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Abstract—We expand upon existing the literature regarding
using Minimum Mean Optimal Sub-Pattern Assignment error
(MMOSPA) estimates in multitarget tracking to apply it to angu-
lar superresolution of closely-space targets, noting its advantages
in comparison to Maximum a Posteriori (MAP) and Minimum
Mean Squared Error (MMSE) estimation. MMOSPA estimators
sacrifice target labeling, but in doing so they can (often) avoid
coalescence of estimates of closely-spaced objects. A compressive
sensing solution, which is a form of MAP estimation, is also
considered and is solved via a brute force search, which, contrary
to popular belief, is computationally feasible when the number
of targets is low, having execution times on the order of tens of
milliseconds for two targets on a linear array.

I. OVERVIEW

Numerous superresolution algorithms exist for determining
the directions of arrival (DOA) of returns from multiple targets
using an antenna array. In this paper, we compare the use
of Minimum Mean Optimal Sub-Pattern Assignment error
(MMOSPA) estimation to the more traditional approaches of
Maximum a Posteriori (MAP) estimation and compressive
sensing (CS) on a linear of planar array, which might be com-
posed of multiple subarrays. Note that these techniques can
often be generalized to applications beyond DOA estimation,
such as in detection [20], [27].

Though CS can be used to estimate the number of tar-
gets present, and MAP estimation can be augmented with a
Minimum Description Length (MDL) criterion, among other
approaches, to estimate the order (the number of targets),
MMOSPA optimization, like Minimum Mean Squared Error
(MMSE) optimization, is not easily adapted for order estima-
tion. Thus, we shall focus our attention on the accuracy of the
DOA estimates assuming that the correct number of targets is
known.

Section II discusses the signal model, including the use
of radar arrays that have been broken into subarrays. Sec-
tion III defines MMOSPA estimation and applies it to an-
gular superresolution. Sections IV and V describe the use
of compressed sensing, also known as compressive sensing,
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and Maximum Likelihood (ML) and MAP estimation for
angular superresolution. Section VI compares the algorithms
through a simulation involving a linear array and Section VII
summarizes the results.

II. THE SIGNAL MODEL

We shall assume that filtering has been performed on a
narrowband signal such that all target returns are mixed down
to baseband, thus eliminating the carrier, and leaving only
a slow phase variation (doppler) with angular frequency ω
from sample to sample. All targets are located in the far-field,
in which case we need only consider planar waves arriving
at the receiver. Let vector um = [um,1, um,2, um,3]′, with
the apostrophe denoting the transpose, denote the unit vector
pointing in the direction of origin of the mth wave, whereby
there are a total of M sources. The ensemble of these pointing
vectors shall be designated by U. The phase center of the ith
antenna shall be located at ri = [ri,1, ri,2, ri,3]′, corresponding
to the x, y and ζ directions shown in Figure 1. This means
that the complex baseband signal on antenna i, at a particular
time is

zi =

M∑
m=1

bmai(um) + wi ai(um) ,ej2πf
r′ium

c (1)

where wi is an additive, zero-mean, complex Gaussian noise
in the ith channel, bm is the complex amplitude of the return
from the mth source, f is the carrier frequency and c is the
speed of light.

The steering vector for a general array in three dimensions
is defined to be a collection of ai(um) for all Nel elements of
the antennas in the array:

am = [a1(um), a2(um), . . . , aNel(um)]
′ (2)

We can thus write the output of all of the elements in the array
in vector form as:

z = [z1, z2, . . . , zNel ]
′

=

M∑
m=1

ambm + w = Ab + w (3)

where

A = [a1,a2, . . . ,aM ] w =[w1, w2, . . . , wNel ]
′ (4)
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Fig. 1. The vectorial relationship of the wave direction with respect to the
coordinate system of the antenna array. The array is in the x-y plane and the
direction of the target is specified by a unit vector u coming out of the plane.

The likelihood of the directions of arrival, U, and the complex
amplitudes, b, given the array outputs is thus

p(z|U,b) = π−Nel |Q|−1e−(z−Ab)HQ−1(z−Ab) (5)

where H denotes the conjugate transpose (Hermitian) and Q
is the correlation matrix of the noise, which might include
information regarding the effects of Gaussian jammers, studied
in [17]. The likelihood function for ML estimation of target
parameters for monopulse estimation has been presented many
times. Consider, for example, [16], [18], [28] and [21]. We
used the model of [16] and [18].

Similarly, we can write the a posteriori PDF of U and b
using Bayes’ theorem as

p(U,b|z) =
p(z|U,b)p(U,b)

p(z)
(6)

where p(U,b) is the predicted value of directions of arrival
and the complex amplitudes. Assuming that the antenna el-
ements are isotropic (i.e. the gain at a single antenna does
not depend upon the angle of arrival) over the area being
considered, U and b can usually be approximated to be
independent. That is,

p(U,b) = p(U)p(b) (7)

An uninformative prior on the directions of arrival is

p(U) =

M∏
m=1

p(um) (8)

p(um) =
3

2π
for valid um (9)

We consider valid um to be those directions such that
u2m,1 + u2m,2 + u2m3

≤ 1 and um,3 > 0, which simply tells us
that the targets are located in front of the array (a reasonable
assumption, since an antenna mounted on a conductive plate
has almost zero sensitivity in the back).1 In practice, however,

1The 3
2π

in (9) comes from evaluating the inverse of∫ 1

−1

∫ √
1−u2

m,1

−
√

1−u2
m,1

∫ √
1−u2

m,1−u
2
m,2

0
1dum,3dum,2dum,1

when using a high gain antenna, such as the one used in
the simulation section of this paper2, one can usually assume
that the target returns are within the beam or within some
factor (≥ 1) of the beamwidth (if not, the targets wouldn’t be
detected). This means that p(U) would be a nonzero constant
within the beam and zero elsewhere.

The prior on the complex amplitudes of the targets is
generally assumed to be a zero-mean complex Gaussian (i.e
with its magnitude following a Swerling 1 model for known
radar cross sections) random variable:

p(b) = π−M |Qb|−1e−b
HQ−1

b b (10)

with Qb being diagonal. Alternately, one might use the model

p(b|z) =

M∏
m−1

p(bm|z) bm =Ame
jθm (11)

where Am and θm are real and uniformly distributed:

p(Am) =
1

Amax −Amin
for Amin ≤ Am ≤ Amax (12)

p(θm) =
1

2π
for 0 ≤ θm ≤ 2π (13)

That says that the complex angles of the amplitudes are com-
pletely unknown, and the amplitudes vary uniformly between
Amin and Amax. The value Amin can be determined from the
detection threshold3 and the value of Amax can be determined
by the maximum possible amplitude coming from the A/D
converters at the antennas or the subarray outputs.

In the following sections, we shall assume that p(b) is
distributed according to (10) with a known covariance matrix
Qb. Additionally, we will assume that p(U) is distributed
uniformly about the boresight within a region of length of
1.6 bw where “bw” represents the beamwidth.4

A. The Use of Subarrays

In general, the elements in an antenna array are collected
into subarrays. Letting z be the set of observations from the
individual array elements, the subarray outputs are determined
according to the transformation

z̃ = THDz (14)

where the length of z̃ is equal to the number of subarrays.
The matrix D is a diagonal matrix with complex (unity

2The maximum signal amplitude gain may be found by evaluating the
magnitude of the sum-beam (add together the outputs of all of the array
elements) with a target with unit amplitude at the boresight (u = 0 if no
phase shift is used) and the noise covariance on the output is 1TQ1. Using
the given antenna array and tapering mentioned in the simulation section, the
signal to noise gain at the output is 10.5 dB (The square of the amplitude
gain being the power gain).

3If the maximum signal amplitude gain is gM (for the radar model used in
the simulation section, g = 25) and the detection threshold is τ (detection is
generally done on the sum-beam), then the minimum possible amplitude is if
all of the waves add constructively, thus Amin = τ/(gM ). This ignores the
details of the detection algorithm estimating the number of targets present.

4That is, we are assuming that everything is within a rectangle about the
boresight whose sides are, at the closest 0.8 bw from the boresight.



magnitude) values representing the settings of the phase-
shifters determining the array look-direction. The matrix T
contains the set of taper weights, which are normally real-
valued. The likelihood of the subarray outputs is consequently

p(z̃|U,b) = π−Ns |Q̃|−1e−(z̃−Ãb)HQ̃−1(z̃−Ãb) (15)

where Ns is the number of subarrays and

Q̃ =THDQDT Ã = [ã1, ã2, . . . , ãM ] ãm =THDam
(16)

The subarray outputs can be thought of as virtual antenna el-
ements whose phase centers coincide with the phase centers of
the subarrays and whose directional response is determined by
the subarray pattern. This use of subarrays for superresolution
has previously been demonstrated using the MUSIC algorithm
in [19]. Superresolution as applied to subarray outputs is also
discussed in [13].

III. MMOSPA ESTIMATION

Recent work has drawn attention to the Optimal Subpattern
Assignment (OSPA) error metric, rigorously defined in [24],
as an optimality criterion for use in tracking algorithms [3],
[4], [7], [8], [11], [25]. The OSPA error metric is quite general.
For the purposes of this paper, we will consider the most
commonly used variant, which assumes that the number of
“targets” is known, namely it uses the error measure

d̄(x̂,x) =
1

NT
min
a
‖xa − x̂‖2 (17)

This measure represents a squared error between the “re-
ordered” stacked set of true state vectors x for all NT targets,
and the stacked set of state estimates, x̂. The subscript a is a
permutation vector representing the order of the target states
within the stacked vector:

a = [a(1), a(2), . . . , a(NT )]
′ (18)

x̂a = [x̂(a(1))′, x̂(a(2))′, . . . , x̂(a(NT ))′]
′ (19)

where each a(i) is a number between 1 and NT such that
a(i) 6= a(j) and x̂i represents the ith target state.

The Minimum Mean OSPA Error (MMOSPA) estimate is,
by definition:5

x̂M , arg min
x̂

E
[

min
a
‖xa − x̂‖2

∣∣∣ z] (20)

MMOSPA estimation is attractive for target tracking, be-
cause it allows for “smooth” estimates, similar to Minimum
Mean Squared Error (MMSE) estimation, while avoiding the
problem of “coalescence” that can occur. Coalescence occurs
when the identity of the targets becomes uncertain. For exam-
ple, suppose that there exist two equiprobable hypotheses for
the target states. One is x = [x̂(1)′, x̂(2)′]′ and the other is
x = [x̂(2)′, x̂(1)′]′. Here, the only difference is which target

5In practice, one would probably want to perform the optimization consid-
ering only the directional components of x, since the value ‖xa − x̂‖2 does
not have a physical meaning; it mixes the squares of angular differences with
the squares of amplitude differences.

gets which state. Though it is clear that the correct target
states are x̂(1) and x̂(2) (even if we do not know which state
goes with which target), the MMSE estimate of the states is
the same for both targets and is directly between the correct
estimates, i.e. (x̂1 + x̂2)/2. On the other hand, the MMOSPA
estimate is x̂(1) and x̂(2), but it does not say which state is
associated with which target.

In addition to tracking, MMOSPA estimation can be ap-
plied to angular superresolution, among other applications. In
angular superresolution, the likelihood, (5), has a symmetry
in terms of the identities of each (um, bm) pair. Whereas in
target tracking applications, x is a stacked vector of target
states, when performing MMOSPA angular superresolution,
the “states” are the directions of arrival of the target returns,
um. In [7], MMOSPA estimation for angular superresolution
was considered for the case of a simple linear array given
that the complex amplitudes of the target returns were known.
The scalar nature of the directions of arrival (essentially, one
could estimate azimuth, but not elevation) allowed for the min-
imization inherent to MMOSPA estimation to be performed
explicitly.

Assuming that the complex amplitudes of the target esti-
mates have a complex Gaussian prior, as in (10), then the
signal model of (3) is the sum of two Gaussian random
variables, whereby Ab has a degenerate covariance matrix due
to linear dependence of the estimates. The conditional PDF
p(z|U) is this the PDF of the sum of two Gaussian random
variables:

p(z|U) ∼ N
{
z;0,Q + AQbA

H
}

(21)

However, in order to be able to perform MMOSPA es-
timation, we need p(U|z), not just p(z|U). Using, Bayes’
theorem, and assuming that p(U) is distributed uniformly over
the (−1, 1) interval for each direction of arrival, this can be
obtained as

p(U|z) =
p(z|U)p(U)

p(z)
=

p(z|U)∫
U
p(z|U)dU

(22)

In [5] an explicit solution for the MMOSPA estimate of two
scalar targets was derived6. However, we found that standard
quadrature integration to evaluate the integrals for that solution
when used in the Simulation section tended to produce poor
results. Thus, instead, we directly evaluated the integral in (20)
using importance sampling, which we discuss in the following
subsection.

A. MMOSPA Estimation via Importance Sampling

Importance sampling samples one PDF, g(x), to find the
mean of another PDF, h(x). It does this noting that

x̄ =

∫
x

h(x)x dx =

∫
x

(
h(x)

g(x)

)
g(x)x dx = Eg(x)

[(
h(x)

g(x)

)
x

]
(23)

6A formulation of this solution for more than two scalar targets has been
derived and will be presented in [6].



Thus, the mean of h(x) can be approximated using N samples
as

ˆ̄x =
1

N

N∑
j=1

h(xj)

g(xj)
xj (24)

where xj is the jth sample of g(x).
Suppose, however, that

h(x) =
1

c
f(x) c =

∫
x

f(x) dx (25)

In this case, the constant, c too can be found by importance
sampling by sampling g(x) and calculating

ĉ =
1

N

N∑
j=1

f(xj)

g(xj)
(26)

Substituting into (24), we can estimate the mean of h(x) as

ˆ̄x =
1∑N

j=1
f(xj)
g(xj)

N∑
j=1

f(xj)

g(xj)
xj (27)

To relate this to the problem at hand, we can say that
x = [U]′ and f(x) = p(z|U)p(U) and h(x) = p(U|z). Thus
using (24) and choosing an appropriate sample distribution,
g(x), one can use (24) to find MMSE estimates of U. Since
the calculation of the MMSE and MMOSPA estimates from
a sampled PDF differs only in the ordering of the samples
when finding the expected value, MMOSPA estimates can be
found by taking Ni samples of g(x), adjusting the ordering
of the states within each sample, as described in [4], [8], [25]
and then estimating the mean using (27) with the reordered
samples.

Importance sampling lets us use a simple PDF to sample a
difficult PDF over the same domain. However, if the simple
PDF is too different from the original PDF, that is, if it is
highly probably where the original PDF is improbable, then
the accuracy of the estimates obtained by importance sampling
will increase very slowly as the sample size increases.

In the simulation section, when considering the linear array,
we let the sample distribution be a Gaussian PDF whose mean
was the mean of the MAP estimate, and whose covariance was
taken to be a diagonal matrix with 0.03 on the diagonal, a
number proportional to the average error of the MAP estimates
across the entire array. In practice, covariance values could be
read from a table based upon an observed signal to noise ratio.

The Monte Carlo integration was performed using 4, 000
points in the simulation section. That said, on occasion the
proposal distribution was sufficiently mismatched from the
sample distribution that f(x) = 0 within machine precision
for a number of samples. In such cases, we did not count
those points towards the 4, 000 and resampled.

In order to perform the minimization in a computationally
efficient manner, such that we need not store all of the points
generated from importance sampling at once, we did it in a
suboptimal, sequential manner. The sequential algorithm for
adding the ith point generated from importance sampling is

1) Evaluate the MMOSPA estimate using the i − 1 previ-
ous samples and the orderings for them as previously
determined. That is use equation

xi−1M =
1∑i−1

j=1
f(xj)
g(xj)

i−1∑
j=1

f(xj)

g(xj)
xj,aj

(28)

where xj,aj
denotes sample xj having the ordering given

by aj .
2) Given the current sample, Determine the ordering of

the current sample, x̂i as the ordering minimizing the
distance between the same and the partial MMOSPA
estimate x̂i−1M .

3) Generate the next sample via importance sampling and
return to step 1 until enough samples have been gener-
ated.

IV. COMPRESSIVE SENSING ESTIMATION

Compressive sensing is a term for a number of methods
to solve for sparse solutions to underdetermined linear prob-
lems. Compressive sensing has been considered for angular
superresolution in radar array processing in [12], [14], [15],
[22]. In [15] and [1], it was shown that compressive sensing
is equivalent to MAP estimation with a Laplacian prior on
the complex amplitudes. In this case, the problem is that of
a Least Absolute Selection and Shrinkage Operator (LASSO)
problem [26]:

min
b
‖z−Ab‖22 (29)

subject to ‖b‖1 ≤ ε (30)

Unlike in the problem formulation discussed in Section II,
we are not explicitly estimating the direction of array of the
target returns. Instead, the matrix of steering vectors A is
set to contain a steering vector for every possible direction
of arrival that is to be considered jointly for both targets (a
dictionary). We shall let the number of entries be NA. The
complex, nonzero values in b are thus the complex amplitudes
of the target returns, also indicating from which directions the
returns came. Varying the ε term changes the sparsity of the
solution, with a smaller term leading to a sparser solution.

Though seldom mentioned, correlations in the noise (i.e.
jammers) can be taken into account when performing com-
pressive sensing. The optimization criterion given in (29) is
equivalent to the logarithm of the likelihood expressed in
(5) with Q = I, dropping the constant terms. Changing the
optimization criterion to minimize ‖Q− 1

2 z−Q−
1
2Ab‖22 takes

that into account. Thus, the compressive sensing problem is
the same as maximizing (5) with an enormous b vector having
a prior distribution of

p(b) =
λ

2
exp

[
−λ

2
‖b‖1

]
(31)

where the value of λ depends upon the value of ε chosen. This
is a specific realization of the generalized multivariate Laplace
distribution, presented in [10]. Assuming that the number of
directions of arrival is known a priori, one could perform a



search for an ε term that provides a solution with the correct
sparsity.

However, since the LASSO optimization is not well suited
for a problem having a known sparsity, we will implement the
following, more difficult optimization, which is also consid-
ered a form of compressive sensing,

min
b
‖z−Ab‖22

subject to ‖b‖0 = n

where what appears to be an l0-norm of b represents the
number of nonzero entries in b.7 In other words, one is
searching for the best solution to the problem such that the
number of nonzero elements in b is equal to n.

If we know which elements of b are nonzero, then the solu-
tion is simple. That is, if we let b̃ be b with the zero-elements
removed and Ã be A with the columns corresponding to the
zero elements of b removed, then the optimization problem is

min
b̃
‖z− Ãb̃‖22

and the solution is

b̃ =
(
Ã′Ã

)−1
Ã′z (32)

We shall thus solve this optimization problem by brute
force. Given M targets, we evaluate the solutions for all

(
NA

M

)
possible combinations of nonzero elements in b and choose
the solution with the lowest cost. Due to the brute force nature
of the solution, it is not feasible when a large number of targets
is present, though it can be easily parallelized across many
processors. Indeed, with a moderate number of targets and
good parallelization, the brute-force approach could be faster
than algorithms such as [12], which is hard to parallelize,
since it requires a large amount of branching to search a tree
structure. This brute force approach shall be considered as a
“best case” solution to the compressive sensing problem, as
typically, approximate solutions are used.

A. Building the Dictionary

When performing compressive sensing, a question arises
regarding how the discretization of the parameter space should
be done in order to build the dictionary. In this case, which
directions of arrival should be entered into A? In general, one
would want to have a higher density of points around more
probable areas so that the final result would consist of a higher
expected accuracy. With complicated PDFs, such a variable
density dictionary might be obtained by drawing Monte Carlo
samples from the prior and using them to form the dictionary
entries. In the case of this paper, since the prior discussed in
Section II is uniform within a region of 1.6 bw centered on
the boresight, we shall simply uniformly distribute the samples
over the valid region.

Compressive sensing has been extensively used in other
aspects of radar array processing and radar imaging, whereby
an extensive bibliography can be found at [23].

7This notation was first used in compressive sensing in [9].

V. MAXIMUM LIKELIHOOD AND MAXIMUM A POSTERIORI
ESTIMATION

Given an initial estimate of U, when using a planar array,
maximum likelihood direction estimation is typically per-
formed by building a gradient for each um,d corresponding to
the (x, y) coordinates of the vector and using a Quasi-Newton
method (see, e.g, [2]) on (5). Note that in this case we are
not explicitly constraining such that each um is a unit vector,
because we can determine the um,3 coordinates perpendicular
to the plane of the radar implicitly from um,1 and um,2, i.e.
um,3 =

√
1− u2m,1 − u2m,2 and if the initial estimates are

reasonably good, (e.g. within the beam), one does not run
into scenarios where either the um,1 and the um,2 coordinates
of um are too large to represent a valid unit vector. Basically,
previous ML estimation approaches have implicitly included a
uniform prior distribution on the directional angles about the
boresight. The most common solution approach, however, has
been a conjugate gradient method due to the simple form of
the gradient [18], [28]. It should be noted that the covariance
matrix Q can contain information regarding the location of
Gaussian jammers. This covariance matrix could be obtained
by sampling the noise in the absence of a signal.

MAP estimation is almost identical to that of ML estima-
tion, except we have to take into account the prior on the
complex amplitudes (the uniform prior on the arrival direc-
tions will only be implicitly included, i.e. when performing
optimization, one simply has to begin within the valid region
and allow an iteration step to leave the valid region.

Taking the logarithm of (6) (using the complex Gaussian
prior on the complex magnitudes), dropping the constant
terms, and multiplying by −1, we find that we want to
minimize

L[U,b] = (z−Ab)HQ−1(z−Ab) + bHQ−1b b (33)

We shall first minimizing (33) with respect to b and substitute
the result back in. The gradient with respect to b, dividing out
a constant of 2, is8

1

2
∇bL(U,b) = −AHQ−1z +

(
AHQ−1A + Q−1b

)
b (34)

The optimal value for b is thus

b =
(
AHQ−1A + Q−1b

)−1
AHQ−1z (35)

Substituting back in, noting that Q−1 =
(
Q−1

)H
(because it

is a covariance matrix), we get

L[U] =zH
(
I−AQ−1

(
AHQ−1A + Q−1b

)−1
AH

)
Q−1

×
(
I−A

(
AHQ−1A + Q−1b

)−1
AHQ−1

)
z (36)

performing out the multiplication9, dropping a constant Q−1

term and multiplying by −1 we end up with the following

8We shall note the identities for complex vectors that ∂
∂b∗ a

Hb = 0 and
∂
∂b∗ b

Ha = a. The gradient vector of a complex function, J , is simply
∇bJ = 2 ∂

∂b∗ J .
9Note that AHQ−1A is real and that (XY)H = YHXH .
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Fig. 2. The MOSPA error performance of the various algorithms for estimating the DOA of two targets on a linear array. Excluding low-probability complex
amplitudes, the MMOSPA estimate exhibits relatively constant error as a function of the separation.

quantity that we would like the maximize the following radar
scan pattern

S[U] =zHQ−1A
(
AHQ−1A + Q−1b

)−1
AHQ−1z (37)

=
∥∥WHz

∥∥2 W , Q−1A
(
AHQ−1A + Q−1b

)−1/2
(38)

It can be seen that MAP estimation is equivalent to ML
estimation if Q−1b = 0.

The derivative of S[U] with respect to a scalar direction
element um,d is given in Equation (39), where Aum,d

is the
derivative of matrix A with respect to um,d. Equation (39) was
simplified using the product and chain rules and by noting that
if z(x) = a(x)+jb(x) where a(x) and b(x) are real functions
of the real scalar x, then ∂z

∂x = ∂a
x +j ∂b∂x . Additionally, we used

the identity for the matrix derivative of an inverse: ∂Y−1

∂x =
−Y−1 ∂Y∂xY

−1. The derivative of the element in row i and
column j of A with respect to um,d is

Aum,d
(i, j) =

{
jωrm,de

jωr′ium if j = m

0 otherwise
(40)

where rm,d is the appropriate dimension of the vector from
the origin to the mth antenna.

Thus, equation (39) can be used to build the gradient for
Quasi-Newton estimation of the directions of arrival. If the
complex amplitudes of the target returns are desired, they can
be obtained using (35). Order estimation can be performed
using various criteria, such as the MDL, as was done in [16].

A. Generating Initial Estimates

In implementing the MAP estimator for the simulation, it
was noticed that randomly choosing initial estimates within the
beam did not always produce good results. The results tended
to be poor if the initial estimates were too close together.

In the simulations, since we had two targets, we ran the
algorithm twice using different initial estimates. During the

first run, the estimates were 0.6 bw apart, centered about the
boresight. During the second run, one estimate was at 0.3 bw
and the other at −0.5 bw. In situations with more targets, the
initial estimates could be placed uniformly within the beam.

VI. SIMULATIONS

The estimation algorithms were run on a 5-element linear
array without tapering. The −3 dB beamwidth was approx-
imately 41◦. The element spacing was assumed to be λ/2,
obviating the need to choose a carrier frequency. The boresight
was chosen to be straight ahead, i.e. D was set to the
identity matrix. One target was fixed on the boresight. The
location of the second target was varied within the beam.
The complex amplitudes were generated as complex normal
random variables. The average power of the complex ampli-
tudes was chosen to be 20 dB above the noise at each of the
elements, with the covariance matrix Qb being diagonal. For
each position, 1, 000 Monte Carlo runs were performed. The
dictionary for the CS solution was composed of 200 entries
ranging from −0.8 bw to 0.8 bw. To make the comparison fair
for the other estimators, estimates from the other solutions
that were outside of the range from −0.8 bw to 0.8 bw were
clipped to the edges of the region.

Figure 2 shows the root of the MOSPA error as a fraction of
the beamwidth for CS, MAP, MMOSPA and MMSE estima-
tion. In (a) all randomly generated complex amplitudes (with
random phases) were used, whereas in (b), the bottom 5% of
amplitudes were discarded. This can be more representative
of the results from detection algorithms, since low-amplitude
signals are unlikely to be detected. The MMSE estimate was
calculated using an importance sampling technique similar to
that used to find the MMOSPA estimate to avoid precision
problems that caused quadrature integration to produce unre-
liable results. The MMSE estimate becomes notably worse at
the targets separate, since it is the same for both directions (due
to the symmetry of the PDF) and is located between both of the



∂

∂um,d
S[U] = zHQ−1

(
Aum,d

(
AHQ−1A + Q−1b

)−1
AH + A

(
AHQ−1A + Q−1b

)−1
AH
um,d

)
Q−1z

− zHQ−1A
(
AHQ−1A + Q−1b

)−1 (
AH
um,d

Q−1A + AHQ−1Aum,d

) (
AHQ−1A + Q−1b

)−1
AHQ−1z (39)

true directions of arrival. In other words, MMSE estimation
is not suitable for angular superresolution. As expected, the
MMOSPA estimate performed the best. The CS solution
was worse than the MAP solution, which is not surprising,
since the CS solution was really just a discretized version of
maximum likelihood estimation. The brute-force CS solution
was implemented as unoptimized C-code and called as a mex
file in MATLAB. Note counting the time taken to generate
the dictionary, which only be done once, the CS solution
took about 0.06 seconds to execute for each each combination
of target locations in each Monte Carlo run, demonstrating
that with sufficiently small problems, approximations are not
necessary. The MMOSPA estimator was implemented directly
in MATLAB and took approximately 0.45 seconds to execute.
The MAP estimator was also implemented in MATLAB
without optimization and took about 0.1 seconds to execute.

VII. RESULTS AND CONCLUSIONS

We presented MAP, MMOSPA and CS methods for es-
timating the directions of arrival of returns from multiple
targets using a linear array. The exact compressive sensing
solution, being merely a discretized ML solution, was found
to have the worst performance. The iterative MAP solution
was found to be better, but it generally did not beat our
suboptimal approximation of the optimal MMOSPA estimate.
Though MMOSPA estimation might be too computationally
complex for real-time estimation on a large array estimating
many directions of arrival, it can be used to estimate a lower
bound when evaluating the performance of different estimation
algorithms. However, care has to be taken when choosing the
proposal distribution when numerically evaluating the integral.
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