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Abstract: Two new recursive algorithms for the calculation of the coefficients of the
trigonometric polynomial that is fitted to measured data in the least-squares sense in a
window of a sufficiently large size that is moving in time are proposed. Both algorithms use the
strictly diagonally dominant property of the information matrix for a sufficiently large window
size. The first one is based on a recursive inversion of the information matrix and the second
one uses a priori estimate of the coefficients of the polynomial obtained from the Kaczmarz
projection method. The algorithms are computationally suitable for selection of the order of a
trigonometric polynomial in each step of a moving window in real-time applications. The
results are verified by simulations.
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1 INTRODUCTION

The moving-in-time window discrete Fourier trans-

form (DFT) method in which an oscillating signal is

approximated via a trigonometric polynomial in a

moving window of a certain size is widely used for

both the estimation of the frequency contents of the

signals and filtering in real-time signal processing

applications. The orthogonality property of the

trigonometric polynomials applied in a DFT method

implies a restriction on the size of the moving

window. The choice of the window size has a direct

impact on the variance of the estimated parameters

and on the estimated variance of the measurement

noise which is calculated as the sum of the squared

approximation errors divided by the number of

degrees of freedom (the window size minus a

number of unknown parameters). The restrictions

applied to the window size in the DFT method might

imply a poor estimation performance of both

unknown parameters and variance of the measure-

ment noise. Fortunately, a periodic signal can be

approximated via a trigonometric polynomial in a

least-squares sense for any window size for estima-

tion of the frequency contents of the signal. This

method is called a moving-in-time window trigono-

metric interpolation (TI) method and requires a

computationally expensive inversion of an informa-

tion matrix.

In this paper trigonometric interpolation is under-

stood to be the process of approximation of given

data points via a trigonometric polynomial (a sum of

sines and cosines of given frequencies) in the least-

squares sense. The size of the moving window (the

number of measured data points) is larger than the

number of unknown coefficients of the polynomial.

A recursive algorithm based on a matrix inversion

lemma for a matrix inversion that reduces the

computational burden for the TI method accumu-

lates errors in a finite precision implementation

environment [1]. Moreover, new frequencies can

appear in the oscillating signal during a system

operation. The order of the trigonometric polyno-

mial should be selected in each step of a moving

window in this case. In this paper the number of

frequencies is taken to be the order of the trigono-

metric polynomial. The order of the polynomial

should be increased (new frequencies should be

added to a model) until the estimate of the variance

of the measurement noise calculated from the

approximation error is reduced and this reduction

is statistically significant. The TI method becomes

very computationally expensive especially for the

case of a large number of frequencies since it
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requires the inversion of the information matrix in

each step of the moving window [2]. This paper

describes two new computationally efficient algo-

rithms for calculation of the coefficients of the

trigonometric polynomial in the TI method.

The information matrix, which is inverted in order

to estimate the coefficients of the polynomial, is

defined as the sum of rank one matrices calculated

via a multiplication of the regressor column vector

by its transpose in each step of the moving-in-time

window. The regressor vector consists of trigono-

metric functions (sines and cosines) at different

frequencies. The diagonal of the information matrix

includes the sum of squares of the trigonometric

functions which can be decomposed into two parts:

the average part that is proportional to the window

size and the periodic part. All other elements of the

information matrix only have a periodic part. There-

fore, this matrix can be made a strictly diagonally

dominant (SDD) matrix for a sufficiently large

window size. A matrix is said to be SDD if in every

row of the matrix, the magnitude of the diagonal

entry in that row is larger than the sum of the

magnitudes of all the other (non-diagonal) entries in

that row. By the Gershgorin circle theorem, an SDD

matrix is non-singular, and if the SDD matrix is

symmetric and all main diagonal entries are positive

then all the eigenvalues of this matrix are real and

positive (this result is also known as the Levy–

Desplanques theorem [3]). The dominant part of the

SDD matrix is its diagonal. An inverse of the diagonal

matrix whose diagonal when taken from the SDD

matrix is close to the SDD matrix inverse can be used

as a starting point for a recursive calculation of the

inverse of the information matrix. In other words

this property allows:

(a) the design of the diagonal matrix as an

approximate of the information matrix inverse;

(b) proving that the regressor is persistently exciting

which is an important property for the parameter

convergence in estimation algorithms.

The main contributions of this paper are based on

the diagonal dominance property of the information

matrix and can be summarized as follows:

(a) a new algorithm for recursive inversion of the

information matrix;

(b) a comparison of the convergence rate for the

algorithm mentioned above with the conver-

gence rate of known algorithms;

(c) a new algorithm for a direct calculation of the

parameters with a priory estimates obtained

from the Kaczmarz projection method.

Both proposed algorithms use priory estimates

which are available due to the SDD property of the

information matrix, and improve these estimates

recursively.

2 PROBLEM STATEMENT AND PROPERTIES OF
THE INFORMATION MATRIX

2.1 Problem statement

Suppose that a measured oscillating signal can be

presented in the following form

yk~QT
k h�zjk ð1Þ

where Qk is the regressor and h� is the vector of

constant unknown parameters defined as follows

QT
k~ 1 cos kDð Þ sin kDð Þ cos 2kDð Þ½

sin 2kDð Þ . . . cos nkDð Þ sin nkDð Þ� ð2Þ

hT
�~ h0� h1� h2� h3� h4� ::: h 2n{1ð Þ� h 2nð Þ�
� �

ð3Þ

where k 5 1, 2, … is the step number, D. 0 is the

step size, jk is a zero mean white Gaussian noise

with a variance s2. The measured periodic signal is

presented as a trigonometric polynomial with known

frequencies and unknown coefficients, whereas the

regressor (2) includes known trigonometric func-

tions cos(kqD) sin(kqD), where q 5 1, 2, …, n is the

frequency, n is the number of frequencies involved

and the order of the trigonometric polynomial, if at

least one of the coefficients h 2n{1ð Þ� or h 2nð Þ� is not

equal to zero.

The model of the signal (1) is presented in the

following form

ŷyk~QT
k hk ð4Þ

with adjustable parameters

hT
k~ h0k h1k h2k h3k h4k . . . h 2n{1ð Þk h 2nð Þk
� �

ð5Þ

Introducing a moving window of size w and an error

Ek~
Xj~k

j~k{ w{1ð Þ
yj{ŷyj

� �2

, for k~w, wz1, . . .

ð6Þ

a least-squares solution that minimizes the perfor-

mance index (6) is as follows
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hk~
Xj~k

j~k{ w{1ð Þ
Qj QT

j

2
4

3
5{1 Xj~k

j~k{ w{1ð Þ
Qj yj ð7Þ

where the matrix
Pj~k

j~k{ w{1ð Þ Qj QT
j is often called the

information matrix. In order to calculate the para-

meter vector hk this information matrix should be

inverted in each step k of the moving window. This is

a computationally expensive procedure, if the size of

the parameter vector is large. This matrix has a

remarkable property that helps in reduction of the

computational burden when calculating the para-

meter vector for a sufficiently large window size.

This property is described in the section 2.2.

2.2 Properties of the information matrix

2.2.1 A key property of the information matrix

Lemma 1

There exists a window size w� such that for all

www� ð8Þ

where w� is defined in equation (60), the following

matrix

A~
Xj~k

j~k{ w{1ð Þ
Qj QT

j ð9Þ

where k 5 w, w + 1, w + 2, w + 3, …, and

QT
j ~ 1 cos jDð Þ sin jDð Þ . . . cos jnDð Þ sin jnDð Þ½ � ð10Þ

is an SDD matrix, i.e. the following inequality holds

aiij jw
X2nz1

j~1, j=i

aij

�� ��, for i~1, . . . , 2nz1ð Þ ð11Þ

Moreover, the following inequality is also true

0vaI¡
Xj~k

j~k{ w{1ð Þ
Qj QT

j ¡bI ð12Þ

where a . 0 and b . 0 are minimal and maximal

eigenvalues of the matrix A respectively.

Lemma 1 is proved via a straightforward evaluation of

the elements of matrix (9). This evaluation is performed

in Appendix 1. Some of the non-diagonal and diagonal

elements are listed below for the sake of clarity

Xj~k

j~k{ w{1ð Þ
cos jqDð Þ

~
sin wqD=2ð Þ cos 2kz1{wð Þ=2qD½ �

sin qD=2ð Þ ð13Þ

Xj~k

j~k{ w{1ð Þ
sin jqDð Þ

~
sin wqD=2ð Þ sin 2kz1{wð Þ=2qD½ �

sin qD=2ð Þ ð14Þ

Xj~k

j~k{ w{1ð Þ
sin2 jqDð Þ~ w

2

{
sin wqDð Þ cos 2kz1{wð ÞqD½ �

2 sin qDð Þ ð15Þ

Xj~k

j~k{ w{1ð Þ
cos2 jqDð Þ~ w

2|{z}
average part

z
sin wqDð Þ cos 2kz1{wð ÞqD½ �

2 sin qDð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
periodic part

ð16Þ

where q 5 1, 2, …, n. Notice that diagonal elements of

the matrix A defined by equations (15) and (16) have an

average part which is proportional to the window size w

while all other elements of this matrix have a periodic

part only. Enlarging the window size w gives the

diagonal dominance.

Remark 1

In the following a sufficiently large window size is

understood to be a window size that satisfies

inequality (8). This sufficiently large window size

might not be large in absolute values.

Corollary 1

The matrix A is a diagonal matrix if D5 2p/w.

Indeed, a set of functions {cos(jqD), sin(jqD)}, q 5 1,

2, …, n, j 5 1, …, w is orthogonal in the interval

jD5 [D, 2D, 3D, …, wD] 5 [D, 2D, 3D, …, 2p]. This im-

plies that sin(wqD) 5 sin(2pq) 5 0, and sin(wqD/

2) 5 sin(pq) 5 0. Therefore, the periodic parts in

equations (15) and (16) are equal to zero as well as

the periodic parts in equations (13) and (14)

provided that q/2 and q are not a multiple of w so
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that sin(qD) ? 0 and sin(qD/2) ? 0. The matrix A

defined as

A~diag w
w

2
. . .

w

2

� �
can be easily inverted in this case and therefore hk

defined in equation (7) can be written as follows

h0k~
1

w

Xj~k

j~k{ w{1ð Þ
yj ð17Þ

h1k~
2

w

Xj~k

j~k{ w{1ð Þ
yj cos jDð Þ ð18Þ

h2k~
2

w

Xj~k

j~k{ w{1ð Þ
yj sin jDð Þ ð19Þ

� � � � � �

h 2nð Þk~
2

w

Xj~k

j~k{ w{1ð Þ
yj sin jnDð Þ ð20Þ

The coefficients (17) to (20) are called the Fourier

coefficients that are applied in a DFT method. The

key advantage of the DFT method is a parameter

decomposition with respect to frequencies due to

the diagonal information matrix. This allows the

design of a filter with a low computational complex-

ity at a single frequency. The choice of the window

size w that should satisfy the orthogonality condition

is the main restriction to the improvement of the

accuracy of estimation of both the variance of the

measurement noise

ŝs2~
Ek

w{2n{1

and parameter vector hk. Accuracy of the estimate of

the parameter vector and the variance of the

measurement noise is improved via increasing the

window size [4]. Notice that a large window size

might have a negative impact on the transient

performance of the estimation.

Corollary 2

The inequality (12) can be written in the following

form after a simple change of variables

0vaI¡
Xj~kzw

j~k

Qj QT
j ¡bI, for k~1, 2, . . . ð21Þ

with the regressor Qj being defined in equation (12).

It can be seen as a property of a persistency of

excitation of the regressor which shows that there

exist positive constants a and b for a sufficiently large

window size w such that inequalities (21) holds. The

basis of the property of the persistency of excitation

is a strictly diagonally dominance of the matrixPj~kzw
j~k Qj QT

j for a sufficiently large w. The property

of a persistency of excitation established for trigono-

metric polynomials is an important property for a

parameter convergence in the system identification

and adaptive control methods.

2.2.2 A property of the diagonal of the information
matrix

Suppose that the window size w is large enough so

that the matrix A defined in equation (9) is an SDD

matrix. Introduce the following matrix

D~diag a11, a22, . . . , ammð Þ ð22Þ

where a11, a22, … are diagonal elements of the matrix

A defined in equations (15) and (16). This matrix D is

invertible, and its inverse can be used as an

approximation of A21. All the diagonal elements of

the matrix D21A are equal to one. All the diagonal

elements of the matrix I 2 D21A are equal to zero

and there exists a positive number k such that the

following is true

I{D{1A
�� ��

‘
¡kv1 ð23Þ

where A is an SDD matrix, and the norm I?I‘ is the

maximum row sum matrix norm. This key property

of the diagonal matrix D is the basis for two recursive

algorithms described in section 3.

3 RECURSIVE INVERSION OF THE
INFORMATION MATRIX

A recursive calculation of the inverse of A is based on

the Lemma 2.

Lemma 2

The inverse of an n6n matrix C can be calculated as

follows
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C{1~
X‘

i~0

I{Cð Þi ð24Þ

provided that equation (23) holds with C ~
def

D{1A.

The proof is presented in Appendix 2.

If the approximate inverse of A is known via

D21 < A21 and inequality (23) holds then the

following recursive algorithm for calculation of A21

is proposed

F1~I, G1~ I{D{1A
� 	

ð25Þ

Gi~Gi{1G1 ð26Þ

Fi~Fi{1zGi{1 ð27Þ

where i 5 2, 3, …. The algorithm is stopped if

II 2 D21AFiI ( e, where e is a small positive number.

Algorithm (27) gives a recursive estimate of A21,

namely D21AFi R I as i R ‘. This implies that

FiD
21 R A21 as i R ‘. Indeed, algorithm (27) can be

written in the following form

I|{z}
F1

z I{D{1A
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F2

z I{D{1A
� 	2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F3

z . . . z

~
XN

i~0

I{D{1A
� 	i ð28Þ

The sum
PN

i~0 I{D{1A
� 	i

? D{1A
� 	{1

as N R ‘ due

to Lemma 2 with C 5 (D21A) since inequality (23) is

valid and

XN

i~0

I{D{1A
� 	i

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fi

D{1?A{1 as N?‘ ð29Þ

The convergence rate of the algorithm is determined

by upper-bound k of the II 2 D21AI and is relatively

fast for k% 1. This convergence rate is evaluated in

Appendix 3. The parameter vector hk defined in

equation (7) can easily be calculated as soon as the

information matrix is inverted.

Remark 2

The following algorithm (see [2] and references

therein) can also be applied for calculation of the

inverse of matrix A

Gi~Gi{1zFi{1Gi{1 ð30Þ

Fi~I{GiA ð31Þ

F0~I{G0A ð32Þ

G0~D{1 ð33Þ

F0k k ¡

23ð Þ
kv1 ð34Þ

where i 5 1, 2, 3, … and limi R ‘Gi 5 A21. A conver-

gence rate of the algorithm (30) to (34) is evaluated

in Appendix 3. A comparative analysis of the

convergence rate of algorithms (30) to (34) and (25)

to (27) is also performed in Appendix 3.

Remark 3

The third algorithm for the recursive calculation of

the inverse of matrix A is a Newton-type algorithm

which can be described as follows

Ui~
XN

j~0

Y
j
i{1

" #
Ui{1 ð35Þ

Yi~I{UiA ð36Þ

U0~D{1 ð37Þ

Y0~I{D{1A ð38Þ

Y0k k ¡

23ð Þ
kv1 ð39Þ

where N is the algorithm parameter, i 5 1, 2, 3, … and

limi R ‘Ui 5 A21. Indeed,
PN

j~0 Y
j
i{1? I{Yi{1ð Þ{1 as

N R ‘ (see equation (62)) provided that IYi 2 1I , 1,

and hence

Ui~
XN

j~0

Y
j
i{1

" #
Ui{1? I{Yi{1ð Þ{1Ui{1

~
36ð Þ

Ui{1 Að Þ{1Ui{1~A{1 as N?‘:
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The algorithm parameter N that determines the

number of terms in the sum
PN

j~0 Y
j
i{1 is a finite

number. The error Ui 2 A21 is successively reduced and

the sequence of matrices Ui converges to A21 as i 5 1, 2,

3, … and IYiI converges to zero. A convergence rate of

algorithm (35) to (39) can be evaluated similar to

evaluation of the convergence rate of algorithms (30) to

(34) and (25) to (27) described in Appendix 3.

The TI algorithm described above can be seen as an

extension of the DFT method. Indeed, each element

of the diagonal matrix D defined in equation (22)

drawn from the information matrix in the TI method

has both an average part and a periodic part. The

periodic part is equal to zero in the DFT method and a

diagonal matrix whose elements consist only of the

average part is inverted in order to calculate the

parameter vector. Each element of the inverse of the

diagonal matrix D that contains the most valuable

(dominant) part of the information matrix, has both

an average part and a periodic part in the TI method.

This inverse is a starting point for recursive estima-

tion of the inverse of information matrix A, where the

convergence is guaranteed by the inequality (23).

Periodic parts are added to the average parts in the

diagonal matrix in the TI method that allows a

calculation of the inverse of the information matrix

in the case where orthogonality is not valid.

Application of this algorithm is restricted mainly to

the case where the size of the parameter vector hk is

low, and a window size is large enough so that k% 1.

This algorithm is computationally expensive if the

size of the parameter vector is large and k is close to

one. The second algorithm which is applicable in this

case is described in section 4. This algorithm has two

parts: the first part is a preliminary estimation of the

parameter vector by means of the Kaczmarz algo-

rithm using the property of persistency of excitation,

see equation (21), and the second part is a recursive

improvement of the estimates. Recursive matrix

inversion is avoided in this algorithm and preliminary

estimates are provided by the Kaczmarz algorithm.

Since the Kaczmarz algorithm provides estimates that

are relatively close to the parameter vector hk a

recursive algorithm just takes a couple of steps in

order to achieve a desired accuracy of the parameter

estimation. Notice that the Kaczmarz algorithm

cannot be applied alone in some cases since it neither

allows the reliable selection of the order of a trigono-

metric polynomial in the case where new frequencies

appear in the signal nor estimation of the variance of

measurement noise. Therefore, it can just be used as a

tool to get a preliminary estimate of the vector

hk.

4 PARAMETER ESTIMATION WITH THE
KACZMARZ ALGORITHM AND RECURSIVE
CALCULATION OF THE PARAMETERS

4.1 The Kaczmarz projection method

Suppose that the signal is described by equation (1)

and the model of the signal is given by ŷyk~QT
k qk.

Consider the following Kaczmarz update algorithm

for a vector qk

qk~qk{1z
Qk

nz1
yk{QT

k qk{1

� 	
ð40Þ

Straightforward calculations show that ~qqT
k Qk~jk, where

~qq ~ qk { h�. Multiplying this identity by QT
k and taking

the sum yields
Przw

k~r
~qqT

k QkQT
k

� 	
~
Przw

k~r QT
k jk, r 5 1, 2,

… and the following mathematical expectation is equal

to zero

E
Xrzw

k~r

~qqT
k QkQT

k

� 	" #
~
Xrzw

k~r

QT
k E jk½ �~0,

since jk is a zero mean noise. Notice that equation (40)

represents a low pass filter driven by the oscillating input

Qkyk/(n + 1). Therefore, the parameter vector qk changes

slower than the input Qkyk/(n + 1) and a mathematical

expectation of the vector of the adjustable parameters qk

tends to become an approximately constant (slowly

varying) vector after some transients. Therefore, E ~qqT
k

� �
canbetakenoutofthesumforasufficientlylargekwhich

in turn implies that

E ~qqT
k

� � Xrzw

k~r

QkQT
k

" #
~0

and the estimate qk of h� given by equation (40) is

consequentlyunbiased,i.e.E ~qqT
k

� �
~0sincethecondition

of the persistency of excitation (21) is valid for trigono-

metric polynomials.

4.2 Recursive calculation of the parameters

Suppose that the estimate qk of the vector of true

parameters h� is calculated in each step k using

Kaczmarz algorithm (40). The least-squares estimate

hk (in each step k) defined in equation (7) can

recursively be calculated for all the window sizes

which satisfy equation (8) as follows

hi~hi{1{D{1 Ahi{1{bð Þ, h0~qk ð41Þ

where matrix D is defined in equation (22), matrix A
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in equation (9) and vector b is defined as follows

b~
Pj~k

j~k{ w{1ð Þ Qj yj, i 5 1, 2, …, hk 5 A21b due to

equation (7) and qk is defined in equation (40).

Straightforward calculations show that the following

error equation is valid xi 5 (I 2 D21A)xi 2 1, where

xi 5 hi 2 hk. This difference equation has the following

solution: xi 5 (I 2 D21A)ix0, where x0 5 qk 2 hk, and

inequality (23) is true since matrix A is an SDD matrix.

Evaluation of the upper bound of the norm of the

error yields

xik k¡ I{D{1A
� 	i
��� ��� x0k k¡ I{D{1A

� 	�� ��i
x0k k

¡

23ð Þ
ki x0k k

Since qk < hk the following norm Ix0I is a sufficiently

small number and few steps only are required to

achieve the desired accuracy of the error xi.

5 SIMULATION RESULTS

Consider a problem of reconstruction of the first

harmonic of a periodic signal which is described by a

third-order trigonometric polynomial with noisy

measurements

yk~QT
k h�zjk ð42Þ

QT
k~ 1 cos kDð Þ sin kDð Þ cos 2kDð Þ½

sin 2kDð Þ cos 3kDð Þ sin 3kDð Þ� ð43Þ

hT
�~ h0� h1� h2� h3� h4� . . . h5� h6�½ � ð44Þ

where the variance of the measurement noise jk is

equal to three. The first harmonic of the signal and

its estimate are presented as follows

yfk~h0�zh1� cos kDð Þzh2� sin kDð Þ ð45Þ

ŷyfk~h0kzh1k cos kDð Þzh2k sin kDð Þ ð46Þ

where adjustable parameters hik, i 5 0, 1, 2 are

calculated according to two algorithms described

above. Figure 1 illustrates the convergence of the

estimation error II 2 D21AFiI, i 5 1, 2, … to zero for

the algorithm of the matrix inversion (25) to (27).

The convergence of the estimation error to zero

implies that FiD
21 R A21 as i R ‘ and the vector of

adjustable parameters defined in equation (7) can

then be calculated as

hk~ FiD
{1

� � Xj~k

j~k{ w{1ð Þ
Qj yj

Figure 2 shows the convergence of the adjustable

parameters to their true values, where the parameters

are estimated via the Kaczmarz projection method.

These parameters are used as initial values in

algorithm (41). Both algorithms (25) to (27), (7), and

(41), converge to the same vector of adjustable

parameters used in TI method and defined in equation

Fig. 1 The estimation error II 2 D21AFiI, i 5 1, 2, … for
the algorithm of the matrix inversion (25) to (27)

Fig. 2 Convergence of the adjustable parameters q0k,
q1k, and q2k calculated using the Kaczmarz
projection method defined in equation (40) to
their constant true values h0�, h1�, and h2�
defined in equation (3) respectively
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(7). The performance of the TI method is shown in

Fig. 3 and Fig. 4 for window size w 5 15. Figure 3

shows the convergence of the adjustable parameters hk

defined in equation (7) to their true values h� defined

in equation (3). Figure 4 shows a final result of a

successful reconstruction of the first harmonic of a

periodic signal from noisy measurements.

6 CONCLUSIONS

The periodic nature of a wide class of machines

results in oscillations in their signals. For example,

the periodicity of the individual air intake of

cylinders and torque production events in automo-

tive engines results in periodicity of the intake

manifold pressure and engine speed signals. This

periodicity opens the opportunity to use trigono-

metric polynomials, in the form of equation (1) for

example, for modelling machine signals. A remark-

able SDD property of the information matrix created

by the regressor vector that consists of trigonometric

functions allows the computationally inexpensive

inversion of the information matrix and establishes

the property of the persistency of excitation of the

oscillating signal. This in turn, opens a new class of

algorithms with a reduced computational complexity

for both estimation of the frequency contents of the

signals and for filtering in real-time signal proces-

sing applications. Two new moving-in-time-window

trigonometric interpolation algorithms of this class

based on the SDD property of the information matrix

established in Lemma 1, and inequality (23) were

reported. The algorithms are suitable for both

calculation of the frequency contents of oscillating

signals and for filtering. The techniques were illu-

strated in the simulation example of reconstruction of

the first harmonic of a periodic signal from noisy

measurements.

The signal used in the simulation example is very

similar to the engine speed signal in automotive

engines, where high-frequency oscillations due to

the crankshaft torsion together with vibrations from

the road act as disturbances on the crankshaft speed

signal [2]. This allows a reader to make a simple

simulation set-up described in section 5 with a

simulated signal which is very close to the real signal

for evaluation of the results proposed in this paper.

The results described in this paper can be

extended to a broader class of signals that contain

both non-oscillating and oscillating components.

Such signals are often met in practical applications.

For example, the engine speed signal in automotive

engines has both non-oscillating and oscillating parts

during a transient. Non-oscillating components

should be properly compensated for estimation of

the frequency contents of such a signal. Some of the

simple compensation techniques are reported in [2].

F Author 2010
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APPENDICES

APPENDIX 1

The proof of Lemma 1 is followed after Lemma 3 and

Lemma 4.

Lemma 3

Consider the following sum

Xr~l

r~p

f rð Þ~f pð Þzf pz1ð Þz . . . zf lð Þ ð47Þ

where f(r) is a matrix function of r. If there exists a

matrix function W(r) such that the following holds

W rz1ð Þ{W rð Þ~f rð Þ ð48Þ

for all r 5 p, …, l, l . p, then this sum can be

calculated as follows

Xr~l

r~p

f rð Þ~W lz1ð Þ{W pð Þ ð49Þ

Proof

Direct substitution of f(p) 5W(p + 1) 2W(p), f(p + 1) 5

W(p + 2) 2W(p + 1), …, f(l) 5W(l + 1) 2W(l) in equation

(47) where all the inbetween terms vanish gives

equation (49).

Lemma 4

The following relationships are valid

Xn

r~1

cos rhð Þ~ cos nz1ð Þ=2h½ �sin nh=2ð Þ
sin h=2ð Þ ð50Þ

Xn

r~1

sin rhð Þ~ sin nh=2ð Þsin nz1ð Þ=2h½ �
sin h=2ð Þ ð51Þ

Proof

Straightforward application of Lemma 3 to the

calculation of the following sum
Pn

r~1 eihr with

scalar functions f(r) 5 eihr and W(r) 5 eihr/(eih 2 1),

where equation (48) is valid yields

Xn

r~1

eihr~
eih 1{eihn
� 	
1{eihð Þ ð52Þ

where i2 5 21, and eih ? 1. Taking into account the

following relations 1 2 eih 5 22i sin(h/2)eih/2, 1 2 eihn

5 22i sin(nh/2)einh/2, equation (52) can be written as

Xn

r~1

eihr~eih nz1ð Þ=2 sin nh=2ð Þ
sin h=2ð Þ ð53Þ

Equations (50) and (51) follow from equation (53)

which can be written as

Xn

r~1

cos rhð Þzi
Xn

r~1

sin rhð Þ

~
cos nz1ð Þ=2h½ �sin nh=2ð Þ

sin h=2ð Þ

zi
sin nh=2ð Þsin nz1ð Þ=2h½ �

sin h=2ð Þ

when equating real and imaginary parts.

Remark 4

Equations (50) and (51) can also be calculated via a

direct application of Lemma 3 with

W rð Þ~ cos rh=2ð Þ sin r{1ð Þ=2h½ �
sin h=2ð Þ and

f rð Þ~cos rhð Þ

for equation (50), and with

W rð Þ~ sin rh=2ð Þsin r{1ð Þ=2h½ �
sin h=2ð Þ and

f rð Þ~sin rhð Þ

for equation (51). Straightforward calculations show

that equation (48) is valid in both cases and

equations (50) and (51) follow immediately from

equation (49) with p 5 1 and l 5 n.

Proof of Lemma 1

The proof is based on explicit calculation of the

elements of the matrix A using Lemma 4

A~
Xj~k

j~k{ w{1ð Þ
Qj QT

j ~

a11 a12 . . . a1m

a21 a22 . . . a2m

..

. ..
. ..

...
.

am1 am2 . . . amm

2
66664

3
77775
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where

a11~w, a12~
Xj~k

j~k{ w{1ð Þ
cos jDð Þ

a13~
Xj~k

j~k{ w{1ð Þ
sin jDð Þ, a1m~

Xj~k

j~k{ w{1ð Þ
sin jnDð Þ

a21~a12, a22~
Xj~k

j~k{ w{1ð Þ
cos2 jDð Þ

a2m~
Xj~k

j~k{ w{1ð Þ
cos jDð Þ sin jnDð Þ, am1~a1m

am2~a2m, amm~
Xj~k

j~k{ w{1ð Þ
sin2 jnDð Þ

where m 5 (2n + 1).

First, the following sums are calculated

Xk

j~1

cos jqDð Þ~ cos kz1ð Þ=2qD½ � sin kqD=2ð Þ
sin qD=2ð Þ ð54Þ

Xk{w

j~1

cos jqDð Þ

~
cos k{wz1ð Þ=2qD½ � sin k{w=2ð ÞqD½ �

sin qD=2ð Þ ð55Þ

where q 5 1, …, n, and n is the number of the
frequencies. The sums (54) and (55) follow from
equation (50) with h 5 qD, n 5 k for equation (54)
and n 5 k 2 w for equation (55).

The sum of cos(jqD), j 5 k 2 (w 2 1), …, k in the

window of a size w is calculated as follows

Xj~k

j~k{ w{1ð Þ
cos jqDð Þ~

Xk

j~1

cos jqDð Þ{
Xk{w

j~1

cos jqDð Þ

~
sin wqD=2ð Þ cos 2kz1{wð Þ=2qD½ �

sin qD=2ð Þ
ð56Þ

The sum of sin(jqD), j 5 k 2 (w 2 1), …, k in the
window of a size w can be written as follows

Xj~k

j~k{ w{1ð Þ
sin jqDð Þ

~
sin wqD=2ð Þ sin 2kz1{wð Þ=2qD½ �

sin qD=2ð Þ
ð57Þ

Using similar arguments all non-diagonal ele-

ments of the matrix A are evaluated. Evaluation of

the diagonal elements yields

Xj~k

j~k{ w{1ð Þ
sin2 jqDð Þ

~
w

2
{

sin wqDð Þ cos 2kz1{wð ÞqDð Þ
2 sin qDð Þ

ð58Þ

Xj~k

j~k{ w{1ð Þ
cos2 jqDð Þ

~
w

2|{z}
average part

z
sin wqDð Þ cos 2kz1{wð ÞqDð Þ

2 sin qDð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
periodic part

ð59Þ

Notice that all the diagonal elements aii, i 5 2, …,

m of the matrix A which are calculated according to

equations (58) and (59) have an average part which

depends on the window size w, namely w/2, and a

periodic part. Non-diagonal elements aij, i ? j of the

matrix A have periodic parts only. All diagonal

elements are increasing if the size of the window w

increases (see equations (58) and (59)). Non-diag-

onal elements of the matrix remain bounded if the

size of the window w increases. There exists there-

fore a window size w� such that for all w . w� the

matrix A is an SDD matrix, where w� is defined as

w�~round max :
X2nz1

j~2

a1j

�� ��, 2
X2nz1

j~1, j=i

aij

�� �� "(

z aiip

�� �� , i~2, . . . , 2nz1ð Þ ð60Þ

where round is understood as rounding to the largest

integer and aiip is a periodic part of the diagonal

elements, i 5 2, …, (2n + 1).

This symmetric SDD matrix A has positive eigenva-

lues only and hence equation (12) holds for a 5 lmin(A),

and b 5 lmax(A), where lmin(A), lmax(A) are the mini-

mal and maximal eigenvalues of the matrix A [2, 3].

Notice that every eigenvalue l of A is located within at

least one of the Gershgorin discs

 2 "
m

(
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l{aiij j¡
X2nz1

j~1, j=i

aij

�� ��, for i~1, . . . , 2nz1ð Þ ð61Þ

which shows that the eigenvalues are close to the

diagonal elements aii of the matrix A if

aii&
P2nz1

j~1, j=i aij

�� ��. The following bounds are true for

minimal and maximal eigenvalues of the matrix A

lmin¢min aii{
X2nz1

j~1, j=i

aij

�� ��( )
w0

lmax¡max aiiz
X2nz1

j~1, j=i

aij

�� ��( )

where i 5 1, …, (2n + 1).

Notice that this proof is valid for the case where

regressor (2) only contains distinct frequencies.

Sums of squares of trigonometric functions (that

contain an average part) appear as non-diagonal

elements in the information matrix if regressor (2)

has two or more identical frequencies. Diagonal

dominance of the information matrix is destroyed in

this case since non-diagonal elements also increase

when the window size increases.

APPENDIX 2

Proof of Lemma 2

Consider the following sum
PN

i~0 Bi where B is an

n6n matrix. Application of Lemma 3 with f(i) 5 Bi,

r 5 i, and W(i) 5 Bi(B 2 I)21 where equation (48) is

valid yields

XN

i~0

Bi~ BNz1{I
� 	

B{Ið Þ{1 ð62Þ

Choosing B as B 5 (I 2 C) the sum of equation (62) is

XN

i~0

I{Cð Þi~ I{Cð ÞNz1
{I

� �
{Cð Þ{1 ð63Þ

Taking into account that I(I 2 C)N + 1I (

I(I 2 C)IN + 1
( kN + 1 R 0 as N R ‘ equation (24)

follows from equation (63).

APPENDIX 3

3.1 Evaluation of the convergence rate of algorithm
(25) to (27)

First, algorithm (25) to (27) is listed here for con-

venience

F1~I, G1~ I{D{1A
� 	

ð64Þ

Gi~Gi{1G1 ð65Þ

Fi~Fi{1zGi{1 ð66Þ

where i 5 2, 3, ….

The following difference

FiD
{1{A{1~ FiD

{1A{I
� 	

A{1 ð67Þ

is used for evaluation of the convergence rate of
algorithm (64) to (66) that provides FiD

21 R A21 as
i R ‘, where Fi is defined in equation (66). The
following matrix Ri 5 FiD

21A 2 I, for i 5 1, 2, 3, … is
considered first. Straightforward calculations show

that R1 5 D21A 2 I, R2~{R2
1, R3~R3

1, …, Ri~

{1ð Þi{1Ri
1, i 5 1, 2, 3, … and IRiI ( IR1Ii

( ki

since equation (23) holds. Evaluation of A21 yields

A{1~ A{1D
� 	

D{1 ?
29ð Þ XN

i~0

I{D{1A
� 	i

" #
D{1

as N?‘

hence

A{1~ Iz I{D{1A
� 	

z I{D{1A
� 	2

h
z I{D{1A
� 	3

z . . .
i

D{1 ð68Þ

The upper bound of the norm of the matrix A21

follows from equation (68) by taking into account

equation (23)
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A{1
�� ��¡ 1zkzk2zk3z . . .

� 	
D{1
�� ��

~
1

1{k
D{1
�� �� ð69Þ

where III 5 1 and the sum of geometric progression

written in the brackets is calculated using Lemma 3

with W(r) 5 kr/(k 2 1) and f(r) 5 kr.

Finally, the convergence rate for algorithm (64) to

(66) is evaluated as follows

FiD
{1{A{1

�� ��¡ FiD
{1A{I

� 	�� �� A{1
�� ��

~ Rik k A{1
�� ��¡ ki

1{k
D{1
�� ��

ð70Þ

3.2 Evaluation of the convergence rate of algorithm
(30) to (34)

First, algorithm (30) to (34) is listed here for

convenience

Gi~Gi{1zFi{1Gi{1 ð71Þ

Fi~I{GiA ð72Þ

F0~I{G0A ð73Þ

G0~D{1 ð74Þ

F0k k ¡

23ð Þ
kv1 ð75Þ

where i 5 1, 2, 3, …

Notice that the following relations are valid

F1~I{G1A~I{ G0zF0G0ð ÞA

~I{ IzF0ð ÞG0A~I{ IzF0ð Þ I{F0ð Þ

~I{ I{F2
0

� 	
~F2

0

F2~F2
1~F4

0

Fi~F2i

0

Fik k¡ F2i

0

��� ���¡k2i ð76Þ

The convergence rate of the algorithm can be

evaluated as follows

A{1{Gi

�� ��¡ I{GiAk k A{1
�� ��

~ Fik k A{1
�� ��¡ A{1

�� ��k2k ð77Þ

Taking into account the relationship which follows

from equations (62) and (75)

XN

i~0

Fi
0~ FNz1

0 {I
� 	

F0{Ið Þ{1? I{F0ð Þ{1

as N?‘ ð78Þ

the matrix A21 is evaluated using equation (73) as

follows

A{1~ I{F0ð Þ{1G0~
XN

i~0

Fi
0

" #
G0

~ IzF0zF2
0z . . .

� 	
G0 ð79Þ

Therefore, the following upper bound of the norm of

the matrix A21 is valid

A{1
�� ��~ I{F0ð Þ{1

��� ��� G0k k

¡ Ik kzkzk2z . . .
� 	

G0k k

¡ 1zkzk2z . . .
� 	

G0k k

~
1

1{k
G0k k ð80Þ

since

XN

i~0

ki~
1{kNz1

1{k
?

1

1{k
as N?‘

with a valid inequality equation (75).

Finally, the following bound is valid for the

estimation error

A{1{Gi

�� ��¡ D{1
�� ��

1{k
k2i ð81Þ

A comparison of two upper bounds (70) and (81)

shows that algorithm (30) to (34) converges faster

than algorithm (25) to (27). Indeed, the convergence
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rate, as can be seen from equations (77) and (70), for

algorithm (30) to (34) is determined by Fi~F2i

0 ,

F0 5 I 2 D21A and by Ri~ {1ð Þi{1Ri
1, R1 5 D21A 2 I,

i 5 1, 2, 3, … for algorithm (25) to (27). A comparison

of these two sequences of matrices shows that

algorithm (25) to (27) has a linear convergence rate

whereas algorithm (30) to (34) has a quadratic

convergence rate. Faster convergence of algorithm

(30) to (34) can also be confirmed by simulations.
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