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ABSTRACT

Optimizing over a variant of the Mean Optimal Subpattern

Assignment (MOSPA) metric is equivalent to optimizing over

the track accuracy statistic often used in target tracking bench-

marks. Past work has shown how obtaining a Minimum MO-

SPA (MMOSPA) estimate for target locations from a Prob-

ability Density Function (PDF) outperforms more traditional

methods (e.g. maximum likelihood (ML) or Minimum Mean

Squared Error (MMSE) estimates) with regard to track accu-

racy metrics. In this paper, we derive an approximation to the

MMOSPA estimator in the two-target case, which is generally

very complicated, based on minimizing a Bhattacharyya-like

bound. It has a particularly nice form for Gaussian mixtures.

We thence compare the new estimator to that obtained from

using the MMSE and the optimal MMOSPA estimators.

Index Terms— MOSPA, tracking, state estimation

1. INTRODUCTION

What is it that one wishes to get from a target tracking al-

gorithm? Based upon criteria often used in tracking bench-

marks, at a particular time one wants to know where there

are targets, and which targets correspond to which locations.

However, many tracking algorithms do not perform optimiza-

tion over the correct quantities to answer these questions in

an “optimal” way.

Common criterion for deciding “where the targets are

now” is to take the mean of the most likely hypothesis, or to

optimize over the Mean Squared Error (MSE) of the target

states [2]. However, the most likely hypothesis doesn’t take

into account additional uncertainty from other hypotheses,

and, as discussed in [3], the MMSE estimate can lead to

track coalescence when a large degree of uncertainty in the

track identities exists. Optimizing over the MOSPA metric

[7] would perhaps be more desirable. In one form, this is the

same as finding the MMSE estimate, except the assignment

of tracks to truth is not specified. This is equivalent to op-

timizing over the track accuracy statistic commonly used in

tracking benchmarks [4]. Thus, a MOSPA-optimal algorithm

should outperform other algorithms in common benchmarks.

This work was partially supported by the Office of Naval Research under

contracts N00014-09-10613 and N00014-10-10412.

In Section 2 we discuss the MOSPA Statistic and the MMO-

SPA estimator, which was originally introduced in [5].

In this paper, we concern ourself with approximating the

MMOSPA estimate for two targets when given a represen-

tation of the target PDF.1 In Section 2 we review the OSPA

metric and the problem of optimizing over the mean of this

metric. Due to the complexity of said problem, in Section 3

we consider an approximation to the MMOSPA estimate. The

approximation may be used easily with any PDF whose mo-

ment generating function is explicit. In Section 4 we demon-

strate the use of the approximation on Gaussian mixture dis-

tributions. The results are summarized in Section 5.

2. THE MOSPA STATISTIC AND THE MMOSPA
ESTIMATE

The Optimal Subpattern Assignment (OSPA) metric, dis-

cussed in detail in [7], is given in its most general form in (1).

It is used to compare a vector of state estimates for T tracks,

x̂, to a vector of the NT true target locations x. Each of these

vectors represents the stacked set of states for each track or

target2. Thus

x =
[
xT
1 , x

T
2 , . . . , x

T
NT

]T
(2)

where the superscript of T represents a transpose and xi is the

state of target i. The variable p in (1) is an arbitrary number

larger than one. The distance metric d(c) is defined to be

d(c)(x̂a(t), x) = min
[
c, d(x̂a(t), xt)

]
(3)

where d is an arbitrary distance metric. We shall use the nth

power of the l2 norm, d(x̂a(t), xt) = ‖x̂a(t) − xt‖n. The

value c is a cutoff for the maximum allowable error added by

a single track. The vector a is a permutation vector consisting

of components

a =
[
a1, a2, . . . , amin[T,NT ]

]T
(4)

It assigns a permutation of the targets to the ordered tracks.

All together, OSPA is a very general metric for measuring

1In this paper, we consider only estimates for display at a particular time;

the PDF could come from any tracker, e.g. the MHT or a particle filter.
2A target is the “truth”; a track is what a tracker thinks is a target.
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d̄(c)(x̂,x) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1

T
min
a

NT∑
t=1

d(c)(x̂t, xa(t))
p + cp (T −NT )

)1/p

if NT ≤ T .

(
1

NT
min
a

T∑
t=1

d(c)(x̂a(t), xt)
p + cp (NT − T )

)1/p

if NT > T

(1)

an “orderless” distance between a set of tracks and targets,

penalizing a mismatch in the number of tracks and targets by

approximately c, and capping the error contribution from any

track by approximately c.
In this paper, we shall consider a specific form of the

OSPA metric in the two target case, namely, that when the

number of tracks and targets are equal T = NT = 2, p = 1,

and we take the limit of c → ∞ and we use a norm as the

distance metric, d. Taking the expected value over the PDF of

x, we get a MOSPA statistic for two targets

E
[
d̄(c)(x̂,x)

]
=

1

NT
E

[
min

{∥∥∥∥
[
x̂1

x̂2

]
−x

∥∥∥∥
n

,

∥∥∥∥
[
x̂2

x̂1

]
−x

∥∥∥∥
n}]

(5)

The MMOSPA estimate optimizes over x̂ in (5). Note that

the MMOSPA estimate of a given PDF is generally neither

the mean nor the most likely point of the PDF. It was derived

in [5], and has an integral form that, in general, can not be

explicitly solved. In the following section, we shall derive a

simple approximation for this optimization.

Though minimizing the MOSPA statistic tells us where

targets are located, it says nothing about which locations cor-

respond to which targets. However, this can be solved in a

second optimization step, if desired. Given a set of position

estimates, and the PDFs of the targets, we can calculate some-

thing similar to an association matrix, A = [ai,j ], where ai,j
is the probability that estimate i is closer to the true location

of target j than to any other target. The most likely identities

of the target estimates can then be determined using the JVC3

or auction algorithms [6].

3. AN APPROXIMATION OF THE MMOSPA
ESTIMATOR

We shall consider the case where n = 4 in (5)4. The MOSPA

error metric from (5) for the special case of two targets may

be expressed and bounded as follows5

1

NT

∫
x∈R2d

min [‖x− x̂1‖n, ‖x− x̂2‖n] p(x) dx

≤ 1

NT

∫
x∈R2d

‖x− x̂1‖nβ‖x− x̂2‖n(1−β)p(x) dx (6)

3Joncker-Volgenant-Castanon.
4A similar closed-form solution can be found for any even value of n > 2.

We chose n = 4, because it has the simplest form
5Proof: Suppose that a ≥ b ≥ 0. We know that if 0 ≤ β ≤ 1 then(

a
b

)β ≥ 1. Thus, aβb1−β ≥ b. Subsequently, min[a, b] ≤ aβb1−β ,

because we know that a ≥ b. We arrive at the same conclusion if b ≥ a.

where d is the dimensionality of the state and p(x) is the PDF

of the targets. x̂2 is the same as x̂1, but with the ordering of

the targets reversed. x̂2 may also be expressed as x̂2 = χx̂1

where

χ �
[
0d Id
Id 0d

]
(7)

and Id and 0 are d-dimensional identity and zero matrices.

To get the MMOSPA estimate we would minimize the

left-hand side of (6) over x̂. However, in order to simplify

things and eliminate the integral, we are going to optimize the

right-hand side of (6) over x̂. The rest of this suggestion shall

describe how to simplify the right-hand side of (6), and how

to derive the gradient and Hessian needed to perform numeric

optimization.

The inequality in (6) is based on the same relation that

forms the basis of the Chernoff and Bhattacharyya bounds. If

we say that β = 1/2, as in the Bhattacharyya bound, and n =
4, i.e. we are using the l2 norm raised to the fourth power, then

if we can calculate moments of the multivariate distribution of

x, we can eliminate all of the integration. Noting that x̂T
1 x̂1 =

x̂T
2 x̂2, evaluating the integral with β = 1/2 and n = 4, our

optimization problem becomes

min
x̂

1

NT

∫
x∈R2d

‖x− x̂1‖2‖x− x̂2‖2p(x) dx (8)

=min
x̂

1

NT
E
[(
xTx

)2 − 2
(
xTx

)
xTAx̂1 + 2(xTx)

(
x̂T
1 x̂1

)
−2(x̂T

1 x̂1)
(
xTAx̂1

)
+ 4

(
xT x̂1

) (
xTχx̂1

)
+ (x̂T

1 x̂1)
2
]
(9)

A � χ+ I2d (10)

3.1. The Solution for a Multivariate Gaussian Distribu-
tion

If p(x) is a multivariate Gaussian distribution with mean μ
and covariance matrix P we can easily simplify (9). We shall

note the following noncentral moments of the multivariate

normal distribution6

E
[
xT c

]
= μT c (11)

E
[
xTx

]
= tr[P ] + μTμ (12)

E
[(
xT c1

) (
xT c2

)]
= cT1

(
P + μμT

)
c2 (13)

6These quantities were found using the method described in [1], which

can be used for finding similar moments of any multivariate PDF whose mo-

ment generating function is explicit.
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Example
MOSPA, n = 2 MOSPA, n = 4

μ μML μB
4 μopt

2 μ μML μB
4 μopt

4

Two Gaussian Mixture 6.55 3.25 3.20 3.01 231 65.4 41.5 41.4

Six Gaussian Mixture 0.626 0.597 0.351 0.333 1.08 1.31 0.364 0.336

Table 1. The results of the simulations out to three significant digits. The MOSPA error for n = 4, over which we are

optimizing, as well as the MOSPA error for n = 2 (which is the same as a common track accuracy criterion [4]) are given at

three points: the mean of the PDF, μ, the most likely hypothesis, μML, the point obtained by optimizing over the bound for

n = 4, μB
4 , and the optimal point under the given MOSPA metric, μopt

2 and μopt
4 .

E
[(
xTx

)2]
= tr[P ]2 + 2 tr[PP ] + 2 tr[P ]

(
μTμ

)
+ 4μTPμ+

(
μTμ

)2
(14)

E
[(
xTx

) (
xT c

)]
=

(
tr[P ]μ+ 2Pμ+

(
μTμ

)
μ
)T

c (15)

Designating the n = 4 MOSPA error bound by μB
4 , substitut-

ing into (9), we get

NTμ
B
4 = k0 + k1x̂1 + k2

(
x̂T
1 x̂1

)
+ (x̂T

1 x̂1) (k3x̂1)

+ x̂T
1 k4x̂1 + (x̂T

1 x̂1)
2 (16)

where

k0 = tr[P ]2 + 2 tr[PP ] + 2 tr[P ]
(
μTμ

)
+ 4μTPμ

+
(
μTμ

)2
(17)

k1 = −2
(
tr[P ]μ+ 2Pμ+

(
μTμ

)
μ
)T

A (18)

k2 = 2
(
tr[P ] + μTμ

)
(19)

k3 = −2μTA (20)

k4 = 4
(
P + μμT

)
χ (21)

We know that the following gradients are

∇xc
Tx = c (22)

∇x

(
xTx

) (
cTx

)
= 2

(
cTx

)
x+

(
xTx

)
c (23)

∇x(x
TCx) = Cx+ CTx (24)

∇x

(
xTx

)2
= 4

(
xTx

)
x (25)

The gradient of (16) with respect to x̂1 is thus

∇x̂1
NTμ

B
4 = kT1 + 2k2x̂1 + 2 (k3x̂1) x̂1 +

(
x̂T
1 x̂1

)
kT3

+
(
k4 + kT4

)
x̂1 + 4

(
x̂T
1 x̂1

)
x̂1 (26)

The Hessian is

∇x̂1
∇T

x̂1
NTμ

B
4 = 2k2I2d + 2 (k3x̂1) I2d + 2kT3 x̂

T
1

+ 2x̂1k3 + (k4 + kT4 ) + 4
(
x̂T
1 x̂1

)
I2d + 8x̂1x̂

T
1 (27)

Given the objective function, the gradient and the Hes-

sian, we can use an optimization algorithm, such as Newton’s

method, to approximate the MMOSPA estimate by minimiz-

ing the bound. The mean of the normal distribution can be

used as an initial estimate.

3.2. The Solution for a Multivariate Gaussian Mixture
Distribution

If p(x) is a Gaussian mixture, then (8) can be broken down

across all of the Gaussians as follows:

1

NT

∫
x∈R2d

‖x− x̂1‖2‖x− x̂2‖2p(x) dx =

1

NT

NH∑
i=1

βi

∫
x∈R2d

‖x− x̂1‖2‖x− x̂2‖2pi(x) dx (28)

where pi(x) is the PDF of the ith Gaussian, βi is its proba-

bility, and there are NH Gaussians in the mixture. Thus, the

solution is the same as when considering the single Gaussian,

except the coefficients of the objective function are replaced

with weighted sums of the coefficients of each Gaussian in

the mixture.

4. SIMULATIONS

We shall evaluate the performance of the estimator minimiz-

ing the bound for two one-dimensional targets, x1 and x2 in

two examples7. In the first, the mixture consists of two Gaus-

sians with covariance

P2 =

[
5 −4
−4 5

]
(29)

The first Gaussian has mean (2,−1.5) and the second (−1.5, 2).
The Gaussians have respective weightings 0.4 and 0.6.

The second example is a Gaussian mixture consisting of

6 components. All Gaussians in the mixture have covariance

P6 =

[
0.1 0
0 0.1

]
(30)

The means are (−1, 0), (−1, 1), (0,−1), (0, 1), (1,−1), and

(1, 0). The weights of the elements in the mixture are respec-

tively {45, 25, 54, 45, 36, 54}/259.

The bound was minimized using Newton’s method ini-

tialized with the mean of each PDF. The MOSPA errors for

n = 4 and n = 2 were calculated by discretizing each PDF

in a 300 × 300 grid of points that was ±9 and ±2 about the

mean respectively for the the two Gaussian, and the six Gaus-

sian mixtures. The optimal MOSPA estimates for n = 2 and

7Space constraints keep us from considering more complex scenarios.

3646



(a) 2 Gaussian Mixture PDF (b) 6 Gaussian Mixture PDF

Fig. 1. The PDFs. The dashed lines represent where x1 = x2. The ‘x’ marks the mean of the PDF, the square the mean of the

most likely hypothesis, the plus-sign the estimate obtained by minimizing the bound, the ‘o’ the MOSPA optimal estimate for

n = 2 and the filled circle the MOSPA optimal estimate for n = 4. In (a), the optimization estimate and the n = 4 MOSPA

estimate markers overlap. In (b) the two MOSPA markers overlap.

n = 4 were determined by evaluating the error at every point

on the 300× 300 grid of points of the discretized PDF.

The MOSPA error, under two different MOSPA metrics is

shown in Table 1. The PDFs of the mixtures are shown in Fig-

ure 1 along with the location of the mean, μ, the peak of the

most likely Gaussian in the mixture μML, the point obtained

from the bound optimization μB
4 and the optimal MOSPA es-

timates for n = 2, μopt
2 , and for n = 4, μopt

4 . The approximate

minimum MOSPA estimate outperformed using the overall

mean or the mean of the most likely hypothesis.

5. CONCLUSIONS

We derived an upper bound on the MOSPA error when us-

ing the l2-norm raised to the fourth as the distance measure.

This approximation allows us to eliminate the integral needed

to evaluate the MOSPA error when the moment generating

function for the multivariate PDF in question can be explic-

itly written. We demonstrated that minimizing the bound can

improve the MOSPA error of the estimates beyond simply

using the MMSE or the ML hypothesis. This give us the

“smoothing” effect of an MMSE estimate without the coa-

lescence problems that come when track identity is lost.
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