. This amplitude, which is the measure of the crankwheel
speed perturbations induced by the periodic impulsive cylinder individual
torque contributions, provides a method for estimation of the engine torque
[23], [72], [86]. The same amplitude for the cylinder whose expansion stroke
occurs in the interval depends on a compression pressure, a friction force and
the viscosity of a lubricating oil only when the engine is not fueled, providing
a method for estimation of the engine losses. Notice that the accuracy of the
estimation of the engine losses via the amplitude when the engine is not fueled
is better than the accuracy of the torque estimation via the same amplitude
when the engine is fueled. This is due to the fact that the expansion stroke
of the given cylinder is driven by the compression pressure only when the
engine is not fueled, and the variations of the amplitude do not depend on
the variations of the combustion pressure.

Figure 6.1 shows the harmonics of the engine speed signal, when the engine
is not fueled, at 2000 rpm and 3500 rpm calculated by the Discrete Fourier
Transform (DFT) method. Figure 6.1 shows that the engine speed signal at
low rotational speeds has a dominating component which corresponds to the
engine frequency (the sixth harmonic). The engine speed signal at high ro-
tational speeds has fluctuations which occur as a consequence of the engine
events (expansion events driven by the compression pressure), low frequency
oscillations from the powertrain as well as high frequency oscillations due to
the crankshaft torsion. The high frequency oscillations due to the crankshaft
twist and low frequency oscillations from the powertrain could be greater than
the oscillations induced by the engine events. Notice that the input sequence
was sampled with the step of 30o CA (Crank Angle) which is a relative low
rate sampling. At this rate the high order harmonic components could be
aliased within a lower frequency range. However, the fluctuations which cor-
respond to engine events can still be recovered from the noise contaminated
measurements even with such a relatively low sampling rate.
Computationally efficient algorithms which recover the engine speed fluctua-
tions corresponding to engine events from the noise contaminated measure-
ments of the engine speed, when the engine is not fueled, are described below.

6.2.2 Filtering Technique

Assuming that there is a set of the Crank Angle (CA) synchronized engine
speed data ωk, k = 1, 2..., measured at the following points xk = kΔ where Δ
is a step size. The measured signal ωk can be approximated by the following
trigonometric polynomial:

ω̂k = a0k +
n∑

q=1

(aqkcos(qxk) + bqksin(qxk)), (6.1)
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FIG 6.1. Harmonic contents of the engine speed signal at 2000 rpm and 3500
rpm are computed via the DFT method. The input sequence is sampled with the
step of 30o. The data is acquired over 720o window. The engine is not fueled. The
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, where Th is the period of the harmonic. The engine

is operating at full load. Amplitudes at 2000 rpm are plotted with dotted line and
amplitudes at 3500 rpm are plotted with solid line.

where q = 1, 2, ..., n is the frequency. Equation (6.1) plays a role of a model,
which has to match the measured data ωk. Assume that the measured variable
ωk can be presented as follows:

ωk = a0∗ +
n∑

q=1

(aq∗cos(qxk) + bq∗sin(qxk)), (6.2)

where a0∗, aq∗ bq∗ are constant unknown parameters. In other words, it is as-
sumed that the measured signal ωk can be approximated by the trigonometric
polynomial with known frequencies and unknown amplitudes.

The equations (6.1) and (6.2) can be written in the following form:

ω̂k = ψT
k ϑk, (6.3)

ωk = ψT
k ϑ∗, (6.4)
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where ϑk and ϑ∗ are the vectors of the adjustable and true parameters
respectively:

ϑT
k = [a0k a1k b1k a2k b2k, ..., ank bnk], (6.5)

ϑT
∗ = [a0∗ a1∗ b1∗ a2∗ b2∗, ..., an∗ bn∗], (6.6)

and

ψT
k = [1 cos(xk) sin(xk) cos(2xk)
sin(2xk), ..., cos(nxk) sin(nxk)] (6.7)

is the regressor. Notice, that the regressor ψ includes n distinct frequencies
and hence it is sufficiently rich for identification of 2n parameters of the signal
(6.2).
The estimation problem can be stated as follows: to find the update law ϑk,
such that the following equality holds at each step

ωk = ω̂k (6.8)

and the vector of the adjustable parameters ϑk converges to the vector of true
parameters ϑ∗. Then, the engine speed signal ωk can fully be reconstructed by
the polynomial (6.1). The components of the polynomial (6.1) which describe
engine events can be used for the engine losses estimation.

This problem is solved using a Kacmarz projection algorithm described in
Section 4.4.

Figure 6.2 shows the result of the filtering on a engine event frequency. The
engine speed signal is filtered by the filter (4.39) described in Section 4.4. The
engine is operating at 5500 rpm. It can be seen that the amplitude information
is recovered on the signal which is filtered by the filter (4.39).

The amplitude of the high resolution engine speed signal filtered at the en-
gine firing frequency is correlated to engine losses ( friction and pump losses).
Wearing of the engine components over time affects the amplitude of the en-
gine speed variations via friction forces on the piston assembly and piston
acceleration, providing a method for a friction torque sensing. Amplitude of
the engine speed variations is averaged over a certain number of engine events
with the purpose of improvement of the signal quality, and correlated to the
engine losses at every rotational speed ( see Figure 6.3). Figure 6.4 shows
engine losses as a function of average amplitude and rotational speed.

Notice that a fuel cut-off results in de-acceleration that is a transient of
the engine speed to the idle speed. A transient component of the engine speed
should be removed (see for example a compensation technique described in
Section 4.3.2) when estimating a friction torque via the crankshaft speed fluc-
tuations.
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FIG 6.2. Measurements with the step of 30 CA degrees on the six cylinder prototype
engine. A single engine cycle is plotted. The engine speed is plotted with the solid
line. Relative load is 100%. The engine is not fueled. Filtered signal corresponding
to the engine (firing) frequency is plotted with dashdot line.

6.3 Adaptation of the Friction Torque Look-up Table

6.3.1 Description of Adaptation Algorithm for Look-up Tables

Suppose that there is a look-up table describing a variable z as a function of
two variables x and y. The look-up table is presented as a number of nodes
(xh, yl) , h = 1, ...D, l = 1, ..., G, where the output variable zh,l is defined.
The values of the variable z between the nodes are computed via a linear
interpolation. The problem of adaptation of the look-up table is reduced to
calculation of an additive compensation term which is based on a polynomial
approximation of the difference between new measured values of the operating
parameter and values of the parameter calculated from the look-up table. As
soon as this compensation term is calculated it is resided in the memory of
the control unit in the form of the coefficients of the polynomial or added to
the nodes zh,l of the look-up table.

Assuming, new measured data xim, yim, zim with the weighting factor
wim is available, where i = 1, ..., N . The difference between a value of the
parameter zi calculated via a look-up table and new measured value of the
parameter zim is εi = zi − zim. Assume that ε can be approximated with a
linear (with respect to parameters) function of two variables, i.e.,
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speed is 5500 [rpm]. The engine is not fueled. Measured engine friction and pump
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ε̂ = ϕT θ (6.9)

where

ϕ = [1 y x y2 y3 ...]T

θ = [a0 a1 a2 ...]T (6.10)

where ε̂ is an estimate of ε. Step-wise regression examines the following
sequence of new terms which are added in the model in each step: θ1, ϕT

2 θ2, ...
where θ1 = a0, ϕT

2 = [1 y] and θ2 = [a0 a1]T . The parameters θk, k = 1, ...,
are calculated by using a least-squares algorithm minimizing the difference
between ε and ε̂ in each step . Suppose that the term ϕT

k θk, k = 2, ... is
examined as a candidate for inclusion in the model. The contribution of this
term is determined by calculating the following variances in steps k − 1 and
k:

Vk =
1

(N − k)

N∑
i=1

(εi − (θ1 + ϕT
2iθ2 + ...

+ ϕT
kiθk))2wim (6.11)

Vk−1 =
1

(N − (k − 1))

N∑
i=1

(εi − (θ1 + ϕT
2iθ2 + ...

+ ϕT
(k−1)iθk−1))2wim (6.12)

The decision is based on a comparison of variances Vk−1 and Vk. In order
to include new term ϕT

k θk, the variance Vk should be significantly less than
the variance Vk−1. The Test for Equal Variances is a hypothesis test where
the hypothesis that two variances Vk−1 and Vk are equal is taken as a null
hypothesis (H0 : Vk−1 = Vk). In order to reject the null hypothesis H0 the
difference between Vk−1 and Vk with degrees of freedom fk−1 = N − (k − 1)
and fk = N − k, and a level of significance α should be significant. Reduction
of the variance is statistically significant if the following inequality is valid:

Vk−1

Vk
> Fα,fk−1,fk

(6.13)

where a number Fα,fk−1,fk
is taken from ’F-distribution’ look-up table

( [64], pages 716-720) for degrees of freedom fk−1 = N−(k−1) and fk = N−k,
and a significance level α, which is chosen beforehand. If inequality (6.13) is
valid, then the term ϕT

k θk is included in the model.
The method described above is able to reject a certain term, however, instead
of this term, another term might significantly reduce an approximation error.
The process is stopped if a corresponding variance and a variance of a mea-
surement noise are approximately the same or all the variables are used up.
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The order of the variables in ϕ plays an important role, since it decides the
test sequence of new candidate terms which should be included in the model.
Correct sequence of candidates minimizes a computational burden. If a num-
ber of measured points is sufficiently large, then the number of constraints
(the number of constraints is equal to a number of coefficients in model (6.9))
is negligible. In real-time applications, where the number of measured points
is not large each additional constraint has a significant impact on a vari-
ance. Therefore, it is advisable to reduce the number of the coefficients of
approximating polynomial by taking into account physical dependencies via
re-parametrization.

A parameter vector θk can be calculated recursively via a parameter vector
θk−1. The parameter vector θk which is calculated according to the least-
squares algorithm is the following:

θk = [
N∑

i=1

(ϕkiϕ
T
kiwim)]−1

N∑
i=1

(εi − (θ1 + ϕT
2iθ2 + ...

+ϕT
(k−1)iθk−1))ϕkiwim (6.14)

where ϕk = [ϕk−1ϕ(k)]T , θk = [θk−1θ(k)]T , ϕk−1 ,θk−1 ∈ Rk−1, ϕ(k) ,
θ(k) ∈ R1. Algorithm (6.14) minimizes the following performance index:

Sk =
N∑

i=1

(εi − (θ1 + ϕT
2iθ2 + ...

+ ϕT
kiθk))2wim (6.15)

where Sk is the sum of the squares of the residuals.
Parameter vector θk−1 is defined as follows:

θk−1 = [
N∑

i=1

(ϕ(k−1)iϕ
T
(k−1)iwim)]−1

N∑
i=1

(εi − (θ1 + ...

+ϕT
(k−2)iθk−2))ϕ(k−1)iwim (6.16)

Straightforward calculations show that θk is calculated via θk−1 as follows:

θk =

⎡
⎢⎣ θk−1 +

A−1
k−1vvT θk−1

β

−vT

β
θk−1 −

vT A−1
k−1δb
β

⎤
⎥⎦+

+

⎡
⎢⎣ [A−1

k−1 +
A−1

k−1vvT A−1
k−1

β
]δb − A−1

k−1vb1

β
b1
β

⎤
⎥⎦
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where A−1
k−1 is (k − 1) × (k − 1) matrix, v ∈ Rk−1,δb ∈ Rk−1, β ∈ R1,

b1 ∈ R1 are defined as follows:

Ak−1 =
N∑

i=1

[ϕk−1ϕ
T
k−1]wim, v =

N∑
i=1

ϕk−1ϕ(k)wim

a =
N∑

i=1

ϕ2(k)wim

b1 =
N∑

i=1

(εi − (θ1 + ϕT
2 θ2 + ...

+ϕT
k−2θk−2 + ϕT

k−1θk−1)ϕ(k)wim

δb = −
N∑

i=1

(ϕT
k−1θk−1ϕk−1)wim, β = a − vT A−1

k−1v

Matrix A−1
k is computed via A−1

k−1 according to the following formula:

A−1
k =

⎡
⎢⎣ A−1

k−1 +
A−1

k−1vvT A−1
k−1

β
− A−1

k−1v
β

−vT

β
Ak−1

1
β

⎤
⎥⎦

6.3.2 Adaptation Algorithm for Engine Friction Look-up Table

Problem Statement

Suppose that there is a set of measurements of the engine friction torque
obtained during engine fuel cut off state and during engine idle. Figure 6.5
shows pre-calibrated engine friction torque as a function of engine speed and
indicated engine torque. Measured values of the engine friction torque during
fuel cut-off state are shown with plus signs. The value of the engine friction
torque obtained during idle is shown with a circle sign added.

Adaptation algorithms described above are applied for adaptation of the
engine friction look-up table. In this case an operating parameter z is engine
friction torque which is a function of two variables; i.e., engine speed y, and
indicated engine torque x. As can be seen from Figure 6.5, new values of
estimated engine friction torque obtained during fuel cut off state are available
at high rotational speeds (the fuel cut off is usually activated at high speeds
only) and zero indicated torque. Estimation of the friction torque at idle
gives new measured value of the friction torque at low speed and indicated
torque. Therefore, an offset and gradient in the engine speed direction can
be estimated by using new measured values of the engine friction torque.
Adaptation algorithms are divided in two steps. In a first step, the offset
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FIG 6.5. Pre-calibrated engine friction torque as a function of engine speed and
indicated engine torque. Measured values of the engine friction torque during fuel cut
off state are shown with plus signs. The value of the engine friction torque obtained
during idle is shown with a circle sign added.

parameter θ1 is computed by using a least-squares algorithm θ1 = −9.9 [Nm].
A corresponding variance is V1 = 16.65 [Nm]2. In a second step the term a1y
is tested as a candidate term for inclusion in the model (6.9). Parameter vector
is defined as follows θ2 = [a0 a1]T and ϕ2 = [1 y]T . Parameter vector θ2 is
computed according to (6.14). Then a0 = 7.98 [Nm] and a1 = −2.12 [Nm

rpm ].

Variance V2 is the following V2 = 3.27 [Nm]2. Ratio V1
V2

= 5.09 should be
compared with the F - value, which is equal to 4.05 for degrees of freedom
f1 = 5 and f2 = 4, and significance level α = 0.1 (see [64], page 717 ). Since
the following inequality is valid V1

V2
> Fα,fk−1,fk

, the term ϕT
2 θ2 is included

in the model. In this step the process should be stopped since the variance
V2 = 3.27 [Nm]2 is close to the variance of the measurement noise σ2 = 2.37
[Nm]2. The closeness of two variances V2 and σ2 can again be verified via
the Test for Equal Variances for a certain significance level and degrees of
freedom f2 = 4 and fσ2 = ∞, where it is assumed that the variance of the
measurement noise σ2 is known from a relatively large number of previous
observations and the degrees of freedom of the variance of the measurement
noise fσ2 is infinity.
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Finally, the model has the following form ε̂ = θ1 + ϕT
2 θ2 = −9.9 + (7.98−

2.12y). The result of adaptation is shown in Figure 6.6.
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FIG 6.6. Actual engine friction torque as a function of engine speed and indicated
engine torque is plotted as white surface. Adapted friction torque is plotted as gray
surface. Measured values of the engine friction torque obtained during fuel cut off
state are shown with plus signs. The value of the engine friction torque obtained
during idle is shown with a circle sign added.

6.4 Conclusion

New algorithms for real-time estimation of the engine friction torque are devel-
oped. Engine friction torque is estimated at the fuel cut off state and at engine
idle. New recursive and computationally efficient data-driven algorithms are
developed for adaptation of the look-up tables. The algorithms make it possi-
ble to avoid driveability problems that could result from errors in estimating
engine friction torque.



7

Statistical Engine Misfire Detection

New recursive filtering algorithms for misfire detection based on the trigono-
metric interpolation method are proposed for spark ignition automotive en-
gines. The technique improves the performance of the filtering algorithms
allowing a flexible choice of the size of the moving window. Correction algo-
rithms are introduced for the recursive trigonometric interpolation method
that ensure the robustness with respect to round-off errors which are present
in the finite precision implementation environment. New real-time statistical
algorithms based on a hypothesis testing for a misfire detection are proposed.
Statistical decision making mechanism allows to make a misfire detection with
a certain significance level with automatically selected sample size depending
on the signal quality that in turn improves the robustness of the misfire de-
tection functionality.

7.1 Introduction

Misfire is the state of an engine where the combustion does not occur due to
the errors in fueling or ignition. As a consequence, such misfires affect long
term performance of the exhaust emission control system. The misfiries cause
changes in the crankshaft rate of rotation, because the misfired cylinder is not
able to provide the torque. Engine misfire diagnostic functions are based on
monitoring of the cylinder individual fluctuations of the high resolution en-
gine speed signal or a passage time between subsequent teeth on a crankwheel.
The high resolution engine speed signal is calculated as a ratio of the length
of the angular segment on the crankwheel and the passage time for this seg-
ment (see Chapter 4). The passage time becomes less as the rotational speed
rises, thereby time interval errors rise. Moreover, low frequency oscillations
from the powertrain and high frequency oscillations due to the crankshaft
torsion, together with vibrations induced by the road, act as disturbances on
the crankshaft. These disturbances influence directly the performance of the

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 7,
c© Springer-Verlag Berlin Heidelberg 2009
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engine speed signal and consequently the torque monitoring and misfire diag-
nostic functions. Recursive DFT ( Discrete Fourier Transformation) method
in the window of a certain size w moving in time can be used for filtering
at the engine firing frequency [73],[86]. However, the orthogonality condition
for the trigonometric polynomials in certain interval is the main restriction
to the approximation performance and hence to the application of the DFT
method. This is turn imposes restrictions on the window size w. If the orthog-
onality condition is violated, then the implementation of the DFT method (
in this case a better name is a trigonometric interpolation method ) requires
a matrix inversion, as it is usual for least-squares fitting, and this in turn,
makes the method computationally expensive. Algorithms described in this
Chapter allow to make a trigonometric interpolation of the engine speed data
for any window size. This is turn allows to improve the performance of the
misfire diagnostic function. Recursive and computationally efficient version of
the trigonometric interpolation method is developed.

Limited precision effects might severely deteriorate the performance of the
recursive trigonometric interpolation method. The accumulation of round-off
errors in a finite precision engine control implementation environment limits
the trigonometric interpolation and hence the misfire detection performance.
In this Chapter the correction algorithms are proposed for correction of the
estimates obtained by the recursive trigonometric interpolation method.

The misfire detection approach proposed in this Chapter is based on a
monitoring of the amplitudes at two frequencies. The first one is the engine
firing frequency. The second amplitude is the amplitude of the component of
the engine speed with a period of 720o. Since the misfiring cylinder is active
every 720o of the crankshaft rotation a torque drop associated with the misfire
occurs every 720o generating a component of the engine speed with a period
of 720o. A torque behaviour associated with the misfire occurs once every two
cycles of crankshaft rotation or one-half cycles per crankshaft revolution. This
is typically referred as a half-order behaviour and the component of the engine
speed with the period of 720o is referred as a half engine order component.
The location of the minimum of this component on the engine cycle shows
which cylinder is misfiring. For example, the firing sequence of the six cylinder
prototype engine is the following 1-5-3-6-2-4. Figure 7.1 shows two misfires
instead of two neighboring combustions, i.e., in the first and fifth cylinders.
Here and below a single misfire is introduced by cutting a fuel continuously to
one of the engine cylinders. This situation corresponds to persistent errors in
the fuel injection or ignition system. Figure 7.1 shows that the misfires can be
detected by monitoring both amplitude at the engine combustion frequency
and amplitude at the half-order frequency (half-order harmonic), whereby the
phase of the half-order frequency component shows which cylinder is misfiring.
Here and below, an unusual definition is used, and under the term ’amplitude’
the difference between maximal and minimal values is understood.

The amplitudes are hypothesis tested for a misfire detection. One Sample
T-test (the name is carried over from [67]) which compares the average value
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FIG 7.1. Two engine cycles are plotted in the events of a misfire in the fisrt and
fifth cylinders. Engine is operating at idle. Engine speed signal in the event of a
misfire in the first cylinder is plotted with a solid line. Engine speed signal in the
event of a misfire in the fifth cylinder is plotted with a dashed line.

of the amplitude to the target value is used for a misfire detection at the
combustion frequency. Hypotheses tests used in this book are also described
in Appendix. Two Sample T-test which compares the average values of the
largest and the next largest amplitudes at the half-order frequency is used for
a misfire detection at the half-order frequency. The algorithm is divided into
two steps in both cases. In the first step the hypotheses are tested at each
step of the moving window of a minimal size, where the value of t− statistic
is compared with the value in the Student distribution look-up table for the
degrees of freedom corresponding to the minimal size of the window. The
window is defined here in terms of a number of engine cycles. If the value of
t− statistic is larger than the value in the Student distribution look-up table
the null hypotheses are rejected detecting a misfire. If the value of t−statistic
is less than the value in the Student distribution look-up table then window
size is increased until the value of t − statistic is larger than the value in
the Student distribution look-up table or the window size reaches its maximal
value. To this end the next step is taken. Since both t − statistic and the
values in the Student distribution look-up table depend on the size of the
moving window the values in the Student distribution look-up table for a
certain significance level are approximated by a polynomial of a certain order.
The equation for t−statistic which is equal to the polynomial approximation
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of the Student distribution look-up table is solved with respect to the window
size, indicating the minimal window size for which the hypotheses can be
tested and a misfire can be detected. This approach allows a reliable misfire
detection for amplitude signals of different quality ( for example for new and
aged engine) via a proper selection of the window size ( degrees of freedom ).

A Volvo passenger car equipped with a six cylinder prototype engine was
used in the experiments. Algorithms are implemented in MATLAB and ap-
plied to the measured data collected from the experimental vehicle.

The contributions of this Chapter can be summarized as follows: a) new
recursive filtering algorithms for misfire detection based on the trigonometric
interpolation method, b) new statistical algorithms based on a hypothesis
testing for a misfire detection.

7.2 Recursive Trigonometric Interpolation Algorithms

7.2.1 Problem Statement

Suppose that there is a set of the crank angle synchronized measurements of
the engine speed ωk, k = 1, 2... , measured at the following points xk = kΔ,
where Δ is a step size. Suppose that the engine speed signal can exactly be
approximated by the trigonometric polynomial as follows:

ω̂k = ϕT
k θk, (7.1)

θT
k = [a0k aq1k bq1k aq2k bq2k,

..., aqnk bqnk], (7.2)
ϕT

k = [1 cos(q1xk) sin(q1xk) cos(q2xk)
sin(q2xk), ..., cos(qnxk) sin(qnxk)] (7.3)

where θk is the vector of the adjustable parameters and ϕk is the regressor,
q = q1, ..., qn are the frequencies, a0k, aqk and bqk are the coefficients which
should be found, ω̂k is the estimate of the engine speed ωk. Assume that
measured engine speed signal can be presented as follows:

ωk = ϕT
k θ∗, (7.4)

where θ∗ is the vector of true parameters,

θT
∗ = [a0∗ aq1∗ bq1∗ aq2∗ bq2∗, ..., aqn∗ bqn∗], (7.5)

and a0∗, aq∗ and bq∗ are constant unknown coefficients.
Introducing a moving window of a size w the measured engine speed signal

ωk is approximated by (7.1) in the least squares sense. The idea of the window
moving in time is illustrated in Figure 7.2 which shows a single engine cycle
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with a misfire in the first cylinder. The window is, in fact, the system of
the local coordinates XL, YL which is moving in time. Notice that a set of
trigonometric functions defined in (7.3) is not orthogonal in this case since
the size of the moving window is w = 20.
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FIG 7.2. Measurements with a step of 30o on six cylinder prototype engine. Misfire
is generated in the first cylinder. The engine speed is plotted with a solid line. The
engine is operating at idle. A window of a size w = 20 moving in time is defined in
the form of local coordinates XL and YL.

The error to be minimized at every step is as follows:

Ek =
i=k∑

i=k−(w−1)

(ωi − ω̂i)2, k ≥ w (7.6)

7.2.2 Recursive Algorithms for Trigonometric Interpolation

The vector of adjustable parameters θk at step k which minimizes the perfor-
mance index (7.6) can be calculated as follows:

θk = [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1

i=k∑
i=k−(w−1)

ϕiωi (7.7)
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Notice that, if the orthogonality condition for trigonometric polynomials

is satisfied for a certain window size the matrix
i=k∑

i=k−(w−1)

ϕiϕ
T
i becomes a

diagonal matrix. This matrix is easily invertable and the vector of adjustable
parameters θk is the vector of the Fourier coefficients (see Section 4.3). There-
fore, the DFT method can be seen as a special case of the trigonometric
interpolation method described below.

The vector of adjustable parameters at step k − 1 of the moving window
can be computed as follows:

θk−1 = [
i=k−1∑
i=k−w

ϕiϕ
T
i ]−1

i=k−1∑
i=k−w

ϕiωi (7.8)

In step k of the moving window new data ωk, ϕk enters the window and
ωk−w, ϕk−w leaves the window.

The vector of adjustable parameters θk can be presented as follows:

θk = [(
i=k−1∑
i=k−w

ϕiϕ
T
i ) − ϕk−wϕT

k−w + ϕkϕT
k ]−1

[(
i=k−1∑
i=k−w

ϕiωi) + ϕkωk − ϕk−wωk−w] (7.9)

Application of the matrix inversion relation to (7.9) shows that the vector
of the adjustable parameters at step k can be computed via the vector of
adjustable parameters at step k − 1 as follows:

θrk = (I − Ak−1ϕkϕT
k

1 + ϕT
k Ak−1ϕk

)

(θr(k−1) +
Γk−1ϕk−wϕT

k−wθr(k−1)

1 − ϕT
k−wΓk−1ϕk−w

)

+Γk(ϕkωk − ϕk−wωk−w) (7.10)

where

Γk = Ak−1(I − ϕkϕT
k Ak−1

1 + ϕT
k Ak−1ϕk

) (7.11)

Ak−1 = Γk−1(I +
ϕk−wϕT

k−wΓk−1

1 − ϕT
k−wΓk−1ϕk−w

) (7.12)
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where θrk is a recursive estimate of the parameter vector θk, I is the

identity matrix and Γk−1 is a recursive estimate of [
i=k−1∑
i=k−w

ϕiϕ
T
i ]−1 and Γk is

a recursive estimate of [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1.

The elements of the regressor ϕi, i ≥ 3 are recursively calculated via the
following Chebyshev’s three term recurrence relations (see also Section 4.4):

ϕi = 2dq ∗ ϕi−1 − ϕi−2 (7.13)
ϕT

i = [1 cos(q1iΔ) sin(q1iΔ) cos(q2iΔ)
sin(q2iΔ), ..., cos(qniΔ) sin(qniΔ)] (7.14)

dT
q = [1 cos(q1Δ) cos(q1Δ) cos(q2Δ)
cos(q2Δ), ..., cos(qnΔ) cos(qnΔ)] (7.15)

where Δ is the sampling step, and ’∗’ denotes element-wise vector multi-
plication, and index i is equal to k, (i = k) and index i is equal to k − w,
(i = k − w), k ≥ (w + 3) for the recursive computations of ϕk and ϕk−w

respectively in (7.10)-(7.12). For the recursive computations of the regressor
over the whole window which are required in the first step of the moving win-
dow k = w and for calculations of the approximation error (9.7) the index i
is defined as follows i = k − w + p, where p = 3, ..., w.
Notice that in the absence of round-off errors θrk ≡ θk. Robustness and cor-
rection of the recursive algorithms (7.10), (7.11) with respect to the round-off
error accumulation is discussed in the next subsection.

7.2.3 Correction of the Recursive Algorithms for Round-Off
Errors

On-board implementation of the recursive trigonometric interpolation algo-
rithms is done in ECU ( Engine Control Unit) in the finite precision en-
vironment, where round-off errors are recursively accumulated. This makes
the recursive trigonometric interpolation algorithm unsuitable for continu-
ous use without correction. Correction algorithms proposed in this subsection
use Newton’s algorithms for correction of the estimates obtained by recur-
sive trigonometric interpolation method. The parameter vector θrk and the
inverse of the ’information matrix’ Γk obtained by using the recursive least-
squares algorithm (7.10), (7.11) are used as the initial states for the correction
algorithms.
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Correction of θrk

Suppose that the recursive algorithm for calculation of θrk (7.10) accumulated
rounding errors so that (7.7) ( with θrk substituted instead of θk ) is not valid.
Consider the following algorithm for correction of θrk.

θcj = θc(j−1) − Γkej−1 (7.16)

where θcj is the correction of the parameter vector θrk,

ej−1 = {
i=k∑

i=k−(w−1)

ϕiϕ
T
i } θc(j−1) −

i=k∑
i=k−(w−1)

ϕiωi, j = 1, 2, 3... with the

initial value of θc0 = θrk and Γk calculated with (7.11). The estimation error
θ̃cj = θcj − θk where θk is defined in (7.7) satisfies the following equation:

θ̃cj = (I − Γk[
i=k∑

i=k−(w−1)

ϕiϕ
T
i ])θ̃cj−1 (7.17)

Notice that Γk represents a recursive estimate of [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1. In

the absence of the rounding errors Γk ≡ [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1, θ̃cj ≡ 0 and

θcj ≡ θk. Since rounding errors also have an impact on the recursive estimate

of Γk calculated with (7.11), Γk �= [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1 and θ̃cj → 0 as j → ∞

if the eigenvalues of the following matrix (I −Γk[
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]) are located

inside of the unit circle.

Correction of Γk

As it was mentioned above rounding errors have also impact on the matrix Γk

calculated with (7.11). The following iterative method similar to the method
described above can also be applied for the correction of the elements of the
matrix Γk.

Γcj = Γc(j−1) + Γc(j−1)Fj−1 (7.18)

where Γcj is the correction of the matrix Γk,

Fj−1 = I − [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]Γc(j−1) with the initial condition Γc0 = Γk, j =

1, 2, ..... Straightforward calculations show that Fj = F 2
j−1 and hence Fj =
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F 2j

0 . If ‖ F0 ‖≤ c < 1, where c is a positive constant, then ‖ Fj ‖≤ c2j

. Hence

Fj → 0 as j → ∞ and Γcj → [
i=k∑

i=k−(w−1)

ϕiϕ
T
i ]−1 as j → ∞. Properties of this

algorithm are described in Appendix C.

7.3 Filtering Technique Based on Trigonometric
Interpolation Method

Filtering technique based on the trigonometric interpolation method can be
divided in two steps. First, the engine speed is approximated via a trigono-
metric polynomial (7.1) in a window of a certain size moving in time. The
performance of the approximation is determined by the error (7.6). Secondly,
the filtered engine speed signal is defined by using two frequencies - combus-
tion frequency and half-order frequency, i.e.,

ωfk = ϕT
fkθfk, (7.19)

where θfk is the vector of the adjustable parameters

θT
fk = [a0k ack bck ahk bhk], (7.20)

ϕT
k = [1 cos(qcxk) sin(qcxk)

cos(qhxk) sin(qhxk)] (7.21)

where ωfk is the filtered engine speed signal, qc and qh are the combustion
and half-order frequencies respectively.

Figure 7.3 shows measured engine speed signal and filtered engine speed
signal with filter (7.19).

7.4 Statistical Misfire Detection Technique

7.4.1 Misfire Detection at the Combustion Frequency

The combustion state of a given cylinder is defined via the amplitude which is
computed as a difference between maximal and minimal values of the engine
speed for a cylinder whose power stroke occurs in the interval at the combus-
tion frequency. Figure 7.4 shows the plots of the amplitudes for the first and
the fifth cylinders, which produce two first combustions on the engine cycle
( the firing sequence for a six cylinder engine is 1 − 5 − 3 − 6 − 2 − 4). The
misfire is generated in the first cylinder. The misfire can be detected by com-
paring the amplitude signals to a target value of the amplitude ( for example
to zero ). The differences between the target value and the average values of
the amplitudes are indicated as distances to target.
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FIG 7.3. Two engine cycles are plotted in the event of a misfire. Engine speed is
4500 [rpm]. Engine is operating at full load. The measurements are made on the
experimental vehicle on chassis rolls. The window size is w = 20. Measured engine
speed signal is plotted with a solid line. Filtered signal with the filter (7.19) is plotted
with dashed line.

Figure 7.5 shows the distributions of the amplitude signal for the first
cylinder in the event of a misfire in the first cylinder and in the misfire free
case. The distributions in both cases are close to normal distributions with
good separation between the mean and the target values.

One Sample T-test for Misfire Detection

Suppose that M amplitudes are computed at the combustion frequency as
follows Ai = ωimax − ωimin, where ωimax and ωimin are the maximal and
minimal values of the engine speed for cylinder i respectively, i = 1, ...,M ,
where M is the number of engine cylinders (see Figure 7.1).
One Sample T-test is the statistical test for a comparison of a one sample
average to a target value. Let Al be the values of the amplitude to be exam-
ined, where l is the cycle number (l ≥ N), N is the size of a moving window
expressed in terms of a number of cycles where the amplitude is examined.
Denoting a target value of the amplitude as at, (which in fact, is a threshold
value) the null hypothesis is H0 : Al = at, where Al, is the averaged value of
the amplitude. Two alternative hypotheses are considered Ha1 : Al > at and
Ha2 : Al < at. The first alternative hypothesis indicates the misfire free case
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FIG 7.4. Two amplitudes for the first and the fifth cylinders are plotted as a
function of cycle number. Engine speed is 4500 [rpm]. The engine is operating at
full load. The misfire is generated in the first cylinder. The amplitude for the first
cylinder is plotted with a solid line. The amplitude for the fifth cylinder is plotted
with dotted line. The differences between the target value and the mean values of
the amplitudes are indicated as distances to target.

and the second one indicates a misfire. The algorithm for hypothesis testing
can be divided in two steps.

Step 1. First the hypothesis is tested in each step of the moving window
of a minimal size Nmin. The following t − statistic is computed in each step
l:

tl =
| Al − at |

√
N − 1

sl
(7.22)

where Al =
1
N

i=l∑
i=l−(N−1)

Ai, is the value of the amplitude averaged

over the window of a size N = Nmin, sl is a standard deviation, sl =√√√√ 1
N − 1

i=l∑
i=l−(N−1)

(Ai − Al)2. Notice, that an average amplitude Al and a

standard deviation sl can be computed recursively in each step of the moving
window as follows:
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FIG 7.5. istributions of the amplitude signal for the first cylinder in the event of
a misfire and in the misfire free case. The misfire is generated in the first cylinder.
Engine speed is 4500 [rpm]. The engine is operating at full load. The sample size is
1624. The differences between the target value the mean values of the amplitudes
are indicated as distances to target.

Al = Al−1 +
1
N

(Al − Al−N ) (7.23)

s2
l = s2

l−1 +
1

N − 1
(Al − Al)2

− 1
N − 1

(Al−N − Al)2 (7.24)

simply meaning that Al enters the window and Al−N leaves the window.
The value in the Student distribution look-up table for a certain significance
level α and degrees of freedom f = (Nmin−1) is compared with (7.22) in each
step of the moving window. If the value of the statistic (7.22) is larger than
the value in the Student distribution look-up table then the null hypothesis is
rejected. If the average value of the amplitude is positive the null hypothesis is
rejected in favor of Ha1 that indicates the misfire free case. In all other cases
the misfire is indicated. If the value of the statistic calculated with (7.22)
is less than the value in the Student distribution look-up table for a certain
significance level α and degrees of freedom f = (Nmin −1) the misfire can not
be detected and hence the value of the statistic should be corrected by adding
additional degrees of freedom, i.e., increasing the window size.
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Step 2. In this step the size of the moving window is increased until the
value of the statistic (7.22) is larger than the value in the Student distri-
bution look-up table. The Student distribution look-up table for a certain
significance level is re-scaled so that for a certain sample size N the values
correspond to the sample size (N − 1). Then the values in the re-scaled table
are approximated by the following polynomial:

tt = a0 +
a1

z
+

a2

z2
+

a3

z3
(7.25)

where z =
√

N − 1, ai, i = 0, ...3 are the coefficients computed by using
a least-squares curve fitting algorithm. The window size N∗ is defined as a
solution for a minimal N of the following equation:

| Al − at | z

sl
− (a0 +

a1

z
+

a2

z2
+

a3

z3
) = δ (7.26)

where δ is a small positive number. Equation (7.26) is the fourth order alge-
braic equation which can be solved by using standard numerical or analytical
methods. The window size N∗ which satisfies equation (7.26) guarantees that
tl > tt rejecting the null hypothesis and detecting a misfire, if any. Notice,
that the window size N∗ is bounded, i.e., Nmin < N∗ ≤ Nmax, where Nmax is
the maximal allowable window size (for example one can take Nmax = 500).
If a minimal solution of the equation (7.26) is larger than Nmax the null hy-
pothesis can not be tested and misfire can not be detected. Notice that, N∗ is
a predicted window size and the mean value and the variance of the amplitude
signal might change when new data is coming into the window. Therefore Step
2 should be repeated when the window size reaches the value of N∗ and further
increasing of the window size should be made, if required. When the window
size N∗ which guarantees that tl > tt is selected the misfire is detected at each
step of the moving window. When the detection algorithm is deactivated the
window size N∗ is saved in the memory of the engine electronic control unit
providing the updated value of the minimal window size in the first Step of the
algorithm so that the next start of the detection algorithm begins with a re-
newed value of the minimal window size. If the window size N∗ calculated as a
solution of the equation (7.26) is larger than the maximal allowable size Nmax

the hypothesis can not be tested and hence the misfire can not be detected.
This eventually means a drastic deterioration of the quality of the amplitude
signal. The significance level α could be increased in this case reducing the
values of tt in the Student distribution look-up table to guarantee that tl > tt.
Increasing of the significance level increases the probability of rejecting the
null hypothesis mistakenly and hence the probability of erroneously detecting
a misfire.

Notice that the algorithm described above is related to the statistical se-
quential analysis [80], [115] where the sample size (the size of a moving win-
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dow) is not fixed in advance, and depends on the outcome of the hypothesis
test.

The algorithm described above is illustrated by two examples.
Example 1: New Engine. Consider the misfire event shown in Figure 7.4.

Step 1 of the algorithm shows that the average value of the amplitude is
Al = −19.15[rpm], with a standard deviation sl = 0.62[rpm] for the window
size of ten, Nmin = 10 in one of the steps of the moving window. The value of
the statistic is tl = 92.67, with a zero target value at = 0. This value is larger
than the value in the Student distribution look-up table for a significance level
α = 0.0005 and degrees of freedom 9 (see [67] page 251), tt = 4.781. Therefore,
the null hypothesis is rejected and since the average value of the amplitude
is negative the misfire in the first cylinder is correctly detected in this step of
the moving window.

Example 2: Aged Engine.
The amplitude signal which is used for a misfire detection deteriorates due

to the aging of the engine components. Deteriorated amplitude signal as a
function of a cycle number for aged engine is shown in Figure 7.6 ( compare it
with Figure 7.4). The distributions in the event of a misfire and for the misfire
free case are shown in Figure 7.7.
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FIG 7.6. The amplitude of the first cylinder is plotted as a function of a cycle
number. Engine speed is 4500 [rpm]. The engine is operating at full load. The misfire
is generated in the first cylinder. The difference between the target value the mean
value of the amplitude is indicated as a distance to target.
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FIG 7.7. Distributions of the amplitude signal for the first cylinder in the event of
a misfire and in the misfire free case. The misfire is generated in the first cylinder.
Engine speed is 4500 [rpm]. The engine is operating at full load. The sample size is
1624. The differences between the target value the mean values of the amplitudes
are indicated as distances to target.

Suppose that Step 1 of the algorithm shows the average amplitude Al =
−0.6519[rpm] with a standard deviation sl = 0.7436[rpm] in one of the steps
of the moving window for the window size of ten. The value of the statistic is
tl = 2.63, with a zero target value at = 0. This value is less than the value in
the Student distribution look-up table for a significance level α = 0.0005 and
degrees of freedom 9 (see [67] page 251), tt = 4.781. Therefore the next step
is taken.
Step 2. Recursive application of the algorithm described above gives the final
value of the window size N∗ = 46 with δ = 0.001. The window size is increased
from 10 to 46. The first step of the moving window after enlarging gives the
following average amplitude Al = −0.6519[rpm] and a standard deviation
sl = 1.24[rpm]. The value of the statistic is tl = 3.5267 while the value in
the Student distribution look-up table for a significance level α = 0.0005
and degrees of freedom 45 (see [67] page 251), tt = 3.522. Therefore the null
hypothesis is rejected and the misfire is correctly detected in this step of the
moving window for aged engine.

These examples show that the misfire detection algorithm based on the
One Sample T-test provides the same misfire detection performance for both
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new and aged engines in terms of the significance level by adjusting the window
size, and hence is robust with respect to the signal quality.

7.4.2 Misfire Detection at the Half-Order Frequency

Another technique for a misfire detection is a monitoring of the amplitude
at the half-order frequency ( see Figure 7.1). The phase of the half-order
frequency component shows which cylinder is misfiring. All the amplitudes
corresponding to all engine cylinders are calculated at the half-order frequency.
In the misfire free case all the amplitude signals should be close to zero. In the
event of a misfire the amplitudes deviate from zero and the misfire is suspected
in the cylinder with the largest mean value of the amplitude. In the first stage
of the detection the amplitude with the largest mean value is compared to the
target value which should be chosen relatively large in order to separate the
oscillations induced by the misfire event from the oscillations induced by other
events. To this end the amplitude signal is statistically tested via One Sample
T-test described above. In the second stage of the detection a mean value
of the largest amplitude is compared to the mean value of the next largest
amplitude by hypothesis testing of the equality of two means (Two Sample
T-test) in order to detect which cylinder is misfiring. The test statistic is the
t − statistic where the hypothesis that the mean values of two amplitudes
are equal is taken as a null hypothesis which indicates that the misfire is
not recognizable. Alternative hypothesis that the mean value of one of the
amplitudes is the largest indicates a misfire in the corresponding cylinder.
Two Sample T-test for a misfire detection can be performed similarly to the
One Sample T-test described above and therefore is omitted in this Chapter.

7.5 Conclusion

New recursive filtering algorithms for misfire detection based on the trigono-
metric interpolation method proposed in this Chapter improve the perfor-
mance of the filtering technique allowing a flexible choice of the size of the mov-
ing window, and correction algorithms for trigonometric interpolation method
ensure the robustness with respect to round-off errors which are always present
in the finite precision implementation environment. The statistical decision
making mechanism which is based on a hypothesis testing introduced in this
Chapter allows to make a misfire detection with a certain significance level
with automatically selected sample size depending on the signal quality that
in turn improves the robustness of the misfire detection method.
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The Cam Profile Switching State Detection
Method

A new method for the detection of the CPS (Cam Profile Switching) state of
Spark Ignition automotive engines is proposed and implemented. The method
is based on the evaluation of the amplitude and the phase of the component
of the intake manifold pressure signal with the period of 720o CA ( Crank
Angle ) degrees. The method allows the detection of the CPS Bank failure
even at high rotational speeds.

8.1 Introduction

A new Cam Profile Switching (CPS) technology for Spark Ignition automotive
engines has a significant effect on fuel consumption, drivability and exhaust
emissions. New legislative requirements for the exhaust emissions demand the
ability to conduct a continuous monitoring of the state of CPS. This, in turn,
necessitates the development of the diagnostic method for identification of the
system failure since the valve lift event can not be directly measured. The CPS
mechanism for six cylinder engines has two cylinder groups (Banks) which in
turn have two separate oil-driven systems. The cylinder groups are coupled
according to the firing sequence. The CPS has two states: low and high cam
profiles. The shifting event is controlled by the pressure in the oil Banks.

A couple of methods allow the detection of the CPS state according to the
literature. The first one is based on the difference in the air charge inducted in
the cylinders for different lifts. The inducted air charge measured by Manifold
Air Flow (MAF) sensor is compared with the air charge model based on the
measured position of the throttle flap, intake manifold pressure and engine
speed. The failure of the CPS mechanism is detected by the error between
measured and modeled air charge [31]. The method is based on the difference
in the volumetric efficiency for different CPS states. The difference in the
volumetric efficiency for different CPS states is due to the air pushback effect
at low engine speeds and the difference in valve effective areas at high engine
speeds. This difference is also influenced by the IVVT ( Intake Variable Valve

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 8,
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Timing ) position. The detection method described above is not able to detect
a failure of a single Bank since the difference in the volumetric efficiency is
small for this case. This method is also unable to detect an individual cylinder
failure.

Another method is based on the combustion state monitoring using fluc-
tuations of the engine speed. The method is based on the fact that the com-
bustion state changes considerably during shifting [79]. The invention uses the
technique of the combustion state monitoring via irregularities of the engine
speed. Irregularities are associated with the CPS state. The method allows
the cylinder individual failure detection. However, the method described in
[79] does not allow the detection at high rotational speeds. At high rotational
speeds ( over 3500 rpm ) the high resolution engine speed signal has fluctu-
ations, which occur as a consequence of the combustion events contaminated
with the time interval errors, low frequency oscillations from the powertrain
and high frequency oscillations due to the crankshaft torsion. The CPS state
information can not be recovered at high rotational speeds in the presence of
the disturbances described above.

Cylinder groups (Banks) are coupled according to the firing sequence of
the engine. The firing sequence for six cylinder prototyping engine is 1-5-3-6-
2-4. The Bank ”A” includes cylinders 2,4 and 1 while the Bank ”B” includes
cylinders 5, 3 and 6. As a consequence of the failure of a single oil Bank the
component whose period is 720 CA degrees appears in the intake manifold
pressure signal. The method proposed in this Chapter associates the CPS
state with the amplitude and the phase of this component of the intake man-
ifold pressure signal and allows the CPS failure detection both at low and
high rotational speeds. The method is implemented and tested on a Volvo
S80 passenger car equipped with six cylinder prototype engine with the CPS
mechanism.

8.2 The CPS State Detection Algorithm

A failure of the CPS mechanism in a single cylinder produces oscillations
of the period of 720 CA degrees in the intake manifold pressure signal. The
amplitude of the oscillations is amplified in the case of the failure of a single
Bank due to the ignition synchronized coupling of the CPS cylinder groups.
The amplitude of the component of the pressure signal whose period is 720
CA degrees is used in this Chapter for the detection of the CPS Bank failure.
The phase of the mentioned above component indicates which Bank is failed.
Figure 8.1 and Figure 8.2 show the harmonic contents of the intake manifold
pressure signal at 1000 rpm and 4000 rpm for healthy and failed systems.
Amplitudes are plotted as a function of a harmonic number of a periodic
signal with the period of 720 CA degrees. The harmonic number is defined as
an integer which is equal to the ratio of two periods, nh = 720o

Th
, where Th

is the period of the harmonic. Measurements were conducted during normal
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driving. It can easily be seen that the CPS Bank failure is recognizable by
using the amplitude of the component of the pressure signal whose period is
720 CA degrees.
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FIG 8.1. Harmonic contents of the intake manifold pressure signal. Amplitudes
are plotted as a function of a harmonic number of a periodic signal with the period
of 720 CA ( Crank Angle ) degrees. Engine speed is 1000 rpm. Engine load is 20%.
Amplitudes for the healthy system are plotted with solid line. Amplitudes for the
failed system are plotted with dashed line.

The behaviour of the intake manifold pressure signal in the presence of
the failure of the CPS Bank is characterized, in terms of the pulsations cor-
responding to the intake events, by three big pulses followed by three small
pulses.

The ’peak-to-peak’ amplitude of the intake manifold pressure signal, which
is sampled Crank Angle synchronized is defined as follows :

Ai = p(θi1) − p(θi2) (8.1)

where θ1 is the angle corresponding to the maximum value of the intake man-
ifold pressure signal p(θi1), θ2 is the angle corresponding to the minimum
value of the intake manifold pressure signal p(θi2). Index i indicates different
Banks, i = 1, 2. To improve the quality of the detection signal the amplitudes
are filtered by a lowpass filter. The failure is detected if the filtered amplitude
exceeds a threshold value, which in turn, is defined as a function of speed
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FIG 8.2. Harmonic contents of the intake manifold pressure signal. Amplitudes are
plotted as a function of a harmonic number of a periodic signal with the period of
720 CA ( Crank Angle ) degrees. Engine speed is 4000 rpm. Engine load is 20%.
Amplitudes for the healthy system are plotted with solid line. Amplitudes for the
failed system are plotted with dashed line.

and load. The algorithm was implemented and extensively tested on a Volvo
S80 passenger car equipped with a six cylinder prototyping engine. Implemen-
tation results are shown in Figure 8.3,Figure 8.4 and Figure 8.5,Figure 8.6.
Figure 8.3,Figure 8.4 show amplitudes of the intake manifold pressure for dif-
ferent failures of the CPS Banks at 1000 rpm. Figure 8.5 and Figure 8.6 shows
amplitudes at 4000 rpm.

Experiments showed that the detection of the Bank failure is possible even
at extremely high engine speeds, i.e. up to 6000 rpm. The same method can
be used for the detection of the failure of a single cylinder or even a single
valve.

Other methods for a CPS state detection are described in [101], [103],
[104], [106].

8.3 Conclusion

In this Chapter a new diagnostic method for the detection of the CPS state is
proposed and implemented. Algorithm allows the detection of the CPS Bank
failure at high rotational speeds.
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FIG 8.3. Experimental results. Amplitudes of the intake manifold pressure for a
failure of the CPS Bank. Engine speed is 1000 rpm. The engine is operating at full
load. Amplitude for Bank A is plotted with a solid line. The signal which initiates
the CPS failure of Bank “A“ is plotted with dotted line.
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FIG 8.4. Experimental results. Amplitudes of the intake manifold pressure for a
failure of the CPS Bank. Engine speed is 1000 rpm. The engine is operating at full
load. Amplitude for Bank B is plotted with a solid line. The signal which initiates
the CPS failure of Bank “B“ is plotted with dotted line.
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FIG 8.5. Experimental results. Amplitudes of the intake manifold pressure for a
failure of the CPS Bank. Engine speed is 4000 rpm. The engine is operating at 50%
load. Amplitude for Bank A is plotted with a solid line. The signal which initiates
the CPS failure of Bank “A“ is plotted with dotted line.
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FIG 8.6. Experimental results. Amplitudes of the intake manifold pressure for a
failure of the CPS Bank. Engine speed is 4000 rpm. The engine is operating at 50%
load. Amplitude for Bank B is plotted with a solid line. The signal which initiates
the CPS failure of Bank “B“ is plotted with dotted line.



9

Statistical Engine Knock Detection

A knock detection circuit that is based on the signal of an accelerometer
installed on the engine block of a spark ignition automotive engine has a band-
pass filter with a certain frequency as a parameter to be calibrated. A new
statistical method for the determination of the frequency which is the most
suitable for the knock detection in real-time applications is proposed. The
method uses both the cylinder pressure and block vibration signals. The knock
detectability, which is an individual cylinder attribute at a certain frequency,
is verified via a statistical hypothesis test for testing the equality of two mean
values, i.e. mean values of the amplitudes for knocking and non-knocking
cycles. Signal-to-noise ratio is associated in this Chapter with the value of t -
statistic. The frequency with the largest signal-to-noise ratio (the value of t -
statistic) is chosen for implementation in the engine knock detection circuit.

9.1 Introduction

Poor knock detectability generates noise and can easily damage the engines.
Knock miss-detection, i.e. the state where a knock is mistakenly detected, has
a direct impact on engine fuel consumption and drivability performance. Since
the engine knock represents one of the major constraints on the engine perfor-
mance, a large number of papers have been written on the subject of a knock
analysis using the cylinder pressure signal and the signal of the accelerometer
that is installed on the engine block (knock sensor signal) [8],[62], [75], etc.
Very little attention (practically no attention), however, has been paid to the
determination of the frequency which is the most suited for engine knock de-
tection since the knock can be detected at a number of frequencies. The knock
sensor that measures engine vibrations is combined with the signal process-
ing unit where the band-pass filter is implemented. The knock frequency is
an important calibration parameter that should be selected by a calibration
engineer. The standard choice of the frequency that is made based on the
cylinder geometry often gives poor knock detectability and, as a consequence,

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 9,
c© Springer-Verlag Berlin Heidelberg 2009
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has an impact on a vehicle drivability performance, noise and fuel consump-
tion. Moreover, possible hardware and knock sensor placement changes during
the project development often result in shifts in the frequencies for the engine
knock detection. The determination of the most suitable frequency is usually
made in a engine test cell. Amplitudes at different frequencies are evaluated
using oscilloscope which calculates the frequency contents of the engine block
vibration signal. Evaluation is made on a running engine. Engine rig time is
expensive, that in turn makes a calibration method expensive. The AVL CON-
CERTO1 software tools which also can be used for evaluation of the frequency
contents of the engine signals require expensive license which should be annu-
ally renewed. The time and cost associated with the calibration of the engine
knock detection functionality necessitate the development of computationally
efficient algorithms and MATLAB software for the rapid determination of
the knock frequency that is the most suitable for the real-time engine knock
control applications.

The approach proposed in this Chapter introduces a new statistical deci-
sion making technology for knock frequency determination.

A Volvo six cylinder prototype engine equipped with the cylinder pressure
and block vibration sensors was used in the experiments. Algorithms are im-
plemented in MATLAB and applied to the measured data collected from the
engine.

9.2 Recursive Trigonometric Interpolation Algorithms

Recursive trigonometric interpolation method which allows the calculation of
the frequency contents of an oscillating signal is described in this Section. The
method is applied to the calculation of the frequency contents of the cylinder
pressure and block vibration signals in Section 9.3.

9.2.1 Problem Statement

Suppose that there is a set of measurements of the oscillating signal sk, k =
1, 2... , measured at the following points xk = kΔ, where Δ is a step size.
Two signals are considered in this Chapter: the cylinder pressure signal and
the engine block vibration signal. Suppose that the signal can exactly be
approximated by the trigonometric polynomial as follows:

ŝk = ϕT
k θk, (9.1)

θT
k = [a0k aq1k bq1k aq2k bq2k,

... aqnk bqnk], (9.2)
ϕT

k = [1 cos(q1xk) sin(q1xk) cos(q2xk)
sin(q2xk) ... cos(qnxk) sin(qnxk)] (9.3)

1 CONCERTO is a sofware tool produced by AVL for engine related post-processing
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where θk is the vector of the adjustable parameters and ϕk is the regressor,
q = q1, ..., qn are the frequencies, a0k, aqk and bqk are the coefficients which
should be found, ŝk is the estimate of the signal sk. The amplitude which plays
an important role for the knock detection is defined at a certain frequency as
follows:

Aqik =
√

a2
qik + b2

qik (9.4)

where i = 1, ..., n, where n is the number of the frequencies.
Assume that the signal can be presented as follows:

sk = ϕT
k θ∗, (9.5)

where θ∗ is the vector of true parameters,

θT
∗ = [a0∗ aq1∗ bq1∗ aq2∗ bq2∗ ...

aqn∗ bqn∗], (9.6)

and a0∗, aq∗ and bq∗ are constant unknown coefficients.
Notice that an improper choice of the frequencies q might lead to the

unreasonably large amplitudes (9.4).
The signal sk is approximated by (9.1) in the least squares sense in a

moving window of a size w. The error to be minimized at every step is as
follows:

Ek =
i=k∑

i=k−(w−1)

(si − ŝi)2, k ≥ w (9.7)

The problem described above is a well known approximation problem
which should be solved in the least-squares sense. The solution is described
in Section 7.2. The recursive algorithms are applied to the calculation of the
frequency contents of the cylinder pressure and block vibration signal in Sec-
tion 9.3.

9.3 Knock Detection Algorithms

The knock detection method proposed in this Chapter uses both the cylinder
pressure and block vibration signals and is divided in two steps corresponding
to two Subsections of this Section.

9.3.1 Step1: Knock Detection by Using the Cylinder Pressure
Signal

In the first step the oscillations which occur during the knock event in the
cylinder pressure signal are analyzed by means of the trigonometric inter-
polation method described in Section 7.2. Engine knock was generated by
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advancing the spark timing from the nominal spark timing. The knock is
detected when at least one absolute value of the maximal amplitudes com-
puted via (9.4) exceeds the threshold value which represents the level of the
background noise in the pressure signal. The detection method by using the
cylinder pressure signal is in turn, divided in three steps.

Elimination of the Low Frequency Trend

In this Step the cylinder pressure signal is approximated via a low-order poly-
nomial with the purpose of the elimination of the low frequency component
of the cylinder pressure signal emphasizing knock induced signal which is
the input to the next step of the algorithm. Figure 9.1 shows the cylinder
pressure signal and low-order polynomial approximation of the pressure sig-
nal. Figure 9.2 shows the difference between the cylinder pressure signal and
the low-frequency component of the cylinder pressure signal. This difference
between the cylinder pressure signal and its low frequency component that
corresponds to the oscillations due to the engine knock is the input to the
next step of the algorithm.
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FIG 9.1. The cylinder pressure signal and the low-frequency component of the
cylinder pressure signal are plotted as functions of a crank angle in selected crank-
angle window during a knocking cycle. Engine is operating at 1000[rpm] at full
load. The cylinder pressure signal is plotted with a solid line, and the low frequency
component is plotted with a dashed line. The cylinder pressure is measured with
the step of 0.1o.
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FIG 9.2. The difference between the cylinder pressure signal and the low-frequency
component of the cylinder pressure signal is plotted with a solid line as a function
of a crank angle in the selected crank-angle window during a knocking cycle. Engine
is operating at 1000[rpm] at full load.

Calculation of the Frequency Contents of the Cylinder Pressure
Signal

In this step the difference between the cylinder pressure signal and its low
frequency component is approximated by the trigonometric polynomial (9.1)
aiming to calculation of the frequency contents of the signal. Minimal number
of terms (frequencies) should be used for approximation. Initial frequencies
can preliminary be estimated from the cylinder geometry. The optimal choice
of the number of terms (frequencies) in the approximating polynomial (9.1)
could be done as follows. Assume that the cylinder pressure signal can ex-
actly be approximated by the polynomial (9.1) and measured signal has a
random measurement noise only. It is assumed that the measurement errors
are independent and normally distributed. In this case the errors in the es-
timated parameters are also normally distributed, and the following ratio
V = Ek

(w − 2n − 1) is the estimate of the variance of the measurement noise,

where n is the number of frequencies. New frequency is included in the model
(9.1), if the ratio V is reduced and this reduction is statistically significant.
The significance of the variance reduction is established using the Test for
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Equal Variances [64], [67], [118]. Hypotheses tests used in this book are also
described in Appendix. The choice of the frequencies is optimal if the values
of the ratio V and the variance of the measurement noise are approximately
the same. Similar algorithm of the automatic term selection for ordinary poly-
nomials is described in Chapter 6.3.

Selection of the Knocking Cycles

The knock does not occur in every cycle of the engine steady-state operation
even with a significantly advanced spark timing. A sufficiently large number
of the knocking cycles should be selected for further processing of the signal
from the knock sensor. The knock event is a non-stationary transient process
and the amplitude at the frequencies of interest are time (crank angle) depen-
dent. Maximal amplitudes, where the maximum is taken over the knocking
window are used in this Chapter as a measure of the knock intensity ( energy
). The knock is detected if one of the maximal amplitudes of the pressure
signal exceeds the threshold value. Figure 9.3 and Figure 9.4 show maximal
amplitudes for non-knocking and knocking cycles as functions of the selected
frequencies. If at least one of the maximal amplitudes in a certain cylinder for
a certain cycle exceeds the threshold value which is selected by the calibration
engineer, this cycle is considered as a knocking cycle and is selected for further
knock sensor signal processing. Notice that slight oscillations are present in
the pressure signal even during a normal combustion. The intensity of these
oscillations is significantly less than the intensity of the oscillations induced
by the knock event. Therefore the intensity of the pressure oscillations can be
used as an indicator of the true knock intensity.

Notice, that the engine knock does not occur in every cycle even with the
significantly advanced ignition timing at the engine steady-state operation.
Therefore the cylinder pressure signal, which is the most suitable for the
engine knock detection is used for selection of the knocking cycles. Cylinder
pressure sensors are not used in the production vehicles and the cylinder
pressure signal is only used in this Chapter for the selection of the knocking
cycles.

9.3.2 Step2: Knock Detection by Using the Knock Sensor Signal

In this step the frequency analysis is performed with a trigonometric inter-
polation method on the knock sensor signal for engine cycles selected in the
previous step. Simultaneously, the frequency analysis is performed for non-
knocking cycles in order to calculate the amplitudes representing a background
noise, i.e., vibrations induced by the events which are not related to the en-
gine knock. Figure 9.5 and Figure 9.6 show the engine knock sensor signal for
non-knocking and knocking engine cycles. Comparison of the Figures 9.5 and
9.6 show that engine knock is detectable via a block vibration signal.
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FIG 9.3. Maximal amplitudes for non-knocking cycle as the functions of the fre-
quency. Engine is operating at 1000[rpm] and at full load.
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FIG 9.4. Maximal amplitudes for a knocking cycle as the functions of the frequency.
Engine is operating at 1000[rpm] and at full load.
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FIG 9.5. The engine knock sensor signal is plotted for a non-knocking cycle. The
measurements are made with the step of 0.1o. Engine is operating at 1000[rpm] and
at full load.

Frequency contents of two engine cycles: non-knocking and knocking cycles
plotted in Figure 9.5 and Figure 9.6 are shown in Figure 9.7.

Figure 9.8 and Figure 9.9 show the distributions of the maximal amplitudes
for non-knocking engine cycles and knocking engine cycles at the frequency
of 10 [kHz] respectively.

Experimental data acquired from different engines show variability in dis-
tribution characteristics of the maximal amplitudes. Two types of models
could be used for approximation of the distribution characteristics of the maxi-
mal amplitudes: normal and log-normal [66]. Distributions shown in Figure 9.8
and Figure 9.9 are close to the log-normal model. These distributions have
longer tails on the right-hand side. The data with log-normal distribution is
converted to the normal distribution data using a logarithmic transformation
function.

Knock Detectability

The statistical knock detectability introduced in this Chapter is associated
with the hypothesis test which compares two mean values of the maximal
amplitudes at a certain frequency. The hypothesis that the knock in one of
the engine cylinders is not distinguishable from the background noise at a cer-
tain frequency is taken as the null hypothesis. The null hypothesis is defined as
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FIG 9.6. The engine knock sensor signal is plotted for a knocking cycle. The mea-
surements are made with the step of 0.1o. Engine is operating at 1000[rpm] and at
full load.

follows H0qi : Aqmaxki = Aqmaxbi, where Aqmaxki is a maximal amplitude at a
frequency q averaged over a certain number of knocking cycles nki, Aqmaxbi is
a maximal amplitude at the same frequency averaged over a certain number of
non-knocking cycles nbi, where i is the cylinder number. Alternative hypoth-
esis that HAqi : Aqmaxki > Aqmaxbi indicates that the knock is recognizable
from the background noise. Therefore the knock detectability is defined as
follows.

Definition: The engine knock is detectable at a certain frequency q, in the
cylinder i with a certain significance level αqi if the null hypothesis H0qi is
rejected in favor of the alternative hypothesis HAqi : Aqmaxki > Aqmaxbi.

The null hypothesis with a certain significance level is tested using Two
Sample T-test. Notice that, a probability of rejecting the null hypothesis when
it is true is called a level of significance or α risk. Since the variance of a
maximal amplitude for knocking cycles is often significantly larger than the
variance of the maximal amplitude for non-knocking cycles Two Sample T-test
is modified in this Chapter for the case of unequal variances (see Appendix
D). The test statistic is the t - statistic which is calculated as follows:

tqi =
Aqmaxki − Aqmaxbi

sqi

√
nkinbi

(nki + Fqinbi)
(9.8)
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FIG 9.7. Frequency contents of the engine knock sensor signal for knocking and
non-knocking cycles. Maximal amplitudes for knocking cycle are plotted with a
solid line. Maximal amplitudes for non-knocking cycle are plotted with a dotted
line. Engine is operating at 1000[rpm] and at full load.

where sqi is the estimated pooled standard deviation which is defined as
follows:

sqi =

√
(nki − 1)s2

qki + Fqi(nbi − 1)s2
qbi

Fqi(nki + nbi − 2)
(9.9)

where

sqki =

√√√√ 1
(nki − 1)

j=nki∑
j=1

(Aqmaxki − Aqmaxki)2,

sqbi =

√√√√ 1
(nbi − 1)

j=nbi∑
j=1

(Aqmaxbi − Aqmaxbi)2 are standard deviations for

knocking cycles and background noise respectively, Fqi =
s2

qki

s2
qbi

for the case

where the difference between variances s2
qki and s2

qbi is statistically significant
and Fqi = 1 otherwise. The value of tqi - statistic is compared to the value
in the Student distribution look-up table Tst,(1−2αqi) for degrees of freedom
fqi = nki + nbi − 2 and a certain significance level αqi. If the value of the
statistic tqi is larger than the value in the Student distribution look-up table,
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FIG 9.8. Distributions of the maximal amplitudes for non-knocking engine cycles at
the frequency of 10 [kHz]. Maximal amplitudes are expressed in Voltage, [V] due to
the Voltage output of the block vibration sensor. Engine is operating at 1000[rpm]
and at full load. The frequency of falling of the random sample of the maximal
amplitude into a certain interval is understood under the frequency here.

the null hypothesis H0qi is rejected in favor of HAqi. This in turn, implies that
the engine knock is detectable in the cylinder i at a certain frequency q. If the
value of the statistic is less than the value in the Student distribution look-up
table, the number of knocking cycles should be increased. Notice, that the
number of knocking and non-knocking cycles should be approximately the
same for the hypothesis testing. If further increasing of the number of the
knocking cycles is impossible due to some constraints ( computer memory
constraints, for example ) then the significance level αqi could be increased
reducing the values in the Student distribution look-up table to guarantee
that the value of the statistic is larger than the value in the Student distribu-
tion look-up table. Increasing of the significance level increases the probability
of rejecting the null hypothesis mistakenly and hence the probability of the
erroneous knock detection.

The Choice of the Most Suitable Frequency for the Knock
Detection

The statistical knock decision making mechanism described above is used for
verification of the knock detectability at a certain frequency, but does not allow
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FIG 9.9. Distributions of the maximal amplitudes for knocking engine cycles at the
frequency of 10 [kHz]. Maximal amplitudes are expressed in Voltage, [V] due to the
Voltage output of the block vibration sensor. Engine is operating at 1000[rpm] and
at full load. The frequency of falling of the random sample of the maximal amplitude
into a certain interval is understood under the frequency here.

the choice of the most suitable frequency for the knock detection. The knock
is often detectable at several frequencies and the most suitable frequency have
the largest signal-to-noise ratio. The signal-to-noise ratio is evaluated via the
comparison of two distributions (see Figure 9.8 and Figure 9.9) representing
a background noise and knocking cycles. The better the separation between
two distributions at a certain frequency the larger the signal-to-noise ratio.
The value of the statistic (9.8) is introduced in this Chapter as a quantitative
measure of the separation between two distributions of interest. The larger the
difference between mean values of the amplitudes and the larger the number
of the knocking cycles and the less the pooled standard deviation the larger
the value of the statistic at a certain frequency.

If a single frequency should be chosen for a number of the cylinders, then
the cylinder individual values of the statistics are added for a certain number
of engine cylinders for which the knock sensor is assigned. The frequency with
the largest value of the common statistic is chosen as the best frequency for
the knock detection in a certain number of the cylinders for a given sensor.
In other words the most suitable frequency qb for the knock detection in M
cylinders at a certain engine speed and engine load has the largest value of
the following performance index:
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pq = max
q

M∑
i=1

tqi (9.10)

where tqi is the value of the statistic for a cylinder i = 1, ...,M , where
M is the number of the cylinders assigned for the knock sensor at the fre-
quency q, engine speed ω and engine load L. The performance index (9.10)
allows to choose the best frequency at a certain speed and load. The values

of the performance index
M∑
i=1

tqi can be added for a number of working points

with certain weighting factors assigned in every engine speed and load work-
ing point, which allows prioritizing certain areas. The frequency which has a
maximal value of the performance index is chosen for the knock detection in
certain working area.

9.4 Conclusion

New statistical method for determination of the most suitable frequency for
the engine knock detection is proposed. The cascaded method uses the cylinder
pressure signal for detection of the knock events and block vibration signal for
statistical determination of the most suitable frequency for the knock detec-
tion in real-time applications. The method is implemented in MATLAB that
allows rapid determination of the frequency after the hardware and knock
sensor placement changes. This in turn results in significant savings of the
calibration time and cost under the project development.
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Statistical Engine Knock Control

A new statistical concept of the knock control of spark ignition automotive en-
gine is proposed. The control aim is associated with the statistical hypothesis
test which compares the threshold value to the average value of the maximal
amplitude of the knock sensor signal at a certain frequency. Achievement of
the control aim implies the desired separation between the average value of
the maximal amplitude and the target value and hence the desired probability
of the knock occurrence. This new control concept allows connection of the
control algorithm parameters with the probability of the knock occurrence
and customer related data. The regulation error is defined as a difference be-
tween the actual and the desired values of the statistic. A control algorithm
which is used for minimization of the regulation error realizes a simple count-
up-count-down logic.

A new adaptation algorithm for the knock detection threshold is devel-
oped. Confidence interval method is used as the basis for adaptation. A knock
detection threshold is presented using a confidence interval with a certain
significance level. The adaptation is performed for aged engine so that the
significance level is the same for new and aged engines despite that the detec-
tion threshold values are different. This in turn, guarantees the same knock
detection performance for new and aged engines.

A simple statistical model which includes generation of the amplitude sig-
nals, threshold value determination and a knock sound model is developed
for evaluation of the control concept. Statistical knock audibility concept is
associated with the outlier detection method and is used in this Chapter for
the knock audibility judgement.

A Volvo six cylinder prototype engine equipped with the cylinder pressure
and block vibration sensors was used in the experiments. External microphone
was used for the knock sound measurements.

A.A. Stotsky, Automotive Engines, DOI 10.1007/978-3-642-00164-2 10,
c© Springer-Verlag Berlin Heidelberg 2009
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10.1 Introduction

Engine knock in spark ignition automotive engine results in restriction of the
ignition advance and is the main limitation to the torque output performance
and a fuel economy improvement. Engine knock control system is based on the
block vibration (knock) sensor signal filtered via a band-pass filter at a certain
frequency which is the most suitable for the knock detection (see Chapter 9).
Control system which is driven by the maximal amplitude of the knock sensor
signal at a certain frequency reduces the spark timing in the case of a knock
event, i.e. when the maximal amplitude exceeds the threshold value, that in
turn, increases the fuel consumption and reduces the output power.
A stable statistical nature of a maximal amplitude signal allows using statisti-
cal methods for engine knock control, (see [119]) where the controller operates
at the borderline knock limit and utilizes such statistical variables as mean
value and standard deviation. However, the probability of the knock occur-
rence was not estimated nor connected to the customer related data such as
fuel consumption, for example. The trade-off between the probability of the
knock occurrence and the engine fuel consumption allows a proper choice of
the controller parameters and hence the performance improvement. Moreover
the control method proposed in [119] does not allow the adaptation of the
knock detection threshold and judgement of audibility of the knock events.
Notice, that no knock deterministic controller is probably able to operate the
engine smoothly at the borderline knock limit without using such statistical
variables as the mean value and standard deviation. Therefore a statistical
approach only is considered in this Chapter for the engine knock control.

Statistical knock control method proposed in this Chapter introduces a
new concept of the engine knock control where the achievement of the con-
trol aim is associated with the rejection of the null statistical hypothesis that
the average value of the maximal amplitude is equal to the target value. The
null hypothesis is asymptotically rejected in favor of the alternative statistical
hypothesis that the average value of the amplitude is smaller than the target
value. In other words the feedback control loop is used to ensure the desired
separation between the average value of the amplitude and the threshold value
and hence the desired probability of the knock occurrence. The regulation er-
ror is defined in terms of the difference between actual and desired values
of the statistic. The statistic which corresponds to One Sample T-test (the
name is carried over from [64], [67]) converges to the desired value of the
statistic taken from the Student distribution look-up table when regulation
error converges to zero. This in turn, guarantees that the null hypothesis is
asymptotically rejected with a certain significance level which in turn is asso-
ciated with the probability of the knock occurrence. The statistic which can
be seen as a secondary regulation variable is updated in every step of the
window which is moving in time and is calculated as a difference between the
threshold and averages values divided by the sample standard deviation and
multiplied by the window size. Introduction of the statistic as a secondary reg-
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ulation variable according to this new control concept allows a connection of
the parameters of the algorithm (such as a window size) with the probability
of the knock occurrence and such customer related data as a fuel consump-
tion.
The control algorithm which is widely used in industry minimizes the regula-
tion error via a simple count-up-count-down logic.

The performance of the knock sensor signal and hence the average value
of the maximal amplitude at a certain frequency and its standard deviation
might change with time due to aging of engine components. Erroneous knock
detection might occur if the average value of the maximal amplitude and stan-
dard deviation increase and the threshold value is not updated. This in turn,
results in unnecessary ignition retards which have a direct impact on the fuel
consumption. Therefore the engine knock threshold value should be updated
if the average value of the maximal amplitude or standard deviation deviate
from the pre-calibrated values. Main idea of adaptation is a presentation of
the knock detection threshold using a confidence interval (see Appendix D)
and holding the same significance level for new and aged engines. To this end,
first the value of the pre-calibrated detection threshold is related to such prop-
erties of the knock signal at a certain frequency as the average value, standard
deviation and a sample size. In other words the knock detection threshold is
assigned to the upper confidence limit and presented in terms of the average
value, standard deviation, sample size and a significance level. Notice that the
endpoints of the confidence interval are defined as confidence limits. Since the
average value and standard deviation for the knock sensor signal at a certain
frequency are specified at a certain working point the detection threshold is
uniquely defined by the significance level, which is the basis for adaptation.
The assignment of the knock detection threshold is equivalent to the assign-
ment of the significance level. The confidence limit plays a role of a reference
model which should be valid for new and aged engines. Average value and
standard deviation of the knock sensor signal might change due to aging of
the engine components. New average value and new standard deviation are
calculated for a given signal for aged engine. The decision about adaptation of
the knock detection threshold is based on the results of Two Sample T-test for
comparison of the average values (newly estimated and pre-calibrated aver-
age values) and the Test for Equal Variances which compares newly estimated
and pre-calibrated values of the variances. The names of the tests are carried
over from [67]. Detection thresholds were presented using confidence intervals
in [61]. The detection threshold is adapted provided that Two Sample T-test
or the Test for Equal Variances show the difference between newly estimated
and pre-calibrated values of the parameters of the knock sensor signal at a
certain frequency (average values and variances). Finally, new values of the
detection threshold are calculated using a model for the confidence limit and
newly estimated values of the mean and standard deviations.
Engine knock threshold is a function of ignition timing, and new values of
the knock detection threshold are available for a certain values of the ignition
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timing only. The adaptation however, should be performed for all accessible
values of the ignition timing. Therefore a data-driven algorithm described in
Section 6.3 which is suitable for adaptation of the look-up tables with a mea-
gre new data representation is chosen for adaptation of the knock detection
threshold.

This Chapter also develops a simple statistical model for evaluation of the
knock control concept. The model consists of three parts: generation of the
amplitude signals, threshold value determination and a knock sound model.
Amplitudes for modeled knock sensor and microphone signals are developed
using random number generators with average values and standard deviations
as input variables. Average values and standard deviations are the functions
of the ignition timing. The threshold value is also a function of ignition tim-
ing and is assigned using knock occurrence percentage number. Notice, that
similar model was developed in [119]. A new part proposed in this Chapter is
a knock sound model.

Engine knock produces a ’clanging’ or ’pinging’ sound coming from the vi-
brations of the engine block due to the pressure waves generated inside of the
cylinder. This sound is detectable by using a signal from the external micro-
phone. The microphone signal has the same knock frequencies as the cylinder
pressure and knock sensor signals. This sound could be audible for the driver
and passengers. Driver knock audibility is difficult to verify since it depends
on many of factors. Statistical knock audibility at a certain frequency is in-
troduced in this Chapter and is associated with the outlier detection method.
The sample of the amplitude of the microphone signal at a certain frequency
is measured at the knock event. Audibility test is associated with the statis-
tical hypothesis that this sample of the amplitude is drawn from the parent
distribution which represents a background noise where the knock, if any,
is inaudible. Outlier is detected using Two Sample T-test (see Appendix D)
which is used for testing the equality of two means, where the first mean is
the mean value of the background noise and the second one is a single ampli-
tude sample measured during a knock event with estimated pooled variance
which is equal to the variance of the background noise. This concept allows
judgement of knock audibility.

A Volvo six cylinder prototype engine equipped with the cylinder pressure
and block vibration sensors was used in the experiments. External microphone
was used for the knock sound measurements. Algorithms are implemented in
MATLAB and applied to the measured data collected from the engine.

10.2 Statistical Models of the Knock Sensor and
Microphone Signals

10.2.1 Generation of the Amplitude Signals

Statistical models for the knock sensor and microphone signals are designed
via calculation of the frequency contents of the signals using trigonometric
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interpolation method described in Section 9.2. Notice that a recursive DFT
(Discrete Fourier Transformation) method described in Section 4.3 can also
be used for calculation of the frequency contents of the signal. However, the
orthogonality condition for the trigonometric polynomials in certain interval
is the main restriction to the approximation performance and hence to the
application of the DFT method.
Average maximal amplitudes and standard deviations are calculated at all the
frequencies as functions of ignition timing. Average maximal amplitudes and
standard deviations for the knock sensor signal as functions of the frequency
and ignition timing are presented in Figure 10.1 and Figure 10.2 respectively.
All the models in this Chapter are designed for 1000 [rpm] and full load.
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FIG 10.1. Average maximal amplitudes for the knock sensor signal as a function of
the frequency and ignition timing. The frequencies are measured in KHz and ignition
timing is defined in degrees before TDC (Top Dead Center). Engine is operating at
1000 [rpm] and full load.

Average maximal amplitude and standard deviation of the knock sound
pressure as a function of the frequency and ignition timing, measured by the
microphone signal are presented in Figure 10.3 and Figure 10.4 respectively.

Engine knock detection circuit has a band-pass filter that filters amplitude
signal at a certain frequency. The most suitable frequency (the frequency
of 7.5 KHz) for the knock detection is determined according to the method
described in Chapter 9. Since the distribution of the maximal amplitudes of
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FIG 10.2. Standard deviation for the knock sensor signal as a function of the
frequency and ignition angle. Engine is operating at 1000 [rpm] and full load.
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FIG 10.3. Average maximal amplitude of the knock sound pressure signal as a
function of the frequency and ignition angle.
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FIG 10.4. Standard deviation of the knock sound pressure signal as a function of
the frequency and ignition angle.

the knock sensor signal at this frequency is close to the lognormal distribution
(it has a longer tail on the right-hand side), the maximal amplitude signal
is generated using lognormal random numbers with the average values and
standard deviations presented in Figure 10.1 and Figure 10.2. Distributions
for measured and generated maximal amplitudes are plotted in Figure 10.5
and Figure 10.6 respectively. Notice that the agreement between generated
and measured distributions is good enough for evaluation of the closed loop
knock controller. The closeness of the two distributions can also be evaluated
statistically using non-parametric Wilcoxon-Mann-Whitney test [33].

Maximal amplitudes of the microphone signal follow normal distribution
at all the frequencies and could be easily generated using normal random
numbers. However, generated amplitudes of the microphone signal should be
synchronized with the knock signal amplitudes. To this end the difference
between the generated value of the maximal amplitude of modeled knock
signal and its average value is expressed in terms of standard deviations of
this signal. Maximal amplitude of the microphone signal is generated using
the same difference between generated and average values expressed in terms
of the standard deviations of the microphone signal at a certain frequency.
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FIG 10.5. Distribution of measured signal of the maximal amplitude at the fre-
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10.2.2 Threshold Value Determination

The model is completed by assigning a threshold value for the maximal am-
plitude signal of the knock sensor at a certain frequency. If the maximal am-
plitude of the knock sensor signal exceeds this threshold value the knock is
judged to occur. This threshold value is the function of ignition timing. The
knock occurrence percentage is first determined for a certain number of cy-
cles using the cylinder pressure signal. The threshold value for the maximal
amplitude of the knock sensor signal is assigned so that the knock occurrence
percentage for the cylinder pressure and knock sensor signals is the same [30].

10.2.3 Knock Sound Model

Statistical knock sound model is developed in this Section for audibility judge-
ment of the knock events. Statistical knock audibility at a certain frequency
is associated with the outlier detection method. The sample amplitude of the
microphone signal at a certain frequency is measured at the knock event. Au-
dibility test is associated with the statistical hypothesis that this sample am-
plitude is drawn from the parent distribution which represents a background
noise where the knock is inaudible. This background noise normal parent dis-
tribution is characterized by the mean value and standard deviation at the
ignition angle −1.5o (see Figure 10.3 and Figure 10.4). Outlier is detected
using Two Sample T-test which is used for testing the equality of two means,
where the first mean is the mean value of the background noise and the second
one is a single amplitude sample measured during a knock event with esti-
mated pooled variance which is equal to the variance of the background noise.
Outlier detection test which is based on Two Sample T-test is illustrated in
Figure 10.7. The difference between the value of the statistic calculated in
Two Sample T-test and the values in the Student distribution look-up table
are plotted as a function of the amplitude and significance level for different
frequencies. The knock is statistically audible with a certain significance level
for those amplitude values where the difference is positive (above zero as is
indicated in Figure 10.7), i.e. the value of the statistic is larger than the value
in the Student distribution look-up table, that detects those amplitudes as
outliers from background noise. Statistical knock audibility depends on the
significance level and frequency.

Notice that the statistical models for the knock sensor and microphone
signals are based on a data obtained from a given engine. Statistical proper-
ties (average value and standard deviation) of the knock sensor and micro-
phone signals might change due to the hardware changes during the project
of the engine development. Therefore the model described above should be
re-calibrated after changes in the engine hardware.



164 10 Statistical Engine Knock Control

0
0.002

0.004
0.006

0.008
0.01

0.012

0

0.1

0.2

0.3

0.4
−5

0

5

10

15

20

25

AMPLITUDE,[Pa]
SIGNIFICANCE LEVEL

D
IF

F
E

R
E

N
C

E

FREQUENCY = 3.33 kHz

FREQUENCY = 7.5 and 10 kHz

FREQUENCY = 12 kHz

ZERO 

FIG 10.7. The difference between the value of the statistic calculated in Two
Sample T-test and the values in the Student distribution look-up table are plotted
as a function of the amplitude and significance level for different frequencies. The
surface with zero values is indicated as ’ZERO’.

10.3 Engine Knock Control with Desired α-risk

10.3.1 Introduction

Suppose that the amplitude of the knock sensor signal is measured at a cer-
tain frequency as an output of the band-pass filter and the maximum of this
amplitude is calculated over the knock window. Since maximal amplitudes fol-
low lognormal distribution the logarithm of the maximal amplitude signal is
taken, converting the data to normally distributed data. Maximal amplitude
signal Ak, (k is the cycle number) which is normally distributed is the input
for the control algorithm.

Define the following regulation variable

Tk =
(At − Ak)

√
w − 1

sk
(10.1)

where Ak =
1
w

i=k∑
i=k−(w−1)

Ai, is the value of the maximal amplitude aver-

aged over the window of a size w, sk is a standard deviation,



10.3 Engine Knock Control with Desired α-risk 165

sk =

√√√√ 1
w − 1

i=k∑
i=k−(w−1)

(Ai − Ak)2, At is a knock threshold value, Tk is a

regulation variable, which defines the difference between At and Ak. This dif-
ference is expressed in terms of standard deviations multiplied by the size of a
moving window. In other words equation (10.1) defines a value of t−statistic
used for One Sample T-test that compares the average value Ak to the target
(threshold) value At in each step k. Regulation variable (10.1) is controlled
via the ignition timing since the average amplitude Ak, the sample standard
deviation sk and the threshold value At are functions of the ignition timing
(see Figure 10.1, Figure 10.2 and Figure 10.12).

10.3.2 Control Aims

The achievement of the control aim is associated with the rejection of the null
statistical hypothesis H0 that the average value of the amplitude is equal to the
target value. The null hypothesis is tested against the alternative statistical
hypothesis HA that the average value of the amplitude is smaller than the
target value, i.e.,

H0 : At = Ak (10.2)
HA : At > Ak (10.3)

In other words the control aim is to regulate the mean value of the ampli-
tude Ak so that H0 is asymptotically rejected in favor of HA with a certain
significance level α. The probability of rejecting the null hypothesis mistak-
enly is called a significance level or α - risk. The α- risk is associated with the
probability of the knock occurrence,i.e., with the probability that the random
amplitude A exceeds the threshold value At, P{A ≥ At}. For estimation of
the probability of the knock occurrence the following Markov’s inequality is
used

P{x ≥ ε} ≤ E(x)
ε

(10.4)

where random variable x is positive and has a mathematical expectation
E(x), P is a probability sign, ε is any positive constant. Applying inequality
(10.4) to the variable x = (A − a)2, where A is a positive random variable
(maximal amplitude), and a = E[A] yields

P{(A − a)2 ≥ ε} ≤ E[(A − a)2]
ε

(10.5)

Taking into account that E[(A−a)2] = σ2 where σ is a standard deviation
of the random variable A, and choosing ε = (At − a)2 > 0 in (10.5), the
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probability that A ≥ At for target values which are larger than the average
value At > a, is estimated as follows:

P{A ≥ At} ≤ P{[(A − a) ≥ (At − a)]
∪ [−(A − a) ≥ (At − a)]}
= P{(A − a)2 ≥ (At − a)2}
≤

(10.5)
( σ

At − a

)2

(10.6)

Therefore the probability that the random amplitude A exceeds the thresh-
old value At, i.e., the probability of the knock occurrence is bounded by(

σ
At − a

)2

. Notice that inequality (10.6) makes sense if σ < (At − a) oth-
erwise inequality (10.6) is trivial. The upper bound of the probability of the
knock occurrence is equal to 1

η2 provided that the difference (At − a) is ex-

pressed in terms of the standard deviations (At − a) = ησ, η > 0, showing
that the better the separation between the mean value a and the target value
At the less the probability of the knock occurrence.

The standard deviation σ and (At − a) can be expressed in terms of the
sample standard deviation s, using confidence intervals for a mean value and
standard deviation, and (10.8). It can be shown that the upper bound of the
knock occurrence can be reduced via the reduction of the significance level α.
Therefore the significance level α can be associated with the upper bound of
the probability of the knock occurrence.

The control aim is to find the ignition timing such that

Tk → Td as k → ∞ (10.7)

where Td is the desired value of the statistic Tk, Td = Tt + Δ, where Tt is
the value in the Student distribution look-up table T1−2α,w−1 for degrees of
freedom w − 1, and Δ is a small positive number. If Tk → Td as k → ∞ then

(At − Ak)
√

w − 1
sk

> Tt as k → ∞ (10.8)

The achievement of the control aim (10.8) guarantees that H0 is asymp-
totically rejected in favor of HA with a certain significance level α (specified
by the designer). This in turn guarantees a desired separation between the
average value Ak and the threshold value At, i.e.,

At > Ak + Tt
sk√

w − 1
as k → ∞ (10.9)

Actual value of the statistic Tk which is given by (10.1) is associated with
the actual α-risk, αactual,k for a certain degrees of freedom. Actual α-risk,
αactual,k is defined as a solution of the following algebraic equation



10.3 Engine Knock Control with Desired α-risk 167

Tk = Tst(αactual,k, w − 1) (10.10)

where Tst(·, w−1) is one dimensional look-up table drawn from the Student
distribution look-up table for a given degrees of freedom w − 1, Tk is given
by (10.1), αactual,k = T−1

st (Tk, w − 1). The α-risk can also be defined as a
solution of equation (10.10) with Tk = Td, i.e., α = T−1

st (Td, w − 1). Taking
into account that T−1

st (·) satisfies locally Lipshits condition yields

|αactual,k − α| = |T−1
st (Tk, w − 1) − T−1

st (Td, w − 1)|
≤ L|Tk − Td| (10.11)

where L > 0 is a local Lipshits constant. Hence the actual α-risk, αactual,k

converges to α-risk

αactual,k → α as k → ∞, (10.12)

provided that the control aim (10.7) is reached. Therefore any controller
which guarantees the achievement of the control aims (10.8),(10.12) can be
called the controller with the desired significance level, which in turn is asso-
ciated with the probability of the knock occurrence.

10.3.3 Trade-off Between the α-risk and Fuel Consumption

Desired value of the α-risk and hence the statistic Td should be chosen by
taking into account customer related data. Engine fuel consumption can be
mapped as a function of ignition angle. Average amplitude A, the threshold
value At, and the standard deviation s are also mapped as a function of the
ignition angle. Therefore the values of the statistic T can be calculated using
(10.1) as a function of two variables: ignition angle and the window size w.
Actual α-risk is calculated then via (10.10) and using just calculated value of
the statistic. The final step is elimination of the ignition variable by replacing
it by the engine fuel consumption table. As a result two dimensional look-up
table with two input variables,i.e, the engine fuel consumption and the window
size, and one output variable α-risk is produced. Two dimensional look-up
table is presented in the form of the surface in three dimensional space in
Figure 10.8 where the α-risk is plotted as a function of fuel consumption and
the window size. Figure 10.8 shows that the α-risk increases when the window
size and the fuel consumption decreases. Specifying a desired fuel consumption
and window size, which should be chosen so that to get the best quality of the
estimation of the average value, a desired significance level which is related to
the probability of the knock occurrence can be calculated using Figure 10.8.
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FIG 10.8. The significance level which is proportional to the probability of the
knock occurrence is plotted as a function of a window size and engine fuel consump-
tion.

10.3.4 Control Algorithm

The ignition timing is defined according to the conventional knock controller
which is widely used in industry and realizes count-up/down logic as follows

Ik =
{

Ik−1 − δdown if ek < 0
Ik−1 + δup if ek > 0

ek = Tk − Td (10.13)

where ek is the regulation error, Ik is the ignition timing, δdown and δup

are positive constants (count down/count up gains).
In the case of the knock occurrence the amplitude exceeds the threshold

value, and therefore the ignition timing should immediately be retarded. To
this end a new control aim which is again associated with the statistical hy-
pothesis (10.3) is set up. The ignition retard can be calculated as follows.
First, the desired value of the average amplitude Ades is calculated according
to the following reference equation

Tdknock =
(At − Ades)

√
w − 1

sk
(10.14)

where Ades is the desired value of the average amplitude, Tdknock is the
desired value of the statistic (specified by the designer) in the case of knock,
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Tdknock = Ttknock + Δ where Ttknock is the value in the Student distribution
look-up table for degrees of freedom w − 1 and a significance level in case of
knock αknock, Ttknock = T(1 − 2αknock), w − 1, Δ is a small positive number.
Notice that the significance level in case of knock αknock is specified by the
designer and should be chosen significantly smaller than α, this in turn implies
a significant reduction of the probability of the knock occurrence which is
achieved by the ignition retard. A desired average amplitude is calculated
according to the reference equation (10.14), i.e.,

Ades = At −
Tdknocksk√

w − 1
(10.15)

Since the average amplitude is a function of ignition timing, i.e., A =
f(I), the ignition timing in the case of knock is defined as a solution of the
following equation Ades = f(Ides), where Ides is a desired ignition timing,
Ades is calculated with (10.15). Notice that the dependences of the standard
deviation and the threshold value from ignition timing are ignored here since
the standard deviation decreases and the threshold value increases with the
ignition retard. If (10.14) is valid then

(At − Ak)
√

w − 1
sk

> Ttknock (10.16)

in a certain step k. This in turn implies that the null hypothesis (10.2) is
rejected in favor of the alternative hypothesis (10.3) with a significance level
αknock which is significantly less than α that results in retard of the ignition
timing. The stability analysis of the control system (10.1), (10.13) can be
made by means of the Ordinary Differential Equation (ODE) approach [16],
[56] (see Appendix E).

10.4 Simulation of the Closed Loop Knock Control
System

Engine knock control algorithm (10.13) was simulated in MATLAB using
the model described in Section 10.2. Simulation results are presented in Fig-
ure 10.9 and Figure 10.10. Figure 10.9 shows ignition angle count-up sequence
and ignition retard due to the knock event. The knock event is detected via the
comparison of the maximal amplitude signal to the threshold value. Increasing
ignition angle reduces a fuel consumption and increases the probability of the
knock occurrence (see Figure 10.8). Actual and desired significance levels are
plotted in Figure 10.10.
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FIG 10.9. Count-up-count-down knock control results. Maximal amplitude, igni-
tion angle and threshold values are plotted as a function of a cycle number. Ignition
angle is defined in degrees before TDC. Maximal amplitude is plotted with a solid
line. Ignition angle is plotted with a dotted line and threshold is plotted with a
dashed line.

10.5 Adaptation of the Threshold Value

The performance deterioration of the knock sensor signal due to aging of the
engine components has a direct impact on the average values and standard
deviations of the maximal amplitude at a certain frequency. Therefore the
knock detection threshold should be updated for aged engines preventing er-
roneous knock detection. Threshold adaptation algorithm is described in this
Section.

First, a pre-calibrated threshold value at a given ignition angle is assigned
to the upper confidence limit (see Appendix D) of the amplitude signal as
follows:

At = A + tαt/2,n−1s

√
n + 1

n
(10.17)

where A and s are pre-calibrated values of the average amplitude and
standard deviation respectively, n is the sample size, tαt/2,n−1 is the value
taken from the Student distribution look-up table for a significance level αt

and degrees of freedom n−1, At is a pre-calibrated value of the knock detection
threshold defined in Section 10.2.2.
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FIG 10.10. Actual and desired significance levels in the closed-loop system. Desired
significance level is α = 0.002.

Notice, that the confidence interval is usually defined as a stochastic (the-
oretical) interval [64] where the average value and the standard deviation are
random variables. A certain probability of containing a random sample within
a confidence interval is associated with this stochastic interval. Therefore the
probability of the knock occurrence can be associated to the upper confidence
limit provided that the average value and the standard deviation are random
variables. When calculating the average value A and the standard deviation
s for a specific sample of the size n, the upper confidence limit as a fixed
number is assigned to the knock detection threshold value. Unfortunately,
the probability of the knock occurrence can not be associated with the upper
confidence limit for specific (not random) values of A and the standard devi-
ation s. However, a certain significance level αt which is used as a basis for
adaptation can be associated with a knock detection threshold. The threshold
adaptation is performed for aged engine holding the same significance level
which is assigned for a new engine.

Relationship (10.17) is treated as a equation with a significance level αt as
unknown variable. Equation (10.17) is resolved with respect to the significance
level αt for each ignition timing. Significance level as a function of ignition
timing is presented in Figure 10.11 and uniquely defines the knock detection
threshold value. As soon as the significance level αt is determined, the re-
lationship (10.17) becomes a function for calculation of the knock detection
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threshold with the average value A, standard deviation s and a sample size n
as input variables.
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FIG 10.11. Significance level as function of ignition angle. The significance level
determines the threshold value for knock detection.

The knock detection threshold is adapted provided that the averaged value
A and/or the standard deviation s deviate from the pre-calibrated values. New
values of the threshold are calculated as a function of ignition timing with
newly estimated average value and standard deviation and the significance
level αt presented in Figure 10.11:

Atim = Aim + tαt/2,w−1sim

√
wt + 1

wt
(10.18)

where Aim and sim are the average value and the standard deviation re-
spectively, newly calculated over the window of a size wt, i = I1, I2, ... is the
ignition angle, Atim are newly calculated values of the threshold. The differ-
ence εi between pre-calibrated Ati and new values Atim of the knock detection
threshold

εi = Ati − Atim (10.19)

is approximated as follows:
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ε̂ = ϕT θ (10.20)
ϕ = [1 I I2 I3 ...]T (10.21)
θ = [θ0 θ1 θ2 θ3 ...]T (10.22)

where ε̂ is a polynomial approximation of εi, I is the ignition angle, θj , j =
0, 1, .... The model is constructed using step-wise regression method (described
in Chapter 6), where the contribution of each term θ0, θ1I, θ2I

2 is reviewed,
to ensure that it remains statistically significant, using the following variance

Vj =
1

(N − j − 1)

N∑
i=1

(εi − θ0 − θ1Ii

− θ2I
2
i − θ3I

3
i − ... − θjI

j
i )2 (10.23)

where j is the order of the polynomial, N is the number of measured
points. The process is stopped if the variance Vj+1 does not get significantly
smaller than the variance Vj . The variances Vj+1 and Vj are compared using
the Test for Equal Variances (see Appendix D). The coefficients (10.22) are
calculated using a least-squares method. Step-wise regression method is in
fact, the method of the selection of the optimal order of the polynomial.
Polynomial of a low order which is robust with respect to the measurement
noise might give a relatively large approximation error. Polynomial of a high
order does not smooth a measurement noise, which in turn has a direct impact
on the coefficients of the polynomial.
As soon as the coefficients and the optimal order of the polynomial are found
that defines the model ε̂, the values of the compensation term are calculated
and added to the values in the nodes of pre-calibrated look-up table of the
knock detection threshold.

The result of adaptation is shown in Figure 10.12. Average value Aim and
a standard deviation sim which are larger than pre-calibrated are used for
calculation of new values of the threshold with (10.18) and significance level
plotted in Figure 10.11. New measured values of the threshold are plotted in
Figure 10.12 with plus signs. Notice, that new measured values are available
at ignition angles [−1.5o − 1o − 0.5o] (the angle is measured in degrees
before TDC) only since the closed loop knock control system with increased
average value and the standard deviation of the amplitude operates mainly
at these ignition angles (see Figure 10.9). The adaptation is performed in
two steps. In the first step the offset is updated only (ε̂ = θ0). The result of
adaptation is plotted in Figure 10.12 with a dotted line. Figure 10.12 shows
that the adaptation can further be improved introducing a term proportional
to ignition angle (ε̂ = θ0 + θ1I). Final result of the threshold adaptation is
shown in Figure 10.12 with a dashed line.
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FIG 10.12. Adaptation of the threshold. New measured values of the threshold
are plotted with plus signs. Pre-calibrated threshold is plotted with a solid line.
Two types of adaptation are shown. The first one is adaptation with the offset only
(ε̂ = θ0) and it is plotted with a dotted line. The second one is adaptation with
offset and gradient (ε̂ = θ0 + θ1I) and it is plotted with a dashed line.

10.6 Conclusion

A novel statistical engine knock control concept that allows the connection
of the control algorithm parameters with the probability of the knock occur-
rence and customer related data is proposed and verified by simulations. New
algorithm for adaptation of the knock detection threshold is developed. Adap-
tation guarantees the same detection performance for new and aged engines,
reducing the risk of erroneous knock detection which has a direct impact on
the engine fuel economy.

Statistical simulation model which can be used for simulation, calibration
and evaluation of different control strategies was also developed. Application
of this simulation model to calibration and evaluation of different control
strategies reduces the time and cost associated with calibration and algorithm
development.
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Appendix A

Trigonometric Interpolation Method

The trigonometric interpolation algorithm described by (4.3), (4.5), (4.6) and
(4.7) is derived in this Appendix.

The coefficients of the polynomial (4.3) which minimize (4.4) satisfy the
following equations:

wa0 +
n∑

q=1

(aq

w∑
l=1

cos(qxl) + bq

w∑
l=1

sin(qxl))

=
w∑

l=1

yl (11.1)

a0

w∑
l=1

cos(pxl) +
n∑

q=1

(aq

w∑
l=1

cos(qxl)cos(pxl) + bq

w∑
l=1

sin(qxl)cos(pxl))

=
w∑

l=1

ylcos(pxl) (11.2)

a0

w∑
l=1

sin(pxl) +
n∑

q=1

(aq

w∑
l=1

cos(qxl)sin(pxl) + bq

w∑
l=1

sin(qxl)sin(pxl))

=
w∑

l=1

ylsin(pxl), (11.3)

where p = 1, 2, ...n. Equation (11.1) represents ∂E
∂a0

= 0, whereas equation

(11.2) represents ∂E
∂aq

= 0 and, finally, the equation (11.3) represents ∂E
∂bq

= 0.

Let the measurements be crank angle synchronized with a step size of Δ
i.e.,
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x1 = Δ, x2 = 2Δ, ... , xw = wΔ, Δ =
2π

w
(11.4)

Consider the following sums:

w∑
l=0

eiqlΔ = 1 + eiqΔ + eiq2Δ + ... + eiqwΔ (11.5)

eiqΔ
w∑

l=0

eiqlΔ = eiqΔ + eiq2Δ + ... + eiq(w + 1)Δ (11.6)

where i2 = −1.
Subtraction of (11.6) from (11.5) yields

(1 − eiqΔ)
w∑

l=0

eiqlΔ = 1 − eiq(w + 1)Δ (11.7)

Taking into account that

w∑
l=1

eiqlΔ =
w∑

l=0

eiqlΔ − 1 (11.8)

(11.7) can be written as follows:

w∑
l=1

eiqlΔ =
eiq(w + 1)Δ − eiqΔ

eiqΔ − 1
(11.9)

and

w∑
l=1

eiqxl =
w∑

l=1

eiqlΔ =
eiq(w + 1)Δ − eiqΔ

eiqΔ − 1
=

(ei2qπ − 1)eiqΔ

eiqΔ − 1

=
{(cos(2πq) + isin(2πq)) − 1}eiqΔ

(cos(2π
q
w ) + isin(2π

q
w )) − 1

= 0 (11.10)

since Δ = 2π
w , and cos(2πq) + isin(2πq) = 1 where q is any integer, and

q is not a multiple of w i.e., q �= ws where s is any integer. If q = ws then
cos(2π

q
w ) + isin(2π

q
w ) = cos(2πs) + isin(2πs) = 1 and the denominator in

(11.10) is equal to zero.
Identity

w∑
l=1

eiqxl = 0 (11.11)

implies in fact, two identities since the real part of (11.11) and imaginary part
of (11.11) both have to be satisfied i.e.,
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w∑
l=1

eiqxl =
w∑

l=1

cos(qxl)

︸ ︷︷ ︸
=0

+i

w∑
l=1

sin(qxl)

︸ ︷︷ ︸
=0

= 0 (11.12)

Hence the following identities are true

w∑
l=1

cos(qxl) =
w∑

l=1

sin(qxl) = 0 (11.13)

provided that q is not a multiple of w.
Notice that identities (11.13) follow also from (12.31) and (12.32) with

h = 2πq
w and n = w, where sin(n

2 h) = sin(πq) = 0 and sin(h
2 ) = sin( π

wq) �= 0
for q = 1, 2, 3, ... and not a multiple of w.

Further evaluation gives the following:

w∑
l=1

cos(qxl)cos(rxl) =
1
2

w∑
l=1

cos(q + r)xl +
1
2

w∑
l=1

cos(q − r)xl (11.14)

w∑
l=1

sin(qxl)sin(rxl) =
1
2

w∑
l=1

cos(q − r)xl −
1
2

w∑
l=1

cos(q + r)xl (11.15)

The sums in the right hand side of the equations (11.14), (11.15) are equal
to zero provided that q + r and q − r are not multiple of w.

Using similar arguments one can show that

w∑
l=1

cos(qxl)sin(rxl) =
1
2

w∑
l=1

sin(q + r)xl +
1
2

w∑
l=1

sin(q − r)xl = 0 (11.16)

for all q and r, q �= r. Finally one can show that the following is true:

w∑
l=1

cos2(qxl) =
1
2

w∑
l=1

(1 + cos(2qxl)) =
w

2
(11.17)

w∑
l=1

sin2(qxl) =
1
2

w∑
l=1

(1 − cos(2qxl)) =
w

2
(11.18)

provided that 2q is not a multiple of w.
The system (11.1) - (11.3) can be written by taking into account (11.13)

- (11.18) as (4.5), (4.6), (4.7).

Remark 1. The solution of the system (11.1), (11.2) and (11.3) has such a
simple form due to the orthogonality which is the property of the trigonometric
polynomials.
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A set of functions {cos(qxl), sin(qxl)} is orthogonal on the interval xl, l =
1, ..., w given by (11.4), i.e

w∑
l=1

cos(qxl)cos(rxl) =
{ w

2 if q = r

0 if q �= r,

w∑
l=1

sin(qxl)sin(rxl) =
{ w

2 if q = r

0 if q �= r,

w∑
l=1

cos(qxl)sin(rxl) = 0 for all q and r,

and all non-diagonal terms in the matrix defined by (11.1), (11.2) and
(11.3) are equal to zero.

Orthogonality property implies also the following:

w∑
l=1

ei(q − r)xl =
w∑

l=1

eiqxle−irxl

=
w∑

l=1

[cos(qxl) + i sin(qxl)][cos(rxl) − i sin(rxl)]

= i
w∑

l=1

sin(qxl)cos(rxl)

︸ ︷︷ ︸
=0

− i
w∑

l=1

cos(qxl)sin(rxl)

︸ ︷︷ ︸
=0

+
w∑

l=1

cos(qxl)cos(rxl)

︸ ︷︷ ︸
=

{ w
2 if q = r

0 if q �= r

− i2
w∑

l=1

sin(qxl)sin(rxl)

︸ ︷︷ ︸
=

{ w
2 if q = r

0 if q �= r

=
{

w if q = r
0 if q �= r.

Remark 2. Interpolating polynomial

T (xl) = a0 +
n∑

q=1

aqcos(qxl) + bqsin(qxl) (11.19)

with coefficients (4.5), (4.6) and (4.7) can also be written in a complex
compact form. Taking into account that

cos(qxl) =
1
2
[eiqxl + e−iqxl ]

sin(qxl) =
1
2i

[eiqxl − e−iqxl ]



11 Appendix A 179

(11.19) can be written as follows:

T (xl) = a0 +
n∑

q=1

aqcos(qxl) + bqsin(qxl)

= a0 +
1
2

n∑
q=1

aq[eiqxl + e−iqxl ]

− i bq[eiqxl − e−iqxl ]

= a0 +
1
2

n∑
q=1

(aq − ibq)eiqxl + (aq + ibq)e−iqxl

Introducing a coefficient

cq =
1
2
(aq − ibq) =

1
w

w∑
l=1

ylcos(qxl) − i
1
w

w∑
l=1

ylsin(qxl)

=
1
w

w∑
l=1

yl[cos(qxl) − isin(qxl)] =
1
w

w∑
l=1

yle
−iqxl

and taking account that the term 1
2(aq + ibq)e−iqxl can be obtained from

the term 1
2(aq − ibq)eiqxl by substituting −q instead of q, where q = 1, 2, ..., n

trigonometric interpolation algorithms (11.19), (4.5), (4.6) and (4.7) are pre-
sented in the following complex form:

T (xl) =
n∑

q=−n

cqe
iqxl

cq =
1
w

w∑
l=1

yle
−iqxl

where c0 =
1
w

w∑
l=1

yle
−i0xl =

1
w

w∑
l=1

yl = a0.

Remark 3. The step size Δ can also be chosen as follows Δ = 7200

w . Since
the orthogonality property (11.13) also holds in this case, the derivation of
the coefficients (4.5) - (4.7) is still valid.

Remark 4. The coefficients (4.5), (4.6) and (4.7) can also be obtained using
formulas of the Fourier coefficients where the integrals are approximated using
a trapezoidal rule.

Remark 5. A minimal number of terms (frequencies) should be used for
trigonometric interpolation. The optimal choice of the number of terms (fre-
quencies) in the approximating polynomial (4.3) could be done as follows.
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Assume that the measured data can exactly be approximated by the polyno-
mial (4.3) and a measured signal yl has a random measurement noise only. It
is assumed that the measurement errors are independent and normally dis-
tributed. In this case the errors in the estimated parameters are also normally
distributed, and the following ratio V = E

(w − 2n − 1) is the estimate of the

variance of the measurement noise, where n is the number of frequencies and
E is given by (4.4). A new frequency is included in the model (4.3), if the ratio
V is reduced and this reduction is statistically significant. The significance of
the variance reduction is established using the Test for Equal Variances [64],
[67], [118] (see also Appendix D). The choice of the frequencies is optimal
if the values of the ratio V and the variance of the measurement noise are
approximately the same.
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Appendix B

Properties of the Kacmarz Projection Algorithm

Properties of the Kacmarz projection algorithm defined by (4.29), (4.33) and
(4.35) are discussed in this Appendix.

Consider the following Lyapunov function candidate

Vk = ‖θ̃k‖2 (12.1)

where θ̃k = θk − θ∗, where θ∗ is the vector of true parameters. Notice that
the following is true for the update law (4.35):

θ̃k − θ̃k−1 = − ϕk

ϕT
k ϕk

θ̃T
k−1ϕk (12.2)

θ̃T
k ϕk = 0 (12.3)

ϕT
k ϕk = n + 1 (12.4)

where (12.2) is derived by subtracting of θ∗ from the both sides of (4.35),
(12.3) is obtained by multiplication of both sides of (12.2) by ϕT

k , and finally
(12.4) follows directly from the definition of ϕk (4.33).
Evaluating Vk − Vk−1 and taking into account (12.2), (12.3) and (12.4) one
gets

Vk − Vk−1 = − (θ̃T
k−1ϕk)2

(n + 1)
(12.5)

Thus the boundedness of the parameter error θ̃ is established. The pa-
rameters θ converge to their true values θ∗, if the regressor ϕ is persistently
exciting, i.e., if there exist positive constants α, β and N such that the fol-
lowing inequality holds
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0 < αI ≤
r+N∑
k=r

ϕkϕT
k ≤ βI (12.6)

where r = 1, 2, ... is the step number, N is the size of the window and I
is (2n + 1) × (2n + 1) unity matrix, where n is the number of the frequencies
involved. Define the following matrix:

A =
r+N∑
k=r

ϕkϕT
k =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...
...

am1 am2 . . . amm

⎤
⎥⎥⎥⎦

with the terms defined by (4.33)

a11 = N + 1, a12 =
r+N∑
k=r

cos(kq1Δ),

a13 =
r+N∑
k=r

sin(kq1Δ), a1m =
r+N∑
k=r

sin(kqnΔ),

a21 = a12, a22 =
r+N∑
k=r

cos2(kq1Δ), a23 =
r+N∑
k=r

sin(kq1Δ) cos(kq1Δ),

a2m =
r+N∑
k=r

cos(kq1Δ) sin(kqnΔ), am1 = a1m,

am2 = a2m, amm =
r+N∑
k=r

sin2(kqnΔ),

where m = (2n + 1). Notice that the terms in the regressor (4.33) are
updated crank angle synchronized with the step Δ, and xk = kΔ, k = 1, 2, ....

The terms in the matrix A can be calculated as follows.
First, the following sums are calculated:

r+N∑
k=1

cos(kqiΔ) =
cos(

N + r + 1
2

qiΔ) sin(
N + r

2
qiΔ)

sin(
qiΔ

2
)

(12.7)

r−1∑
k=1

cos(kqiΔ) =
cos(

r

2
qiΔ) sin(

(r − 1)
2

qiΔ)

sin(
qiΔ

2
)

(12.8)

where i = 1, ..., n, n is the number of the frequencies involved, r > 1. The
sums are calculated using Lemma presented in the end of this Appendix. The
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sum (12.7) follows from (12.32) with h = qiΔ and n = r + N . The sum (12.8)
follows from (12.32) with h = qiΔ and n = r − 1.

The sum
r+N∑
k=r

cos(kqiΔ) is calculated using (12.7) and (12.8) as follows

r+N∑
k=r

cos(kqiΔ) =
r+N∑
k=1

cos(kqiΔ) −
r−1∑
k=1

cos(kqiΔ)

=
cos(

N + r + 1
2

qiΔ) sin(
N + r

2
qiΔ)

sin(qiΔ
2 )

−
cos(

r

2
qiΔ) sin(

(r − 1)
2

qiΔ)

sin(qiΔ
2 )

(12.9)

Using similar arguments one can show that

r+N∑
k=r

sin(kqiΔ) =
sin(

N + r

2
qiΔ) sin(

N + r + 1
2

qiΔ)

sin(
qiΔ

2
)

−
sin(

r − 1
2

qiΔ) sin(
r

2
qiΔ)

sin(
qiΔ

2
)

(12.10)

And

r+N∑
k=r

cos(kqiΔ) cos(kqjΔ) =
1
2

r+N∑
k=r

cos(k(qi + qj)Δ)

+
1
2

r+N∑
k=r

cos(k(qi − qj)Δ) (12.11)

where

r+N∑
k=r

cos(k(qi + qj)Δ) =

cos(
N + r + 1

2
(qi + qj)Δ) sin(

N + r

2
(qi + qj)Δ)

sin((qi + qj)Δ
2 )
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− cos(
r

2
(qi + qj)Δ) sin(

(r − 1)
2

(qi + qj)Δ)

sin((qi + qj)Δ
2 )

(12.12)

r+N∑
k=r

cos(k(qi − qj)Δ) =

cos(
N + r + 1

2
(qi − qj)Δ) sin(

N + r

2
(qi − qj)Δ)

sin((qi − qj)Δ
2 )

− cos(
r

2
(qi − qj)Δ) sin(

(r − 1)
2

(qi − qj)Δ)

sin((qi − qj)Δ
2 )

(12.13)

where j = 1, ..., n, i �= j. Further evaluation yields:

r+N∑
k=r

sin(kqiΔ) sin(kqjΔ) =
1
2

r+N∑
k=r

cos(k(qi − qj)Δ)

−1
2

r+N∑
k=r

cos(k(qi + qj)Δ) (12.14)

where
r+N∑
k=r

cos(k(qi + qj)Δ) and
r+N∑
k=r

cos(k(qi − qj)Δ) are calculated using

(12.12) and (12.13). One can also show the following:

r+N∑
k=r

cos(kqiΔ) sin(kqjΔ) =
1
2

r+N∑
k=r

sin(k(qi + qj)Δ)

−1
2

r+N∑
k=r

sin(k(qi − qj)Δ) (12.15)

where
r+N∑
k=r

sin(k(qi + qj)Δ) =

sin(
r + N

2
(qi + qj)Δ) sin(

r + N + 1
2

(qi + qj)Δ)

sin((qi + qj)Δ
2 )

− sin(
r − 1

2
(qi + qj)Δ) sin(

r

2
(qi + qj)Δ)

sin((qi + qj)Δ
2 )

(12.16)
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r+N∑
k=r

sin(k(qi − qj)Δ) =

sin(
r + N

2
(qi − qj)Δ) sin(

r + N + 1
2

(qi − qj)Δ)

sin((qi − qj)Δ
2 )

− sin(
r − 1

2
(qi − qj)Δ) sin(

r

2
(qi − qj)Δ)

sin((qi − qj)Δ
2 )

(12.17)

where i, j = 1, ..., n, i �= j.
Finally evaluation of the diagonal terms yields:

r+N∑
k=r

sin2(kqiΔ) =

N + 1
2

+
cos(rqiΔ) sin((r − 1)qiΔ)

2 sin(qiΔ)

−cos((r + N + 1)qiΔ) sin((r + N)qiΔ)
2 sin(qiΔ)

(12.18)

r+N∑
k=r

cos2(kqiΔ) =

N + 1
2

− cos(rqiΔ) sin((r − 1)qiΔ)
2 sin(qiΔ)

+
cos((r + N + 1)qiΔ) sin((r + N)qiΔ)

2 sin(qiΔ)
(12.19)

It is easy to see now that all diagonal terms aii, i = 2, ...,m of the matrix A
which are calculated according to (12.18), (12.19) have an average part which
depends on the window size N and a periodic part. Non-diagonal terms aij ,
i �= j of the matrix A, can be calculated using formulas (12.9) - (12.17) and
have a periodic part only. All diagonal terms are increasing if the size of the
window N increases (see (12.18), (12.19)). Non-diagonal terms of the matrix
remain bounded if the size of the window N increases (see (12.9) - (12.17) ).
There exists therefore a sufficiently large N such that the matrix A is strictly
diagonally dominant, i.e., the following inequality holds

|aii| >

m∑
j=1j �=i

|aij | i = 1, ...,m (12.20)

According to the Levy-Desplanques theorem [34], the symmetric diago-
nally dominant matrix A has positive eigenvalues only and hence (12.6) holds



186 12 Appendix B

for α = λmin(A), and β = λmax(A), where λmin(A), λmax(A) are minimal and
maximal eigenvalues of the matrix A. Therefore the adjustable parameters θ
converge to their true values θ∗ according to the Theorem 6.3 [3].



12 Appendix B 187

Lemma. The following relationships are valid:

n∑
k=0

cos(a + kh) =
cos(a +

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.21)

n∑
k=0

sin(a + kh) =
sin(a +

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.22)

Proof.
This Lemma can be proved in two ways.

The First Way.

Consider first the following sum:

n∑
k=0

cos(a+kh) = cos(a)+cos(a+h)+cos(a+2h)+ ...+cos(a+nh) (12.23)

which can be presented as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(h
2 ) cos(a) = 1

2 [sin(a + h
2 ) − sin(a − h

2 )]

sin(h
2 ) cos(a + h) = 1

2[sin(a + 3h
2 ) − sin(a + h

2 )]
...

sin(h
2 ) cos(a + nh) = 1

2[sin(a + (2n + 1)h
2 ) − sin(a + (2n − 1)h

2 )]

Summing up the relations above where the in-between terms vanish and
dividing by sin(h

2 ) yields:

n∑
k=0

cos(a + kh) =
1

2 sin(
h

2
)
[sin(a +

(2n + 1)h
2

) − sin(a − h

2
)] (12.24)

Finally, the sum
n∑

k=0

cos(a + kh) can be calculated as follows:

n∑
k=0

cos(a + kh) =
cos(a +

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.25)

The change of variables a to π
2 − a and h to −h gives
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n∑
k=0

sin(a + kh) =
sin(a +

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.26)

The Second Way.

Calculation of the k-th power of a complex variable z = cos(h) + i sin(h),
where i2 = −1 and multiplication by cos(a) + i sin(a) yields:

(cos(a) + i sin(a))zk = (cos(a) + i sin(a))(cos(h) + i sin(h))
= eiaeikh = ei(a+kh) = cos(a + kh) + isin(a + kh) (12.27)

Relation (12.27) shows that the sums (12.25), (12.26) to be calculated are
the real and imaginary parts of the sum of the following geometric series that
has n + 1 terms :

(cos(a) + i sin(a))(1 + z + z2 + ... + zn)

= (cos(a) + i sin(a))
zn+1 − 1

z − 1
, (12.28)

where (1 − z)
n∑

k=0

zk = (1 − zn+1). Evaluating zn+1 − 1
z − 1 yields:

zn+1 − 1
z − 1

=
cos((n + 1)h) − 1 + i sin((n + 1)h)

cos(h) − 1 + i sin(h)

=
sin(

n + 1
2

h)

sin(h
2 )

− sin(
n + 1

2
h) + i cos(

n + 1
2

h)

− sin(
h

2
) + i cos(

h

2
)

=
sin(

n + 1
2

h)

sin(h
2 )

[sin(
n + 1

2
h) − i cos(

n + 1
2

h)][sin(
h

2
) + i cos(

h

2
)]

=
sin(

n + 1
2

h)

sin(h
2 )

(cos(
n

2
h) + i sin(

n

2
h))

Finally the real part of the following complex variable is the sum (12.25)
and imaginary part is the sum (12.26), i.e.,
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(cos(a) + i sin(a))
zn+1 − 1

z − 1
=

sin(
n + 1

2
h)

sin(h
2 )

cos(a +
n

2
h)

︸ ︷︷ ︸
=

n∑
k=0

cos(a + kh)

+ i
sin(

n + 1
2

h)

sin(h
2 )

sin(a +
n

2
h)

︸ ︷︷ ︸
=

n∑
k=0

sin(a + kh)

(12.29)

Corollary.

The following relations follow from (12.25) and (12.26) with a = 0:

n∑
k=0

cos(kh) =
cos(

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.30)

n∑
k=0

sin(kh) =
sin(

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

(12.31)

Moreover, the following relationships are also true:

n∑
k=1

cos(kh) =
n∑

k=0

cos(kh) − 1

=
cos(

n

2
h) sin(

n + 1
2

h)

sin(
h

2
)

− 1

=
cos(

n

2
h) sin(

n + 1
2

h) − sin(
h

2
)

sin(
h

2
)

=

1
2

sin(
2n + 1

2
h) − 1

2
sin(

h

2
)

sin(
h

2
)
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=
cos(

n + 1
2

h) sin(
n

2
h)

sin(
h

2
)

(12.32)

and

n∑
k=0

sin2(a + kh) =
n + 1

2
− 1

2

n∑
k=0

cos(2a + 2kh)

=
n + 1

2
− cos(2a + nh) sin((n + 1)h)

2 sin(h)
(12.33)

n∑
k=0

cos2(a + kh) =
n + 1

2
+

cos(2a + nh) sin((n + 1)h)
2 sin(h)

(12.34)

n∑
k=0

sin2(a + kh) +
n∑

k=0

cos2(a + kh) = n + 1 (12.35)

A Lemma similar to Lemma presented above one can also find in Appendix
C of [59].
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Chebyshev Three Term Recurrence Relations

Two following trigonometric identities

cos[(n + 1)θ] + cos[(n − 1)θ] = 2 cos[θ] cos[nθ] (12.36)
sin[(n + 1)θ] + sin[(n − 1)θ] = 2 cos[θ] sin[nθ] (12.37)

allow recursive calculations of cos[(n+1)θ] via cos[(n−1)θ], cos[nθ] and cos[θ];
and sin[(n + 1)θ] via sin[(n− 1)θ], sin[nθ] and cos[θ], where θ is the angle and
n = 1, 2, ... (see [53] for Chebyshev polynomials).
Relationships (4.40),(4.41) follow from (12.36)and (12.37) with θ = kΔ and
n = q − 1.



13

Appendix C

Recursive Improvement of Inaccurate Inverse Matrix

Consider the problem of calculation of the inverse matrix A−1 for the invertible
n × n matrix A for which an inaccurate inverse matrix D0 ≈ A−1 is known.
The accuracy of the estimate of the inverse matrix A−1 can be improved using
a recursive method. In the first step the following difference is introduced:

F0 = I − AD0 (13.1)

where I is n × n unity matrix. Matrix D0 is equal to A−1 provided that
F0 ≡ 0. The closeness of the matrices A−1 and D0 implies the smallness of
the modules of the terms of F0. The matrix Dk is updated as follows:

Dk = Dk−1 + Dk−1Fk−1, (13.2)

where k = 1, 2, ..., and the estimation error is Fk = I − ADk.
The convergence rate can be estimated as follows:

F1 = I − AD1 = I − A(D0 + D0F0)
= I − AD0(I + F0) = I − (I − F0)(I + F0)
= I − (I − F 2

0 ) = F 2
0 ,

F2 = F 2
1 = F 4

0 ,

Fk = F 2k

0 (13.3)

Recursive estimate Dk converges to the matrix A−1, i.e.,

lim
k→0

Dk = A−1 (13.4)

provided that
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‖F0‖ ≤ c < 1 (13.5)

where c is a positive constant.
The upper bound of the estimation error Fk is evaluated using (13.3) as

follows:

‖Fk‖ ≤ ‖F0‖2k ≤ c2k

(13.6)

and hence

lim
k→0

‖Fk‖ = 0

lim
k→0

Fk = lim
k→0

{I − ADk} = 0

I − A lim
k→0

Dk = 0

lim
k→0

Dk = A−1I = A−1

The latter implies the convergence of the estimate Dk to the inverse matrix
A−1. The following inequality ‖Dk − Dk−1‖ ≤ ε, where ε is a small positive
number can be used in practice as a stopping rule for the algorithm.

This algorithm is described in [15] where the convergence rate of the algo-
rithm is also evaluated.



14

Appendix D

14.1 Hypotheses Tests

A periodic nature and cycle-to-cycle variability of the engine cylinder individ-
ual events allows the description of the engine signals as statistical signals. A
robust detection of such engine events as misfire events, knock events, engine
transients and others in the presence of a stochastic noise needs to be associ-
ated with the statistical hypotheses tests. Drastic deterioration of the quality
of engine signals for aged engines is an additional motivation for a robust
detection of engine events based on hypotheses tests. A number of hypotheses
tests is described in this Section: One Sample t-Test, Two Sample t-Test, Two
Sample t-Test, Test on the Variance, Test for Equal Variances, Transient De-
tection Test,Outlier Detection Test and Confidence Intervals. Hypotheses tests
are summarized in Table 14.1. Table 14.2 shows application of the hypotheses
tests described in Table 14.1 to the robust detection of engine events.

Hypothesis Test Purpose Section References

One Sample t-Test Compares One Sample Average
to Target

14.1.1 [64]

Two Sample t-Test Compares Two Sample Averages 14.1.2 [64], [88]

Test on the Variance Compares One Sample Variance
to Target

14.1.3 [64]

Test For Equal Variances Compares Two Sample Variances 14.1.4 [63], [64]

Transient Detection Test Compares Variance to the Mean
Squared Successive Difference

14.1.5 [29]

Outlier Detection Test Compares Outlier to a Sample
Average

14.1.6 [26], [92]

Table 14.1. Hypotheses Tests
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Hypothesis Test Application Section

One Sample t-Test Misfire Detection, Knock Control 7,10

Two Sample t-Test Knock Detection 9

Test on the Variance

Test For Equal Variances Look-up Tables Adaptation 6

Transient Detection Test Engine Transients Detection

Outlier Detection Test Single Misfire Detection, Knock Detection 10

Table 14.2. Applications of the Hypotheses Tests

One Sample t-Test described in Section 14.1.1 is used for a robust detection
of misfire events in Section 7, and for robust engine knock control (asymptoti-
cal One Sample t-Test) in Section 10. The test is applied in the moving-in-time
window of a certain size enabling a misfire detection and knock control in ev-
ery step. Two Sample t-Test described and modified in Section 14.1.2 for the
case of unequal variances is used in Section 9 for engine knock detection. The
Test for Equal Variances described Section 14.1.4 is used in data-driven mech-
anism for adaptation of engine look-up tables described in Section 6. The Test
for Equal Variances as well the Test on the Variance could be applied to the
engine knock detection since the variance of the engine knock signal is signifi-
cantly larger for knocking cycles. A statistical transient detection mechanism
described in Section 14.1.5 could be used for a robust detection of engine tran-
sients. Finally, an outlier detection method described in Section 14.1.6 could
be used for a robust detection of a single misfire event, engine knock events,
and a confidence interval method described in the same Section is used in Sec-
tion 10 for a robust auto-adaptation of engine knock detection threshold. A
possibility of application of a Neyman-Pearson Lemma to designing a change
in mean test is discussed in the end of this Appendix. This Section provides a
useful robust engine event detection tool-kit formulated in terms of statistical
hypotheses.

14.1.1 One Sample t-Test

One Sample t-Test compares one sample average to a historical value or to a
target. Let x be a normally distributed variable described by a mean value a
and a standard deviation σ.

• A null hypothesis is the following: H0 : a = a0, where a0 is a target
value. The variance σ2 is unknown. The statistic

t =
x − a0

S/
√

n − 1
(14.1)

follows a Student distribution with n − 1 degrees of freedom, where n is the
sample size. Here and below standard definitions of a sample mean x and a
sample standard deviation S are used.



14.1 Hypotheses Tests 197

• Alternative hypotheses and critical regions are the following:

HA1 : a = a1 > a0, |t| > t1−2α,n−1

HA2 : a = a1 < a0, |t| > t1−2α,n−1

HA3 : a = a1 �= a0, |t| > t1−α,n−1

where t(α, n− 1) is the value taken from the Student distribution look-up
table (see for example [77]) with a significance level α and n − 1 degrees of
freedom.

14.1.2 Two Sample t-Tests

Standard Two Sample t-Test

Two Sample t-Test compares two independent sample averages. Let x and y
be two normally distributed variables described by mean values x and y and
sample variances Sx and Sy drawn from the size n sample and size m sample
respectively.

• A null hypothesis is: H0 : x = y. The variances σ2
x and σ2

y are assumed
to be unknown but equal.

The following statistic

t =
x − y

S
√

1/n + 1/m
, (14.2)

S =

√
(n − 1)S2

x + (m − 1)S2
y

(n − 1) + (m − 1)
(14.3)

follows a Student distribution with n + m − 2 degrees of freedom.
• Alternative hypotheses and critical regions are the following:

HA1 : x > y, |t| > t1−2α,n+m−2

HA2 : x < y, |t| > t1−2α,n+m−2

HA3 : x �= y |t| > t1−α,n+m−2

Remark 1. The outlier detection test described in Section 14.1.6 is a spe-
cial case of this Two Sample t-Test.

Remark 2. A comparison of two sample averages for large sample sizes.
The following statistic

N =
√

mn(x − y)√
mS2

x + nS2
y

(14.4)
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which represents the difference between two mean values divided by the stan-
dard deviation of this difference can also be used for comparison of two sample
averages. The distribution of statistic (14.4) converges to a standard normal
distribution with a zero mean and a unity variance for the sufficiently large
sample sizes due to the Central Limit Theorem [13]. The hypothesis that two
mean values are equal is taken as a null hypothesis for which a critical re-
gion can be defined for large sample sizes using a standard look-up table of a
normal distribution.

Testing the Equality of Two Means for the Case of Unequal
Variances

Usually Two Sample T-test which is used for testing the equality of two means,
is performed under the assumption that the variances of two compared vari-
ables are equal [64], [67]. The Two Sample T-test for the case of unequal
variances where the relationship between variances is known, is described be-
low.

Consider two normally distributed variables x and y described by the mean
values x and y and sample variances S2

x and S2
y calculated from a size n sample

and a size m sample respectively. Consider the null hypothesis to be that the
mean values of two variables are equal, i.e. H0 : x = y. Suppose that the
variances σ2

x and σ2
y are different and unknown, but the relationship between

variances presented in the form of ratio is known, i.e.,

F =
σ2

y

σ2
x

(14.5)

where F is a known number. Denoting the variance of the variable x as
σ2, (σ2 = σ2

x), the variance of the variable y is calculated as Fσ2. The ratio
(14.5) can be estimated for sufficiently large sample sizes by using the sample
variances S2

x and S2
y , i.e.,

F =
S2

y

S2
x

(14.6)

where S2
x =

n∑
i=1

(xi − x)2

(n − 1) , S2
y =

m∑
i=1

(yi − y)2

(m − 1) .

The variance of the difference (x − y) is calculated as follows:

V (x − y) = V x + V y

=
σ2

x

n
+

σ2
y

m
=

(m + Fn)
nm

σ2 (14.7)
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The following variable follows a normal distribution i.e.,
(x − y)

σ

√
nm

m + Fn
∈

N(0, 1), where nm
m + Fn is the “effective sample size“.

The next step is evaluation of the variance σ. To this end the following
variables are considered:

(n − 1)S2
x

σ2
=

n∑
i=1

(xi − x)2

σ2
x

1
F

(m − 1)S2
y

σ2
=

m∑
i=1

(yi − y)2

σ2
y

which follow χ2 distribution with (n − 1) and (m − 1) degrees of freedom
respectively. Hence the variable

F (n − 1)S2
x + (m − 1)S2

y

Fσ2
(14.8)

follows χ2 distribution with (n + m − 2) degrees of freedom. Taking into
account that

E[S2
x] = σ2

E[S2
y ] = Fσ2,

consider the following mathematical expectation:

E[
F (n − 1)S2

x + (m − 1)S2
y

F (n + m − 2)
] = σ2 (14.9)

The variable S2 =
F (n − 1)S2

x + (m − 1)S2
y

F (n + m − 2) which is often called esti-

mated pooled variance, is in fact an unbiased estimate of the variance σ2.
Consider the following statistic

t =
(x − y)

S

√
nm

(m + Fn)

=
(x − y)

σ

√
nm(n + m − 2)Fσ2

(m + Fn)F (n + m − 2)S2

=
(x − y)

σ

√
nm(n + m − 2)Fσ2

(m + Fn)(F (n − 1)S2
x + (m − 1)S2

y)
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=
(x − y)

σ

√
nm

(m + Fn)

/

√
(F (n − 1)S2

x + (m − 1)S2
y)

Fσ2

1
(n + m − 2)

Since (x − y)
σ

√
nm

m + Fn ∈ N(0, 1), and

F (n − 1)S2
x + (m − 1)S2

y

Fσ2 ∈ χ2
n+m−2 the statistic t follows Student distri-

bution with (n + m − 2) degrees of freedom according to the definition

(t
def
= N(0, 1)√

χ2
n+m−2

n + m − 2

). If the value of the statistic t is larger than the value

in the Student distribution look-up table the null hypothesis is rejected in
favor of alternative hypothesis. Notice that the statistic t can be used for
hypothesis testing if the difference in variances σx and σy is statistically sig-
nificant. Therefore the hypothesis of the equality of two variances should first
be tested by using the Test for Equal Variances (see Section 14.1.4 and [64],
[67]). If the difference in variances is statistically significant, the statistic t

defined above with the ratio F =
S2

y

S2
x

can be used for hypothesis testing. If

the difference in variances is not statistically significant, the statistic t with
F = 1 corresponds to the standard Two Sample T-test.

14.1.3 One Sample χ2-Test (Test on the Variance)

One Sample χ2-Test is a test on the variance. Let x be a normally distributed
variable described by a mean value and a standard deviation σ.

• A null hypothesis is: H0 : σ2 = σ2
0 , where σ0 is a given number.

The variance σ2 and the mean value are unknown.
The statistic

χ2 =
(n − 1)S2

σ2
0

(14.10)

follows χ2 distribution with n − 1 degrees of freedom.
• Alternative hypotheses and critical regions are the following:

HA1 : σ2 = σ2
1 > σ2

0 , χ2 > χ2
α,n−1

HA2 : σ2 = σ2
1 < σ2

0 , χ2 < χ2
1−α,n−1

HA3 : σ2 = σ2
1 �= σ2

0 ,

⎧⎨
⎩

χ2 > χ2
α/2,n−1

or
χ2 < χ2

1−α/2,n−1

where χ2(·) is the value taken from the χ2 distribution look-up table.
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14.1.4 Test for Equal Variances (F-test)

The Test for Equal Variances compares two independent sample variances Sx

and Sy drawn from the size n sample and size m sample respectively.
• A null hypothesis is H0 : σx = σy. The variances σ2

x and σ2
y are

unknown.
Statistic

F =
S2

x

S2
y

(14.11)

follow a Fisher distribution with n − 1 and m − 1 degrees of freedom.
• Alternative hypotheses and critical regions are the following:

HA1 : σx > σy, F > Fα,n−1,m−1

HA2 : σx < σy, F < F1−α,n−1,m−1

HA3 : σx �= σy,

⎧⎨
⎩

F > Fα/2,n−1,m−1

or
F < F1−α/2,n−1,m−1

where F (·) is the value taken from the Fisher distribution look-up table
(see for example [64]). F1−α for m and n degrees of freedom is reciprocal of
Fα for n and m degrees of freedom i.e., Fα,n,m = 1

F1−α,m,n
.

Remark 1. Romanovsky’s test for equal variances [63]. In the first step a
variable

θ =
dfy − 2

dfy
F, F =

S2
x

S2
y

(14.12)

with a mathematical expectation E(θ) = 1 and a standard deviation σθ =√
2(dfx + dfy − 2)

dfx(dfy − 4) (dfy > 4) with degrees of freedom dfx = n − 1 and

dfy = m− 1 is introduced. The deviation of θ from one with a relatively high
probability does not exceed 3σθ interval. Therefore the following variable

R =
|θ − 1|

σθ
(14.13)

is used for the test for equal variances. The difference in two variances σx

and σy is not significant provided that R < 3, and the difference in variances
is statistically significant if R ≥ 3.

Remark 2. Comparison of several variances. Bartlett’s test [64], [82] is used
to test if a number of samples have equal variances. A hypothesis that all the
population variances are equal is taken as a null hypothesis, which is tested
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against the alternative hypothesis that at least one of the variances is different.
Bartlett’s test is unfortunately sensitive to departures from normality. The
Levene’s test [55] (which is an alternative to the Bartlett test) is less sensitive
than the Bartlett test to departures from normality and can also be used for
comparison of several variances.

14.1.5 A Statistical Transient Detection

A statistical transient detection can be formulated in terms of a statistical
hypothesis test where a systematic change in the following sample x1, x2, ..., xn

is examined [1], [29]. The hypothesis that

E(xi) = a (14.14)

where E(·) is a mathematical expectation and a is a given number is
taken as a null hypothesis. This hypothesis is tested against the alternative
hypothesis that a systematic change (transient) is present in the mean value of
the mentioned above sample. It is assumed that the variance does not change
during the transient. For a hypothesis test the sample variance is compared
to the mean square successive difference. The following variable

r =
q2

s2
(14.15)

where

q2 =
1

2(n − 1)

n−1∑
i=1

(xi+1 − xi)2 (14.16)

s2 =
1

n − 1

n∑
i=1

(xi − x)2 (14.17)

with a mathematical expectation E(r) = 1 and a standard deviation σr =√
1

n + 1(1 − 1
n − 1) is introduced [29]. Variable r is approximately normally

distributed variable for a sufficiently large sample size, n > 20 provided that xi

is normally distributed. The transient is detected provided that the variance

(14.17) is essentially larger than (14.16). Fractiles of the distribution of r = q2

s2

are given in Table 13.6 of [29].

14.1.6 Outlier Detection and Confidence Intervals as Thresholds

Confidence interval method is presented in this Section as a method for the
detection of the signal outlier [26],[74]. It is shown that the outlier can be
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detected using standard Two Sample t-Test [92]. The confidence limits for the
outlier utilize t-statistic which in turn is used for Two Sample t-Test.

Consider the following principal sample set y1, y2, ..., ym characterized

by the mean value y =
1
m

m∑
i=1

yi and a sample standard deviation, S =√√√√ 1
m − 1

m∑
i=1

(yi − yi)2, and the extreme observation y∗ which is a suspected

upper outlier. Here for simplicity an upper outlier detection is considered only.
The result is valid for the detection of a lower outlier also.

Consider two normally distributed variables described by the mean values
y∗ and y and the same standard deviation σ, estimated via a sample standard
deviation S. Consider the null hypothesis to be that the mean values of two
variables are equal, i.e. H0 : y∗ = y which is tested against the alternative
hypothesis HA : y∗ > y detecting y∗ as an upper outlier or HA : y∗ < y
detecting y∗ as a lower outlier.

The outlier detection test described above is a special case of Two Sample
t-Test described in Section 14.1.2. Statistic (14.2) with x = y∗, n = 1 and
S = Sy is used for the outlier detection.

Since the test statistic t (14.2) follows the Student distribution a critical
value tα/2,m−1 can be found using the Student distribution look-up table so

that the probability that the statistic t = y∗ − y
S

√
m

m + 1 is smaller than

tα/2,m−1 is equal to (1 − α), i.e.,

P{|y
∗ − y

S
|
√

m

m + 1
≤ tα/2,m−1} = (1 − α) (14.18)

for a certain significance level α and degrees of freedom m− 1. That gives
the basis for estimation of y∗ via the confidence interval method and

P {y − tα/2,m−1S

√
m + 1

m
≤ y∗

≤ y + tα/2,m−1S

√
m + 1

m
} = (1 − α)

The confidence interval described above has two endpoints which define

confidence limits y ± tα/2,m−1S

√
m + 1

m . Notice that this confidence interval
is defined as a stochastic interval since the average value y and the standard
deviation S are random variables. Calculating y and S for a specific sample,

the confidence limits as fixed numbers y ± tα/2,m−1S

√
m + 1

m can be used as
detection thresholds. Unfortunately, the probability of containing y∗ within

the interval y − tα/2,m−1S

√
m + 1

m ≤ y∗ ≤ y + tα/2,m−1S

√
m + 1

m can not be
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associated with the confidence interval for specific (not random) values of y
and the standard deviation S.

14.1.7 Change in Mean Test Based on Neyman-Pearson Lemma

Assume that a random variable X follows a normal distribution with a mean
value a and a variance σ2, N(a, σ2), where a = E(X), E is a mathematical
expectation, is unknown and a variance σ2 is known.

• The null hypothesis: H0 : a = a0 is tested against the alternative hy-
pothesis H1 : a = a1 > a0.
The likelihood functions are defined as follows:

L0(x1, ...xn) =
1

σn(2π)n/2
e
−

n∑
i=1

(xi − a0)2

2σ2 (14.19)

L1(x1, ...xn) =
1

σn(2π)n/2
e
−

n∑
i=1

(xi − a1)2

2σ2 (14.20)

where (14.19) is a likelihood function if the hypothesis H0 is true (X ∈
N(a0, σ

2)) , and (14.20) is a likelihood function for H1 (X ∈ N(a1, σ
2)).

• The Neyman-Pearson Lemma [6], [64] states that the most powerful
detection rule is the rule which is based on the likelihood ratio L1

L0
given by:

ln(
L1

L0
) = −

n∑
i=1

(xi − a1)2

2σ2 +

n∑
i=1

(xi − a0)2

2σ2

=
1

2σ2

n∑
i=1

[2xi(a1 − a0) − (a2
1 − a2

0)] =
1

2σ2 (a1 − a0)
n∑

i=1

(2xi − a1 − a0)

=
1

2σ2 (a1 − a0)(2x − a1 − a0)n (14.21)

where x =
1
n

n∑
i=1

xi.

The likelihood ratio (14.21) is proportional to the sample mean x and the
inequality ln(L1

L0
) > c is equivalent to the inequality x > c1, where c and c1 are

constants. Taking into account that x is normally distributed with the mean
value a0 and a variance σ2/n (x ∈ N(a0, σ

2/n)) provided that X ∈ N(a0, σ
2)

the critical region is defined as follows:



14.1 Hypotheses Tests 205

P (x > c1) = 1 − P (x ≤ c1) = 1 −
{

1
2

+
1
2
Φ(

c1 − a0

σ

√
n)

}

=
1
2
− 1

2
Φ(

c1 − a0

σ

√
n) = α

where the relationship between a normal distribution and a probability inte-
gral Laplace function Φ was used. Denoting uα as follows Φ(uα) = 1 − 2α,
where α is a significance level, the critical value c1 = a0 + uα

σ√
n

such that

P (x > c1) = α is assigned to the detection test, where uα is the value taken
from the look-up table of the Laplace function.

• The most powerful test of the null hypothesis H0 : a = a0 against the
alternative hypothesis H1 : a = a1 > a0 is the following:
- the null hypothesis H0 is rejected provided that x > a0 + uα

σ√
n

- the null hypothesis H0 is not rejected if x ≤ a0 + uα
σ√
n

.

The standard deviation σ can be replaced in practice by its consistent
estimate (sample standard deviation S) for a sufficiently large sample size.

Notice that a similar result can directly be obtained from One Sample
t-Test described in (14.1.1). The attempts of designing the most powerful
detection rules based on a Neyman-Pearson Lemma are often reduced (as it
is shown above) to the standard hypotheses tests.
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Appendix E

Stability Analysis of the Engine Knock Control System

The stability analysis of the engine knock control system (10.1), (10.13)
is made by means of the Ordinary Differential Equation (ODE) approach
[16],[56]. ODE which is associated with the system (10.1), (10.13) can be
presented as follows:

e(t) = T (t) − Td =
(At − A)

√
w − 1

s
− Td (15.1)

A = f(I) (15.2)
İ = γ sign(e) (15.3)

where A = A(t), s = s(t) are continuous time analogs of the average value
Ak and a standard deviation sk, t is the time variable, I = I(t) is the ignition
timing, γ is a positive design parameter associated with count up/down gains
(it is assumed for simplicity that count up/down gains are the same), f(·) is a
smooth function whose derivative is bounded away from zero,i.e., there exist
a positive constant c1 such that the following inequality holds |∂f

∂I
| > c1 > 0.

Notice that the continuous-time model (15.1) is valid locally only, i.e., in
the neighborhood of equilibrium point. The target value At which is a function
of ignition timing can locally be taken as a constant value.

The control aim in continuous time domain is formulated as follows:

e(t) → 0 as t → t∗ (15.4)

where t∗ is a given time.
Consider the following Lyapunov function candidate

V = e2 (15.5)
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Evaluation of the derivative of (15.5) along the solutions of the system
(15.1)-(15.3) yields

V̇ = −e
√

w − 1[
Ȧ

s
+

(At − A)ṡ
s2

] (15.6)

Taking into account that Ȧ = ∂f
∂I

İ = γ
∂f
∂I

sign(e) and assuming that the
standard deviation is bounded, i.e. s < c2, where c2 > 0 yields

V̇ = [−γ
√

w − 1
c1

c2
+

√
w − 1|At − A||ṡ|

s2
]|e| (15.7)

It is possible to prove that
√

w − 1|At − A||ṡ|
s2 is bounded, i.e.,

√
w − 1|At − A||ṡ|

s2 < c3, where a positive constant c3 depends on the initial
conditions. Then

V̇ ≤ −γ0

√
V (15.8)

where γ0 =
√

w − 1(γ c1
c2

− c3). The control aim (15.4) is reached with

t∗ = 2
γ0

√
V (0). According to the ODE approach the trajectories of continuous

and discrete time systems are close for sufficiently small discretization step.
Thus the stability of the discrete time system (10.1), (10.13) is established.



References
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