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On the optimality of the binary reflected Gray code
Erik Agrell, Johan Lassing, Erik G. Ström, and Tony Ottosson

Abstract— This paper concerns the problem of selecting a bi-
nary labeling for the signal constellation in M -PSK, M -PAM, and
M -QAM communication systems. Gray labelings are discussed
and the original work by Frank Gray is analyzed. As is noted, the
number of distinct Gray labelings that result in different bit-error
probability grows rapidly with increasing constellation size. By
introducing a recursive Gray labeling construction method called
expansion, the paper answers the natural question of what label-
ing, among all possible constellation labelings, that will give the
lowest possible average probability of bit errors for the consid-
ered constellations. Under certain assumptions on the channel,
the answer is that the labeling proposed by Gray, the binary re-
flected Gray code, is the optimal labeling for all three constella-
tions, which has, surprisingly, never been proved before.

Index Terms— binary reflected Gray code, constellation label-
ing, phase shift keying, pulse amplitude modulation, quadrature
amplitude modulation, average distance spectrum

I. INTRODUCTION

THIS PAPER concerns the problem of selecting a binary la-
beling for the signal vectors that will minimize the proba-

bility of bit errors in communication systems employing PSK,
PAM, or QAM signal constellations. The aim of the work is to
find the best way of labeling these constellations if a low bit-
error probability is desired. The discussion starts with the case
of an M -PSK constellation and, although this constellation is
known to be impractical for large M , it will be shown to pro-
vide a natural foundation for the PAM and QAM cases.

First, we introduce a system model and make a brief review
of some useful expressions for the error probability of general
signal constellations. A signal constellation S is a set of M
points in n-dimensional space, S = {s0, s1, . . . , sM−1}. Dur-
ing each transmission interval, the transmitter selects a signal
point s = sk for transmission over the communication chan-
nel. The transmitted signal point s is displaced from its original
position due to the influence from the channel, and the decision
device in the receiver observes the received signal point r ∈ R

n.
The decision device operates based on a non-overlapping parti-
tioning of the signal space into decision regions. The decision
region for a signal point sk is labelled Ωk, and whenever the re-
ceived signal point r falls in Ωk, the receiver makes the decision
that sk was sent.

In this paper, we make the assumption that the distortion
from the channel amounts to an additive (signal-independent)
and symmetrical noise component and that the receiver oper-
ates based on a maximum-likelihood (ML) partitioning of the
signal space [1]. We will regard the channel and the receiver as
fixed and focus on the effect that the mapping of binary strings
onto symbols has on the error performance.
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A. Probability of Symbol Errors
If the received signal point r belongs to Ωk, the decision de-

vice will decide that the transmitted signal was sk. An error
will occur whenever r falls in another decision region than the
decision region belonging to the actual transmitted signal point.
When this occurs we experience a symbol error and the proba-
bility of this is

Ps =

M−1∑

j=0

Pr (s = sj , r 6∈ Ωj).

B. Probability of Bit Errors

In this paper, we pay particular attention to the problem
where the signal constellation contains M = 2m signal points.
This communication system transmits m bits with each trans-
mission and we assume that each signal point sk is assigned a
label, ck, of m binary digits. For such a system, a bit error will
occur whenever a bit differs between the label ck associated
with the transmitted point sk and the label cl of the decision sl.
The bit error probability is

Pb =

M−1∑

l=0

M−1∑

k=0

dH(ck, cl)

m
Pr (s = sk, r ∈ Ωl) (1)

where dH(ck , cl) is the Hamming distance (i.e., the number of
differing bits) between labels ck and cl. In (1) we have used the
fact that by definition dH (ck, ck) = 0. From this expression it
is evident that there are two parts that affect the bit error prob-
ability; one part depends on the labeling of the signal points
and the other depends on the channel, the transmitter, and the
receiver.

C. Gray constellation labelings

The labeling of the signal constellation is at the hands of the
system designers and their choices affect the performance of
the communication system. The most commonly encountered
binary labeling, both in theory and in practice, is the binary re-
flected Gray code suggested by Frank Gray in a patent from
1953 as a means of reducing the coding error in a pulse code
communication system [2]. In Gray’s patent the labels of the
signal constellation are referred to as a code. A more appropri-
ate name for this sequence of labels is a labeling, emphasizing
the fact that the ordering of the labels is important for the la-
beling, whereas an unordered set of labels is usually called a
code. In this paper, we keep the established term “Gray code”
for historical reasons, although we consider it a labeling, not a
code.

The system described by Gray in [2] can be viewed as an
analog-to-digital converter, in which an analog signal controls
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the deflection of a sweeping electron beam. This electron beam
sweeps during each sampling interval over a row of a coding
mask, which allows the electrons to pass in certain slots while
blocking them in others. Electrons that actually hit the collector
anode give rise to an output current, while this current is essen-
tially zero if the electrons are blocked. This system converts an
analog signal into a signal representing a string of binary digits.
The solution proposed by Gray addresses three main issues with
this system. First, the problem of reducing the distortion of the
decoded analog signal arising from a small error in the deflec-
tion of the electron beam. Second, simplifying the manufactur-
ing of the coding mask by making the smallest apertures of the
coding mask larger, and third, improving the timing properties
of the recovery circuitry. The way that Gray solves this prob-
lem is by simply listing the binary numbers in a different order,
so that adjacent numbers differ in a single bit position. This ap-
proach solves the first and most important issue, giving a small
decoding error (a single bit) for small errors in the beam de-
flection. In addition, the particular mapping Gray proposes also
doubles the size of the smallest apertures of the coding mask.
Gray calls the proposed the reflected binary code, due to its re-
cursive construction method (see Section IV-A). Gray identifies
the trivial operations defined in Section III below, but his treat-
ment only concerns Gray codes with the symmetric properties
imposed by the recursive reflection construction method.

The outline of the paper is as follows. In Sections II to VI
we address the problem of selecting an optimal labeling for M -
PSK systems; Section II provides an introduction to the M -
PSK specific aspects of the problem at hand, Section III gives
the necessary nomenclature and definitions, Sections IV and
V give the proofs, and Section VI introduces some interesting
properties of the optimal labeling. The proofs for M -PAM con-
stellations inherit most of their formulations from the M -PSK
proofs, and only minor changes in these proofs are necessary.
In Sections VII to IX the differences are elaborated on and the
modified proofs are outlined. The proof for the M -QAM case
follows almost directly from the M -PAM discussion, so Sec-
tion X is kept short. Finally, Section XI provides a discussion
and conclusion.

II. BINARY LABELINGS FOR M -PSK

The problem of evaluating the average BER of M -PSK mod-
ulation schemes has been studied extensively in the literature.
In [3–6], approximate and exact values of the BER for certain
values of M are given and in [7] the exact values are given for
all M . All these references assume that the binary, reflected
Gray code (BRGC) is used.

Assuming that all symbols are equally likely for trans-
mission over the channel during each transmission interval,
i.e., Pr{s = sk} = 1/M for k = 0, 1, . . . , M − 1, the bit-error
probability for M -PSK with any labeling of the M = 2m signal

points is given by (1), which we can rewrite as

Pb =
1

mM

M−1∑

l=0

M−1∑

k=0

dH (cl, ck) Pr (r ∈ Ωl | s = sk)

=
1

m

M−1∑

k=0

(

1

M

M−1∑

l=0

dH

(
cl, c(l+k) mod M

)

)

· Pr (r ∈ Ωl | s = sk)

,
1

m

M−1∑

k=0

d̄ (k) P (k), (2)

where P (k) is the probability that the received vector is in the
decision region of a symbol k steps counter-clockwise away
from the transmitted signal. The main focus in this paper is on
the function d̄(k), the average distance spectrum (ADS) of the
binary labeling. The number d̄(k) is the average number of bits
that differ in symbols separated by k steps, averaged over all
M symbols. The probabilities P (k) are not functions of the
constellation labeling, so the BER dependence on the labeling
is captured entirely by d̄(k). For most channels of interest, the
function P (k) decreases rapidly with k (see e.g., [8, p. 201],
for an expression for P (k) for the case of an additive white
Gaussian noise channel), making it reasonable to chose a label-
ing that assigns binary patterns to the constellation symbols in
such a way that adjacent patterns differ in a single bit. These
labelings are known as Gray codes.

In the literature, the binary reflected Gray code is usually
referred to simply as “the Gray code”, without further specifi-
cation. However, for m > 3, there exist several Gray codes that
have different ADS’s and as m increases, the number of such
labelings rapidly becomes very large [9–11]. To find the label-
ing that gives the lowest possible BER, it is therefore necessary
to consider the entire class of binary labelings having the Gray
property. For illustration, in Table I are given two binary label-
ings having the Gray property, along with their respective ADS.
By comparing the ADS’s of the two labelings it is seen from (2)
that these labelings will indeed result in different BER.

The natural approach to finding the labeling that minimizes
(2) is to make sure that the chosen labeling results in a d̄(k) that
grows slowly with k. To be more precise, we will address the
problem of finding the optimal labeling under the assumption
that P (k) decays sufficiently fast with k to make the minimiza-
tion of the BER equivalent to sequential minimization of the
components of the ADS. Under this assumption, considering
two labelings a and b with ADS ā(k) and b̄(k), respectively,
the labeling a will result in a lower BER according to (2) if and
only if

ā(i) = b̄(j), 0 ≤ i < j

ā(j) < b̄(j)

for some integer j > 0. In this paper we will show that the
binary reflected Gray code is the unique labeling that results in
the slowest increasing ADS among all possible bit-to-symbol
mappings (the precise meaning of uniqueness is defined in Sec-
tion III). For the channels described above this mapping will be
optimal in the sense of providing the lowest possible value of
the BER.



DECEMBER 26, 2003 3

TABLE I
TWO DIFFERENT BINARY MAPPINGS a AND b, BOTH HAVING THE GRAY PROPERTY AND THEIR RESPECTIVE AVERAGE DISTANCE SPECTRUM ā(k) AND

b̄(k).

a b k ā(k) b̄(k)
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 1 1
0 1 0 1 0 0 1 1 2 2 2
0 1 0 0 0 0 1 0 3 2.375 2
0 1 1 0 0 1 1 0 4 2.5 2
0 0 1 0 0 1 1 1 5 2.5 2.5
1 0 1 0 0 1 0 1 6 2.5 3
1 1 1 0 0 1 0 0 7 2.125 2.5
1 1 0 0 1 1 0 0 8 2 2
1 1 0 1 1 1 0 1 9 2.125 2.5
1 1 1 1 1 1 1 1 10 2.5 3
0 1 1 1 1 1 1 0 11 2.5 2.5
0 0 1 1 1 0 1 0 12 2.5 2
1 0 1 1 1 0 1 1 13 2.375 2
1 0 0 1 1 0 0 1 14 2 2
1 0 0 0 1 0 0 0 15 1 1

In a related work [12], the effect of the constellation label-
ing on the constellation’s edge profile is evaluated. The aim of
the work in [12] is to provide a formal answer to what label-
ings are sensible for using in trellis-coded modulation systems.
The edge profile is related to a union bound on the BER of the
system using a particular constellation labeling, and since bit
error probability is not in the scope of [12] it is consequently
not mentioned. The edge profile cannot be used in the search
for the optimal Gray code of an M -PSK system.

III. PRELIMINARIES

To simplify the discussion, we start by making some neces-
sary definitions.

Definition 1—Binary Labeling: A binary labeling C of order
m ∈ Z

+ is a sequence of M = 2m distinct vectors (codewords
or labels), C = (c0, c1, . . . , cM−1), where each ci ∈ {0, 1}m.

Definition 2—Binary Cyclic Gray Code: A binary, cyclic
Gray code of order m is a binary labeling with M = 2m code-
words, where adjacent codewords, including the first and the
last codeword, differ in only one of the m positions.

Throughout this paper, it will be implicit that all labelings
mentioned are binary. Also, since it is assumed here that the
Gray codes used for M -PSK constellation labeling are both
cyclic and binary, we will use the term Gray codes to denote
binary cyclic Gray codes.

Definition 3—Average Distance Spectrum: The aver-
age distance spectrum (ADS), d̄(k), of a binary labeling
C = (c0, c1, . . . , cM−1) is the average number of bit posi-
tions that differ in codewords separated by k steps, averaged
cyclically over all the codewords, i.e.,

d̄(k) ,
1

M

M−1∑

l=0

dH

(
cl, c(l+k) mod M

)
(3)

for all k ∈ Z.
Remark: By definition, the ADS of a binary cyclic Gray

code satisfies d̄(0) = 0 and d̄(1) = 1.
Remark: As a result of the modulo-operator and the ab-

solute value function in (3), the ADS is an even function
(
d̄(k) = d̄(−k)

)
and periodic with period M .

Definition 4—Superior and Equivalent ADS: The ADS d̄(k)
of a binary labeling C1 is said to be superior to the ADS h̄(k) of
a binary labeling C2 of the same order, if the following relations
hold for some integer j > 0,

d̄(i) = h̄(i), 0 ≤ i < j

d̄(j) < h̄(j).

If d̄(i) = h̄(i) for all integers i, C1 and C2 are said to have
equivalent ADS.

Definition 5—Optimality: The ADS of a binary labeling is
said to be optimal if it is superior or equivalent to the ADS of
any other binary labeling of the same order. An optimal labeling
is a labeling with an optimal ADS.

In this paper the term optimal will always mean optimality in
the sense of Definition 5.

Definition 6—Trivial Operations: Trivial operations on a bi-
nary labeling are

• cyclic shifts and reflection of the codeword sequence,
• permutation of the codeword coordinates,
• binary inversion of any coordinates.
Remark: Trivial operations on a labeling do not affect the

ADS of the labeling.
To increase the readability of the text, we also define unique-

ness of labelings in relation to trivial operations.
Definition 7—TO-uniqueness: A binary labeling Cm with

ADS d̄m(k) is said to be TO-unique if all labelings with the
same ADS can be obtained from Cm by applying trivial opera-
tions.
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In the the discussion to follow, it is sometimes convenient to
relate a binary labeling to a path on a hypercube.

Definition 8—The Hypercube Qm: The graph whose vertex-
set is the set of all binary strings of length m, with an edge
between two vertices if and only if they differ in exactly one
position, is called the m-dimensional hypercube Qm.

A binary cyclic Gray code of order m is formed by listing
the binary strings corresponding to the vertices of a cycle in
Qm that contains all vertices. Such a path is known as a Hamil-
tonian cycle [13, pp. 226]. It is known that there exist Hamilto-
nian cycles of all orders m ≥ 1, which is also evident from the
constructions in Section IV.

IV. RECURSIVE CONSTRUCTION OF BINARY LABELINGS

In this section, we provide two different methods of how to
recursively construct binary labelings of any order m from bi-
nary labelings of order m − 1. Both these methods show that
it is possible to construct binary cyclic Gray codes of any order
m ≥ 1.

As was noted in the introduction, for a given order m, the
number of Gray codes that do not have equivalent ADS is usu-
ally very large. Only a fraction of these labelings can be gen-
erated from the recursive methods proposed below. However,
we show in this paper that it is possible to generate an optimal
labeling by these recursions.

A. Construction by labeling reflection

To generate a labeling of order m from a labeling of
order m − 1 by means of reflection we proceed as fol-
lows. To the labeling of order m − 1, denoted by Cm−1 =
(c0, c1, . . . , cM/2−1), we append a sequence of M/2 vectors
formed by repeating the codewords of Cm−1 in reverse order;
(c0, . . . , cM/2−1, cM/2−1, . . . , c0). To this new sequence of bi-
nary vectors, an extra coordinate is added to each vector from
the left. This extra coordinate is 0 for the first half of the M
vectors and 1 for the second half. The so obtained sequence Cm

consists of distinct codewords, hence it is a labeling, and Cm is
said to be obtained by reflection of Cm−1. Labeling reflection
is possible for m ≥ 2 and is illustrated in Figure 1.

If Cm−1 is a Gray code, then so is Cm, which proves that
Gray codes of any order exist. The originally proposed Gray
code [2], which is still the most commonly encountered Gray
code in communications, can be defined as follows.

Definition 9—Binary reflected Gray code: The labeling Gm

obtained by m − 1 recursive reflections of the trivial labeling
G1 = (0, 1) is the binary reflected Gray code of order m, for
any m ≥ 1.

B. Construction by labeling expansion

The second method of construction we will consider is
termed labeling expansion. To generate a labeling Cm

from a labeling Cm−1 by expansion we do the follow-
ing; from Cm−1 = (c0, c1, . . . , cM/2−1), repeat each
codeword once to obtain a new sequence of M vectors
(c0, c0, c1, c1 . . . , cM/2−1, cM/2−1). Now, an extra coordinate
is added to each codeword from the right, taken in turn from
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m = 2 by means of reflection.
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Fig. 2. Construction of a Gray code of order m = 3 from a Gray code of order
m = 2 by means of expansion.

the vector (0, 1, 1, 0, 0, 1, 1, 0, . . . , 0, 1, 1, 0) of length M . La-
beling expansion is possible for m ≥ 2, and the procedure is
illustrated in Figure 2.

If Cm−1 is a Gray code, then so is Cm. By induction, it is
possible to verify that m− 1 recursive expansions of the trivial
labeling G1 = (0, 1) leads to a Gray code in which the code-
words corresponds to the same path on Qm as the BRGC.

V. OPTIMALITY OF THE BINARY REFLECTED GRAY CODE

The main result of this paper is captured by the following
theorem, which will be proved in Section V-B.

Theorem 1—Optimality of BRGC for M -PSK: The binary
reflected Gray code of order m is the optimal, TO-unique,
labeling for 2m-PSK.
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A. The first components of the ADS

In order to prove Theorem 1 we will rely on the following
theorem, which relates the ADS of a labeling Cm−1 of order
m − 1 to the ADS of its expanded labeling Cm. The proof is
given in Appendix A.

Theorem 2—Recursion for ADS of an Expanded Labeling:
Let d̄m(k) for m ≥ 2 denote the ADS of the labeling Cm

obtained from expansion of a labeling Cm−1 having an ADS
d̄m−1(k). Then, for all integers k, the distance spectra of Cm

and Cm−1 satisfy

d̄m(4k) = d̄m−1(2k) (4)
d̄m(4k + 2) = d̄m−1(2k + 1) + 1 (5)

d̄m(2k + 1) =
1

2
d̄m−1(k) +

1

2
d̄m−1(k + 1) +

1

2
(6)

with d̄1(i) = 0 for even i and d̄1(i) = 1 for odd i.
The following two lemmas give the first components of the

ADS. They will be used in the proof of Lemma 5 and are proved
in Appendices B and C.

Lemma 3: For any Gray code Cm with m ≥ 3, the ADS
satisfies d̄(1) = 1, d̄(2) = 2, and d̄(3) ≥ 2.

Lemma 4: Expanding a Gray code of order m−1 ≥ 2 results
in a Gray code of order m having d̄(3) = 2. Conversely, all
Gray codes Cm with m ≥ 3 and d̄(3) = 2 can be constructed
by expanding a Gray code of order m−1, possibly followed by
trivial operations.

B. Proof of the optimality of BRGC for M -PSK

We now address the problem of which particular labeling will
give the slowest increasing ADS among all possible labelings,
or more precisely, which labeling has the optimal ADS. Ac-
cording to the discussion in Section II, a mapping with optimal
ADS will result in the lowest possible BER for the case when
P (k) decays sufficiently fast with k. We will show in the fol-
lowing that the binary reflected Gray code (BRGC) is the TO-
unique labeling with optimal ADS.

Lemma 5: If Cm−1 is an optimal labeling of order m − 1,
with m ≥ 2, then an optimal, TO-unique, labeling Cm of order
m is obtained by expanding Cm−1.

Proof: The lemma is trivial for m = 2, since only one
TO-unique Gray code of order 2 exists. From Lemmas 3 and
4, any optimal labeling Cm for m ≥ 3 can be constructed
by expanding a labeling Cm−1 and applying trivial operations.
Hence, the ADS of Cm satisfies (4)–(6). Since, for all integers
i, d̄m(2i − 1) and d̄m(2i) are increasing functions of d̄m−1(i),
and independent of d̄m−1(j) for j > i, sequential minimization
of d̄m(1), d̄m(2), . . . is equivalent to sequential minimization of
d̄m−1(1), d̄m−1(2), . . . Since Cm−1 is optimal by assumption,
this proves that Cm is also an optimal labeling. 2

The proof of the main theorem now follows straightforwardly
from Lemma 5.

Proof of Theorem 1: The BRGC of order m can be ob-
tained by m − 1 recursive expansions of the trivial labeling
(0, 1). The proof of optimality for the BRGC is trivial for
m = 1. By induction and Lemma 5, optimality of the BRGC is
guaranteed for m ≥ 2. 2

VI. PROPERTIES OF THE OPTIMAL ADS FOR M -PSK
A closed-form expression for the ADS of the BRGC of order

m ≥ 1 is given in [7] as

d̄m(k) = 2

∣
∣
∣
∣

k

M
−

⌊
k

M

⌉∣
∣
∣
∣
+ 2

m∑

i=2

∣
∣
∣
∣

k

2i
−

⌊
k

2i

⌉∣
∣
∣
∣

(7)

for all k ∈ Z, where bxe denotes the closest integer to x (ties
can be broken arbitrarily). In this section some properties of
this optimal ADS is given that provide further insight into the
labeling of signal constellations and how to obtain bounds on
the average BER of systems using M -PSK modulation.

A. Constant sequences of optimal ADS
By considering a labeling having M = 2m signal points it

is possible to obtain a recursive relation in terms of the optimal
ADS of a labeling having 2m−1 points. For the optimal labeling
of size 2m−1 we have from (7), for all k ∈ Z and m ≥ 2,

d̄m−1(k) = 2

∣
∣
∣
∣

2k

M
−

⌊
2k

M

⌉∣
∣
∣
∣
+ 2

m−1∑

i=2

∣
∣
∣
∣

k

2i
−

⌊
k

2i

⌉∣
∣
∣
∣
. (8)

By comparing (7) and (8), we see that

d̄m(k) = d̄m−1(k) + 4

∣
∣
∣
∣

k

M
−

⌊
k

M

⌉∣
∣
∣
∣
− 2

∣
∣
∣
∣

2k

M
−

⌊
2k

M

⌉∣
∣
∣
∣
.

Since |x − bxe| represents a triangular waveform of period 1
and amplitude 1/2, the difference

4

∣
∣
∣
∣

k

M
−

⌊
k

M

⌉∣
∣
∣
∣
− 2

∣
∣
∣
∣

2k

M
−

⌊
2k

M

⌉∣
∣
∣
∣

is a piecewise linear function. Using the even and periodic
properties of the ADS and dividing the range k = 0, . . . , M
uniformly into four segments yields for m ≥ 2

d̄m(k) = d̄m−1(k), k ∈ {0, . . . , M/4} (9)

d̄m(k) = d̄m−1(k) +
8k

M
− 2, k ∈ {M/4, . . . , M/2} (10)

d̄m(k) = d̄m−1(k) + 6 −
8k

M
, k ∈ {M/2, . . . , 3M/4}

(11)

d̄m(k) = d̄m−1(k), k ∈ {3M/4, . . . , M}. (12)

The recursion (9)–(12) should be compared with the recursion
(4)–(6), as they both define d̄m(k) in terms of d̄m−1(k), but
from different perspectives. In Figures 3 and 4, four ADS’s are
shown. Figure 3 is an illustration of the increasing resolution
and jaggedness of the ADS as predicted by (4)–(6) and in Fig-
ure 4, the ADS of a BRGC of order m = 12 illustrates the
self-repeating structure and the constant sequences of the ADS
as predicted by (9)–(12).

B. Upper bound on optimal ADS
The average value of d̄m(k), for any m ≥ 1, taken over all

k = 0, . . . , M − 1, is α = m/2. To see this, return to (3) and
average over k to obtain

α ,
1

M

M−1∑

k=0

d̄(k) =
1

M2

M−1∑

k=0

M−1∑

l=0

dH

(
cl, c(l+k) mod M

)
.
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Fig. 4. This fractal curve represents the limit of the curve family of Figure 3. It was constructed as d̄12(k)/12, but the ADS’s of higher orders look essentially
the same to the eye. Observe the self-similarity: The first quarter of the curve is a rescaled copy of the first half, as anticipated by the recursion (9)–(12).
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Interchange the order of summation and observe that the sum
of all labels (and over all components) on the vertices of a hy-
percube Qm is Mm/2 to obtain the result α = m

2 . This result
indicates that the (normalized) area under all the curves in Fig-
ures 3 and 4 is 1/2.

Since the average of d̄m(k) over all k is m/2 and the op-
timization assigns small values to components with low k, one
might ask if some components of the optimal d̄m(k) with higher
k have values close to m. The answer is no, as is shown in this
subsection.

Theorem 6—Maximum value of optimal d̄m(k): The maxi-
mum value of the optimal ADS

d̂m , max
k

d̄m(k)

is given recursively by d̂2 = d̂3 = 2 and

d̂m =
1

2
d̂m−1 +

1

2
d̂m−2 + 1, m ≥ 4. (13)

The proof is given in Appendix D. The following corollaries
can be obtained from this theorem and its proof.

Corollary 7: The recursion (13) with initial conditions d̂3 =
d̂2 = 2 is solved by

d̂m =
1

9

(
6m + 2 + (−2)4−m

)
, m ≥ 2 (14)

and as m → ∞, d̂m/m → 2/3.
Proof: Direct substitution of (14) into (13) gives the result.

2

Corollary 8: The maximum value of an optimal d̄m(k) oc-
curs for k = jm, where

jm =
1

3
(2m + 2(−1)m) , m ≥ 2 (15)

and as m → ∞, jm/2m → 1/3.
Proof: Direct substitution of (15) into (34) of the proof of

Theorem 6 yields the result. 2

The asymptotic position (M/3) and magnitude (2m/3) of
the maximum value of the ADS are indicated in Figure 4. The
position of the maximum is, however, not unique (not even for
k ∈ {0, . . . , M − 1}).

VII. BINARY LABELINGS FOR M -PAM
In this section we move on to find which labeling is optimal

for an M -PAM system. This problem differs from the M -PSK
case, since the M -PAM problem is not cyclic. This, in turn,
means that the first and the last binary strings in the labeling
not necessarily need to differ in a single bit. However, we show
in the coming sections that this extra degree of freedom is not
enough to allow for the construction of a labeling that is supe-
rior to the BRGC.

In an M -PAM communication system, the M signal points
are distributed along a line, separated by a distance ρ. By defin-
ing

d−(k) ,
1

M

M−1∑

l=k

dH(cl−k, cl), k = 1, . . . , M − 1 (16)

d−(k) , 0, otherwise (17)

and

d+(k) ,
1

2M

min(k,M)−1
∑

l=1

[dH (c0, cl)

+ dH (cM−1, cM−1−l)], k ≥ 2 (18)

d+(k) , 0, k ≤ 1 (19)

and assuming that the receiver is an ML receiver, it is shown
in Appendix E that the exact average BER of M -PAM can be
expressed as

Pb =
2

m

M−1∑

k=1

P (k)d−(k) +
2

m

∞∑

k=1

P (k)d+(k). (20)

Clearly, we can rewrite (20) as

Pb =
2

m

∞∑

k=1

P (k)d̄(k)

where d̄(k) = d−(k)+d+(k). We have now obtained a formu-
lation of the BER of a general M -PAM communication system
which is similar to the formulation used in Section II for an M -
PSK system. As we show in the next section, a similar argument
as in the M -PSK case will prove that the BRGC is optimal for
the M -PAM case as well.

VIII. MODIFIED DEFINITIONS FOR M -PAM
In this section, we repeat or modify slightly the definitions

given in Section III for the M -PSK system to suit the M -PAM
discussion. Definition 1 is used as it stands while Definition 2
is changed slightly into

Definition 2b—Binary Gray Code: A binary Gray code of
order m is a binary labeling with M = 2m codewords, where
adjacent codewords, not necessarily including the first and the
last codeword, differ in only one of the m positions.

The definition for the average distance spectrum must change
in several respects according to the discussion in Section VII.

Definition 3b—Average Distance Spectrum: The average
distance spectrum (ADS), d̄(k), appropriate for M -PAM, is
defined as

d̄(k) , d−(k) + d+(k) (21)

where d−(k) and d+(k) are defined in (16)–(17) and (18)–(19),
respectively.

Note that the remarks made after Definition 3 do not hold
true for the ADS defined in Definition 3b. Definitions 4 and 5
remain unchanged, but Definition 6 must change to remove the
reference to a cyclic labeling.

Definition 6b—Trivial Operations: Trivial operations on a
binary labeling used for M -PAM are

• reflection of the codeword sequence,
• permutation of the codeword coordinates,
• binary inversion of any coordinates.
Remark: Trivial operations on a labeling do not affect the

ADS of the labeling. Since there are fewer types of trivial oper-
ations for M -PAM than for M -PSK, the number of nonequiva-
lent labelings is larger. There are even two nonequivalent Gray
codes for 8-PAM, which is not the case for 8-PSK.
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Definition 7 and 8 stay unchanged for the discussion of M -
PAM labelings.

Remark: Referring to Definitions 8 and 2b, a binary Gray
code of order m is formed by any path, not necessarily a closed
loop, that visits all vertices of the hypercube Qm once.

We will now use these modified definitions to show that the
TO-unique labeling that results in the optimal distance spec-
trum for M -PAM systems is the BRGC (which is still defined
by Definition 9).

IX. OPTIMALITY OF THE BRGC FOR M -PAM

We now address the problem of finding the optimal labeling
for M -PAM signal constellations. This subject will be treated
more briefly than the analogous problem for M -PSK, since the
general line of proof is the same as in Section V. We will focus
on the details in which the M -PAM case differs from M -PSK.
The main result of the M -PAM case is the following theorem.

Theorem 1b—Optimality of BRGC for M -PAM: The binary
reflected Gray code of order m is the optimal, TO-unique, la-
beling for 2m-PAM.

To prove Theorem 1b, we need as before a set of recursions
for the ADS and tight lower bounds on the first components
of the ADS. Then the result follows by induction. Not surpris-
ingly, the recursions in the next theorem follow the same pattern
as (4) – (6), with the addition of a correction term to account for
the edge effects of M -PAM. The important point for the opti-
mization is that these correction terms are independent on the
labeling.

Theorem 2b—Recursion for ADS of an Expanded Labeling:
Let d̄m(k) for m ≥ 2 denote the ADS of a labeling Cm obtained
from expansion of a labeling Cm−1 having an ADS d̄m−1(k).
Then, for all integers 0 ≤ k ≤ 2m−2 − 1, the ADS satisfies

d̄m(4k) = d̄m−1(2k) +
k

2m−1
(22)

d̄m(4k + 1) =
1

2
d̄m−1(2k) +

1

2
d̄m−1(2k + 1) +

1

2
(23)

d̄m(4k + 2) = d̄m−1(2k + 1) + 1 −
2k + 1

2m
(24)

d̄m(4k + 3) =
1

2
d̄m−1(2k + 1) +

1

2
d̄m−1(2k + 2) +

1

2
.

(25)

Outline of proof: Recursions are derived for d−(k) and
d+(k) separately. First, we proceed as in the proof of Theo-
rem 2 in Appendix A, but consider d−

m(k) for k = 0, . . . , M−1
instead of d̄m(k) for all integers k. The analysis in the ap-
pendix holds in this case too, except that for the sequence
(0, 1, 1, 0, 0, 1, . . . , 1, 0) in the last coordinate we do not obtain
(30)–(32) but an expression with four cases and k-dependent
correction terms subtracted from the right-hand sides. These
correction terms, which follow straightforwardly from the def-
inition (16), propagate directly to the recursions for d−

m(k),

which are

d−m(4k) = d−

m−1(2k)

d−m(4k + 1) =
1

2
d−m−1(2k) +

1

2
d−m−1(2k + 1) +

1

2
−

k

2m−1

d−m(4k + 2) = d−

m−1(2k + 1) + 1 −
2k + 1

2m−1

d−m(4k + 3) =
1

2
d−m−1(2k + 1) +

1

2
d−m−1(2k + 2)

+
1

2
−

k + 1

2m−1

for m ≥ 2 and all integers 0 ≤ k ≤ 2m−2 − 1.
Second, recursions for d+(k), defined in (18)–(19), are de-

rived in a similar manner. The result is, again for m ≥ 2 and all
integers 0 ≤ k ≤ 2m−2 − 1,

d+
m(4k) = d+

m−1(2k) +
k

2m−1

d+
m(4k + 1) =

1

2
d+

m−1(2k) +
1

2
d+

m−1(2k + 1) +
k

2m−1

d+
m(4k + 2) = d+

m−1(2k + 1) +
2k + 1

2m

d+
m(4k + 3) =

1

2
d+

m−1(2k + 1) +
1

2
d+

m−1(2k + 2) +
k + 1

2m−1

which completes the proof. 2

From these recursions, we can derive the modified versions
of Lemmas 3 and 4 given below.

Lemma 3b: For any Gray code Cm with m ≥ 3, the ADS
satisfies d̄(1) = 1 − 1/2m, d̄(2) = 2 − 3/2m, and d̄(3) ≥
2 − 1/2m−2.

Outline of proof: We define d(l, k) , dH (cl, cl+k) for
l = 0, 1, . . . , M−1−k. Since d(l, 1) = 1 and d(l, 2) = 2 for all
Gray codes and all l, the values of d−

m(1) and d−

m(2) are given
directly by (16) and d+

m(k) is given by (18) for k = 1, 2, 3. We
proceed to show that the sequence d(l, 3) for l = 0, 1 . . . , M−4
contains at most M/2− 1 ones, with the same method as in the
proof of Lemma 3, which establishes d−

m(3) ≥ 2 − 7/M . The
lower bound on d̄(3) then follows from (21). 2

Lemma 4b: Expanding a Gray code of order m − 1 ≥ 2
results in a Gray code of order m having d̄(3) = 2 − 1/2m−2.
Conversely, all Gray codes Cm with m ≥ 3 and d̄(3) = 2 −
1/2m−2 can be constructed by expanding a Gray code of lower
order Cm−1, possibly followed by trivial operations.

Outline of proof: The first statement of the lemma fol-
lows immediately from (22)–(25). For the second statement,
we study the sequence d(l, 3) for l = 0, 1, . . . , M − 4 and ob-
serve from the proof of Lemma 3b that the only sequence that
meets the lower bound on d−

m(3) is (1, 3, 1, 3, . . . , 1) (the se-
quence (3, 1, . . . , 3) gives a higher value of d−

m(3) for PAM)
and proceed exactly as in the proof of Lemma 4. 2

Having established the necessary preliminaries, we are now
ready to conclude the induction with our last lemma.

Lemma 5b: If Cm−1 is an optimal labeling of order
m − 1 ≥ 1, then an optimal, TO-unique, labeling Cm of order
m is obtained by expanding Cm−1.

The proof is identical to the proof of Lemma 5 in Section
V-B.
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Applying Lemma 5b m−1 times to the labeling (0, 1), which
obviously is an optimal, TO-unique, labeling of order 1, proves
that the BRGC is an optimal, TO-unique, labeling for 2m-PAM
of any order m ≥ 1, which completes the proof of Theorem 1b.

X. BINARY LABELINGS FOR M -QAM

Following the discussion concerning the M -PAM constella-
tions we now turn our attention to the closely related M -QAM
constellations. We will restrict the discussion to rectangular
(M1 × M2)-QAM constellations, which are obtained from the
direct product of two PAM constellations, one with M1 = 2m1

points and one with M2 = 2m2 points, with the same signal
point separation ρ. Furthermore, we make the assumption that
the components of the two-dimensional noise vector are statis-
tically independent.

Let P (k, l) denote the probability that the noise carries the
transmitted signal point to a decision region that is k steps away
along one axis and l steps away along the other. Again, for
channels of interest, the most likely error events are associated
with P (±1, 0) = P (0,±1), and we want these error events to
result in the smallest number of bit errors, i.e., a single bit error.
Therefore, we want to use a two-dimensional Gray code, which
is a labeling that has labels that differ in a single bit for any two
signal points that are separated by a distance ρ.

The only way to assign labels to a rectangular QAM con-
stellation that results in a Gray code is given by the following
lemma, which is stated and proved in [12].

Lemma 9—Gray labeling of rectangular QAM constellations:
The only ways to assign a labeling with the Gray property
to a (2m1 × 2m2)-point rectangular constellation is the direct
product of a 2m1-point and a 2m2-point Gray code.

Since we made the assumption of statistically independent
noise in each dimension, we may use a result from [14]: an M -
QAM system obtained from the direct product of an M1-PAM
constellation and an M2-PAM constellation has BER

Pb =
m1

m1 + m2
Pb(M1) +

m2

m1 + m2
Pb(M2),

where Pb(Mi) is the BER of the Mi-PAM system. This shows
that the optimal labeling for the M -QAM constellation is found
by selecting the optimal labeling for each of the two PAM con-
stellations independently. Therefore, from Theorem 1b, the op-
timal labeling for an (M1 × M2)-QAM constellation is found
from the labeling that is the direct product of the BRGC of order
m1 and the BRGC of order m2.

In passing, we note that the so-called cross-QAM constella-
tions cannot be labelled with a Gray code [12], therefore the
selection of an optimal labeling for these constellations falls
outside the scope of this paper.

XI. DISCUSSION AND CONCLUSION

We have addressed the problem of finding which constel-
lation labeling will produce the lowest possible BER among
all possible labelings for M -PSK, M -PAM, and M -QAM.
The search is done under the assumption that the communica-
tion takes place over channels for which P (k) decays quickly

enough to ensure that sequential minimization of the compo-
nents of the ADS yields the minimum BER. We have shown
that the best labeling under this assumption is the binary re-
flected Gray code.

The relevance of this discussion and the proof can be verified
by consulting almost any widely spread textbook on communi-
cations in which the problem of calculating the average BER
of systems using these constellation is treated. In most cases,
the BRGC is used, but referred to simply as “the Gray code”
and the fact that a wealth of different Gray codes exist and their
impact on the BER is often neglected. The proofs in this paper
validates the use of the BRGC for constellation labeling and al-
lows for a clearer presentation of the topic of BER calculation
for this type of communication system.

APPENDIX A
PROOF OF THEOREM 2

The average distance spectrum (ADS) of any binary periodic
sequence bl with period P is defined, for all integers k, as

δ̄(b, k) ,
1

P

P−1∑

l=0

|bl − bl+k|.

Now, from bl we form another sequence ul =
(b−1, b−1, b0, b0, b1, b1, . . .), ul being simply an upsam-
pled version of bl, where each element of bl is repeated once.
The sequence ul is a binary, periodic sequence with period
P ′ = 2P , satisfying u2l = u2l+1 = bl, for all integers l. For
this new sequence we have

δ̄(u, k) =
1

P ′

P ′
−1∑

l=0

|ul − ul+k| =
1

2P

2P−1∑

l=0

|ul − ul+k|.

By rearranging terms in the second sum we obtain

δ̄(u, k) =
1

2P

(
P−1∑

l=0

|u2l − u2l+k| +

P−1∑

l=0

|u2l+1 − u2l+1+k|

)

.

For k = 2i, where i is an integer, we have

δ̄(u, 2i) =
1

2P

(
P−1∑

l=0

|u2l − u2l+2i| +

P−1∑

l=0

|u2l+1 − u2l+1+2i|

)

=
1

2P

(
P−1∑

l=0

|bl − bl+i| +

P−1∑

l=0

|bl − bl+i|

)

=
1

2P

(
P δ̄(b, i) + P δ̄(b, i)

)
= δ̄(b, i) (26)
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and, similarly, for k = 2i + 1, we have

δ̄(u, 2i + 1) =
1

2P

(
P−1∑

l=0

|u2l − u2l+2i+1|

+

P−1∑

l=0

|u2l+1 − u2l+2i+2|

)

=
1

2P

(
P−1∑

l=0

|bl − bl+i| +

P−1∑

l=0

|bl − bl+i+1|

)

=
1

2P

(
P δ̄(b, i) + P δ̄(b, i + 1)

)

=
1

2
δ̄(b, i) +

1

2
δ̄(b, i + 1). (27)

Consider now the ADS d̄m(k) of a labeling Cm obtained by
expanding a labeling Cm−1 with ADS d̄m−1(k). Let [cl]i be the
ith bit of the codeword cl. By denoting the contribution to the
ADS from coordinate i of all codewords with

d̄(i)
m (k) ,

1

M

M−1∑

l=0

∣
∣[cl]i − [c(l+k) mod M ]i

∣
∣, ∀k ∈ Z

we have from (3) for the ADS of Cm

d̄m(k) =

m−1∑

i=0

d̄(i)
m (k)

=

m−2∑

i=0

d̄(i)
m (k) + d̄(m−1)

m (k)

, ν̄m(k) + d̄(m−1)
m (k)

where i = m−1 corresponds to the last coordinate in the code-
words (cf. Table I). Now, we observe that the term ν̄m(k) is
simply the ADS of the list of binary strings that results from
simply repeating each codeword of Cm−1 once. By noting that
the modulo operator in (3) can be removed without affecting
the result, by instead considering the periodic repetition of the
codewords, we can use (26) and (27) above to obtain, for all
integers k,

ν̄m(2k) = d̄m−1(k) (28)

ν̄m(2k + 1) =
1

2
d̄m−1(k) +

1

2
d̄m−1(k + 1). (29)

To obtain the desired result, we note that the term d̄
(m−1)
m (k)

is the ADS of the (periodically repeated) sequence (0, 1, 1, 0).
For this sequence we have trivially, for all integers k,

d̄(m−1)
m (4k) = 0 (30)

d̄(m−1)
m (4k + 2) = 1 (31)

d̄(m−1)
m (2k + 1) = 1/2. (32)

Combining (28)–(32) we have

d̄m(4k) = d̄m−1(2k)

d̄m(4k + 2) = d̄m−1(2k + 1) + 1

d̄m(2k + 1) =
1

2
d̄m−1(k) +

1

2
d̄m−1(k + 1) +

1

2
.

The optimal, TO-unique, labeling for m = 1 is C1 = (0, 1).
Clearly, d̄1(0) = 0 and d̄1(1) = 1, and since d̄1(k) is periodic
with period 2, d̄1(2i) = d̄1(0) = 0 and d̄1(2i+1) = d̄1(1) = 1,
which completes the proof of Theorem 2.

APPENDIX B
PROOF OF LEMMA 3

Since, for a Gray code Cm, all adjacent codewords differ in
a single position, we have d̄m(1) = 1. Codewords separated
by two steps can either differ in 0 or 2 positions, and since all
codewords are distinct, d̄m(2) = 2 for m ≥ 2. Let d(l, k) ,

dH(cl, c(l+k) mod M ). To show d̄m(3) ≥ 2 for m ≥ 3, we first
show that no two consecutive terms d(l, 3) and d(l+1, 3) in (3)
can both be 1 for m ≥ 3. To see this, consider any sequence of
five consecutive codewords, which, without loss of generality,
can be taken to be (c0, c1, c2, c3, c4). Since c1 and c3 differ
in two positions, there are exactly two points in Qm that are
adjacent to both c1 and c3. One of these points is c2; the other
may be c0 or c4, but not both. Assume that d(0, 3) = 1. Since
c1 and c4 are separated by an odd number of steps this implies
that d(1, 4) ≥ 3. Generalizing this argument shows that the
sequence d(l, 3) for l = 0, 1, . . . , M − 1 contains at most M/2
ones and at least M/2 values that are 3 or higher. Hence their
average d̄(3) ≥ 2.

APPENDIX C
PROOF OF LEMMA 4

The first statement of the lemma follows immediately from
(6).

For the second statement of the lemma, we know from
the proof of Lemma 3 that, for any Gray code of order
m ≥ 3, the sequence dH(cl, cl+3) for l = 0, 1, . . ., con-
sists of odd positive integers such that no two consecutive
values are both 1. Hence, the only sequence that results in
d̄(3) = 2 is (1, 3, 1, 3, . . .) (or (3, 1, 3, 1, . . .), which will not
be further considered, since it simply corresponds to a cyclic
shift of the codewords). This means that the codeword pairs
{c0, c3}, {c2, c5}, {c4, c7} . . . are adjacent vertices of Qm,
while the codeword pairs {c1, c4}, {c3, c6}, {c5, c8}, . . ., dif-
fer in three coordinates. Since dH(cl, cl+3) = 1 for any even
0 ≤ l ≤ M − 4, (cl, cl+1, cl+2, cl+3) forms a square in Qm.
Hence, cl+1 − cl and cl+2 − cl+3 are equal, or

∆ , c1 − c0 = c2 − c3 . . . = cM−2 − cM−1.

Refer to Figure 5 for an example of the relation between the
codewords. The difference vector ∆ has only one nonzero po-
sition, say, position j. By performing trivial operations on Cm

we can obtain a code C ′

m for which

∆
′ , c

′

1 − c
′

0 = c
′

2 − c
′

3 = . . . = c
′

M−2 − c
′

M−1

= (0, . . . , 0, 1)

without affecting its ADS. We now partition the codewords of
C′

m according to the value of rightmost bit. This creates two
subsets

(c′0, c
′

3, c
′

4, c
′

7, c
′

8, . . . , c
′

M−1)
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Fig. 5. Example of a path on Qm that forms a cyclic Gray code. The labels
correspond to the case M = 16. The solid lines form a path on Qm and
represent an expanded labeling, and the dashed lines identify some other pairs
of vertices on Qm that are neighbors.

and
(c′1, c

′

2, c
′

5, c
′

6, c
′

9, . . . , c
′

M−2)

which represent two cycles on Qm. By picking any of the two
subsets and puncturing the rightmost bit in this subset (which
geometrically corresponds to a projection orthogonal to ∆

′, so
that the two subsets become identical after puncturing) we gen-
erate a cyclic Gray code of order m−1. It is easily verified that
expanding this labeling using the procedure given in Section
IV-B yields C′

m again.

APPENDIX D
PROOF OF THEOREM 6

From Theorem 2 we have (take the average of (4) and (5) to
see that it equals (6))

d̄m(2k + 1) =
1

2
d̄m(2k) +

1

2
d̄m(2k + 2). (33)

Define j2 , 2 and

jm , 2 (jm−1 + (−1)m) , m ≥ 3. (34)

Then jm is of the form 4k + 2 and from (5) of Theorem 2, for
m ≥ 4,

d̄m(jm) = d̄m−1 (jm−1 + (−1)m)
︸ ︷︷ ︸

odd

+1

(33)
=

1

2
d̄m−1 (jm−1 + (−1)m − 1)

+
1

2
d̄m−1 (jm−1 + (−1)m + 1) + 1

=
1

2
d̄m−1 (jm−1) +

1

2
d̄m−1 (jm−1 + 2(−1)m)

︸ ︷︷ ︸

divisible by 4

+1

(4)
=

1

2
d̄m−1 (jm−1) +

1

2
d̄m−1

(
jm−1

2
+ (−1)m

)

+ 1

(34)
=

1

2
d̄m−1 (jm−1) +

1

2
d̄m−1 (jm−2) + 1.

To show that d̂2 = d̂3 = 2 is straightforward from (7).
By induction we will prove that if d̂m−2 = d̄m−2(jm−2) and
d̂m−1 = d̄m−1(jm−1), then d̂m = d̄m(jm). We have from (5)
and (33) that

d̄m(4k + 2) =
1

2
d̄m−1(2k) +

1

2
d̄m−1(2k + 2) + 1

≤
1

2
d̂m−1 +

1

2
d̂m−2 + 1 (35)

PSfrag replacements

s0 s1 s2 sM−3 sM−2 sM−1

ΩM−3 ΩM−1Ω0

overload

Fig. 6. Decision regions and notation used for an M -PAM signal constellation.
Note how the overload region is a subset of the decision region for either of the
end signal points s0 or sM−1 after removing a symmetrical strip surrounding
the signal point.

where the inequality follows from (4) since either 2k or 2k + 2
is divisible by 4. Furthermore,

d̄m(4k) =
1

2
d̄m−1(2k) +

1

2
d̄m−1(2k)

≤
1

2
d̂m−1 +

1

2
d̂m−2 + 1 (36)

and using the interpolation formula (33) combined with (35)
and (36) yields

d̄m(2k + 1) ≤
1

2
d̂m−1 +

1

2
d̂m−2 + 1. (37)

Combining (35) – (37) and using the definition of d̂m gives

d̂m ≤
1

2
d̂m−1 +

1

2
d̂m−2 + 1 = d̄m(jm).

But d̂m ≥ d̄m(jm) by definition which implies that d̂m =
d̄m(jm).

APPENDIX E
DERIVATION OF THE BER FOR M -PAM

In Figure 6, a general M -PAM signal constellation is shown
and the notation that will be used to calculate the exact bit error
rate of communication systems using this constellation is intro-
duced. The signal points are separated by a distance ρ and each
signal point si is associated with a decision region Ωi. Assum-
ing equal a priori probability for the transmitted symbols and
an ML receiver, the decision regions will be as in Figure 6. For
internal points (i.e., s1, . . . , sM−2) these regions are strips in
the real plane and the decision regions for the two edge points
(s0 and sM−1) are half-planes (this is for ease of illustration,
the ML receiver can just as well operate on a scalar, in which
case the decision regions are intervals on the real line). In Fig-
ure 6, Ω0 is the half-plane associated with s0 and ΩM−3 is the
strip associated with the internal signal point sM−3. If all signal
points are assigned strips congruent to ΩM−3, the overload re-
gions are the two regions that are outside the strips surrounding
the outer points, s0 and sM−1.

To calculate the exact bit-error rate of this signal constella-
tion, we again start from (1). From Figure 6 we see that, assum-
ing a symmetrical channel, the M -PAM problem has two types
of decision regions, so we define for all k ∈ Z

P (k) , Pr

(

s−

(

k +
1

2

)

ρ ≤ r ≤ s−

(

k −
1

2

)

ρ

)
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to be the probability that the received vector falls within a strip
k steps away from the transmitted signal point s and

P ′(k) , Pr

(

r ≤ s−

(

k +
1

2

)

ρ

)

=
∞∑

i=k+1

P (i) (38)

to be the probability that the received vector ends up in the half-
plane with a boundary at a distance (k + 1/2)ρ from the trans-
mitted signal point s. Since the noise is assumed to be sym-
metrical, P (k) = P (−k) and P ′(k) = P ′(−k), so that P (k)
and P ′(k), k = 1, 2, . . ., are the only probabilities needed to
complete the BER expression. If we briefly use the simplifying
notation d(i, j) to denote dH(ci, cj), we obtain for the average
BER of the M -PAM constellation

Pb =
1

mM

M−1∑

k=1

d(k, 0) (P (k) + P ′(k))

+
1

mM

M−2∑

l=1

M−1∑

k=0

d(k, l)P (k − l)

+
1

mM

M−2∑

k=0

d(k, M − 1) (P (M − 1 − k) + P ′(M − 1 − k)).

Now, by collecting terms relating to the overload regions (i.e.,
all terms involving P ′(k)) and terms relating to internal points
(all terms involving P (k)) we can, by making use of (38), ex-
press the above equality on the form

Pb =
2

m

M−1∑

k=1

P (k)d−(k) +
2

m

∞∑

k=2

P (k)d+(k)

where we have defined for k = 1, . . . , M − 1

d−(k) ,
1

M

M−1∑

l=k

dH(cl−k , cl)

and also for k = 2, 3, . . .

d+(k) ,
1

2M

min(k,M)−1
∑

l=1

(dH(c0, cl) + dH(cM−1, cM−1−l)) .

Note that in the sum for d−(k), the number of terms are de-
creasing as k is increasing and also that the sum for d+(k) is
not depending on k.
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