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A Blind Phase Stabilization Algorithm
for Parallel Coherent Receivers

Pontus Johannisson, Christophe Gosset, Magnus Karlsson

Abstract—The impact from phase drifts in the different
branches of parallel coherent receivers is investigated and it
is shown how the spectrum is broadened when the receiver
branches are not phase stabilized. Based on this, we propose
a blind algorithm for compensating these phase drifts in digital
signal processing by minimization of the spectral width. The
algorithm performance is then evaluated by numerical simula-
tions of quadrature phase-shift keying data using return-to-zero
modulation. It is found that the algorithm is capable of identifying
the phases with sufficient accuracy to make the residual effect of
the phase mismatches negligible compared to the signal distortion
by noise at a bit error rate of 10−3.

Index Terms—Optical fiber communication, intradyne detec-
tion, digital signal processing.

I. INTRODUCTION

COHERENT detection in combination with polarization
multiplexing allows optical transmission with high spec-

tral efficiency and makes it possible to use digital signal
processing (DSP) to compensate for signal distortion. Al-
though the development of the necessary receiver electronics
is challenging, the DSP-based coherent receiver is a commer-
cial reality since the demonstration of a 40 Gbit/s real-time
system using dual-polarization quadrature phase-shift keying
(QPSK) [1]. However, the analog-to-digital converter (ADC)
is a bottleneck for the development of the next generation sys-
tems, operating at 400 Gbit/s–1 Tbit/s, since the bandwidth of
even state-of-the-art ADCs is not sufficient for such high-speed
optical signals. This is often a constraint already today when
using optical time-division multiplexing or when the optical
signal is generated using high-speed electrical signals [2], [3].

One way to work around the ADC bandwidth limitations is
to perform optical time-division demultiplexing in the receiver
by using a pulsed local oscillator (LO) [4]. This scheme
works well and excellent results have been demonstrated both
back-to-back and with transmission when the inter-symbol
interference (ISI) is low, see for example [5], [6]. However,
there are two drawbacks with this scheme. Firstly, the LO
pulses must be synchronized with the signal symbols to
obtain overlap with a specific tributary. Secondly, the scheme
is limited to a single sample per symbol. This is because
even if the bandwidth of the ADCs is compatible with the
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tributary symbol rate, it is typically not possible to resolve
the symbol pulses, which are much shorter than the pulse
spacing of a tributary. The sampled spectrum will therefore
suffer from aliasing and it is impossible to compensate for
arbitrary amounts of ISI such as chromatic dispersion (CD)
and/or polarization-mode dispersion (PMD).

In order to introduce impairment mitigation capabilities
in high symbol rate systems, it has been proposed to use
a more general approach, which is here referred to as the
parallel coherent receiver (PCR). With this type of receiver
it is possible to sample at an arbitrary rate by using narrow
LO pulses and sufficient parallelization to limit the ADC
sampling rate in accordance with the ADC bandwidth. The
history of this device goes back, at least, to the sugges-
tion of using coherent detection with a pulsed LO as a
way to do equivalent-time sampling of constellations with
high bandwidth and sensitivity [7]. The next step was the
introduction of a parallel structure for studying differential
formats, although still by using a low LO pulse repetition
frequency (10 MHz) [8]. This approach was then refined
into a real-time capable configuration by raising the optical
sampling frequency to two samples per symbol, thereby also
enabling advanced DSP [9]. The PCR has then been further
investigated and improved, which has lead to experimental
demonstration of 4-fold parallelization and reception of QPSK
data up to 64 Gbaud [10], [11]. This was achieved with an
ADC bandwidth of 20 GHz, which shows the potential of the
concept since reception and post-processing would not have
been possible without parallelization.

Compared to the time-division demultiplexing approach,
the sampling rate of the PCR can be set to be sufficient
for adaptive equalization in DSP. Furthermore, it is not nec-
essary to perform optical clock recovery to synchronize the
signal to the LO pulses. The concept is also scalable in the
sense that, in principle, it can be extended to any desired
degree of parallelization, leading to arbitrarily low demands
on the ADC bandwidth. This makes the PCR a candidate
for receiver implementation in future transmission systems
with high data rates, typically 400 Gbit/s–1 Tbit/s. Another
promising application is in monitoring of high-speed optical
signals. In this case, an increased bandwidth beyond what the
conventional coherent receiver can achieve is highly valuable
and an increased receiver cost can therefore be tolerated.

The PCR needs to be properly set up in order to achieve high
performance. For example, the LO pulses should be narrow
and have negligible chirp, and the ADCs should, ideally, be
clocked synchronously with the LO pulses. This is beneficial
since it allows the electrical sampling rate to be equal to
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Fig. 1. Schematic picture of the PCR for a single-polarization case. BD =
balanced detector. ADC = analog-to-digital converter. DSP = digital signal
processing. For a dual-polarization signal, one more similar array of hybrids
needs to be added.

the LO pulse repetition rate [11]. A practical complication
in a non-integrated PCR (as compared to the conventional
coherent receiver) is the phase shifts between the different
receiver branches that are caused by slowly varying optical
path lengths. However, provided that the phase differences
can be identified, this can be compensated for in DSP, which
would remove the demand for hardware phase stability. Such
compensation is helpful in the system prototyping stage and
can potentially even eliminate the need for integrated devices.

One algorithm for identifying the phase difference between
the two receiver branches using 2-fold parallelization for the
binary phase-shifting keying format was described in [9].
However, this algorithm is hard to generalize to higher degree
of parallelization and other modulation formats. For recent
experimental results [11], the algorithm from [12] was used.
It is not clear exactly what objective function was used to run
the optimization, but the authors explicitly state that there is
a need for development of an integrated optical device or an
improved algorithm to handle this problem [11].

In this paper we propose and investigate a blind algorithm
for phase stabilization of a PCR. We start by demonstrating
analytically how the spectrum of the sampled signal is affected
by the type of phase shifts that occur in a PCR. Starting
from this description, we suggest to estimate the phases
by minimizing the spectral width. The performance of the
proposed algorithm is then evaluated in numerical simulations
and the results are discussed and concluded.

Notation: Vectors are denoted in bold letters (e.g., u), and
matrices in capital bold letters (e.g., U). Element extraction
from vectors or matrices are written with subscripts, e.g.,
Um,n. Transpose is denoted by aT, conjugation by a∗, and
the conjugate (Hermitian) transpose by aH.

II. RECEIVER DESCRIPTION

A schematic picture of the PCR is seen in Fig. 1 and the
operating principle is as follows: Assuming that the incoming
signal is to be sampled at the rate fsamp and using N -fold
parallelization, a pulsed LO is set up with repetition frequency
fsamp/N . Sending the signal and the pulsed LO to a 90◦

hybrid we will, in effect, perform optical sampling before the
ADC. By clocking the ADC synchronously with the LO pulse

train, the electrical sampling rate can be set equal to the LO
pulse repetition rate [11]. To obtain all samples, an array of
N 90◦ hybrids must be used and the LO pulses are delayed
(n − 1)/fsamp, n ∈ [1, N ] for the nth branch. The complete
signal is obtained by interleaving the different sampled data
streams.

As is easily worked out theoretically, using narrow LO
pulses enables high-bandwidth optical sampling. The relative
time delays in the different PCR branches must then be
accurately tuned, and the clocking of the ADCs should be
synchronous with the LO pulses. In a correctly configured
system, the bandwidth demand on the ADCs is reduced by a
factor N .

Using a non-integrated (fiber-based) PCR, it is impossible to
avoid unequal phase shifts in the different receiver branches,
i.e., during the propagation after having split the signal and
the LO into multiple propagation paths. This means that
neighboring samples in the interleaved sampled signal will
have a random phase relation, which will cause conventional
electronic dispersion compensation (EDC) or phase synchro-
nization to fail. Therefore, the phase shifts need to be estimated
at an early stage in the post-processing. Furthermore, since
the lengths of the receiver branches change slowly (due, e.g.,
to temperature fluctuations), the phases drift with time. For
continuous operation, this must be tracked but the drift time
scale should be on the order of > 1 ms, i.e., much longer than
the symbol slot. This relaxes the demands for the tracking
speed and makes it possible to base the estimation on long
data sequences.

III. SPECTRAL BROADENING FROM PHASE SHIFTS

As a first step in designing the phase stabilization algorithm,
we describe the impact on the signal spectrum from the type of
phase shifts present in a PCR. Before describing the spectral
broadening theoretically, we discuss a specific example.

Fig. 2a shows the power spectral density (PSD) of a 50%
return-to-zero (RZ 50%) signal [13] with random QPSK data.
By using a very high sampling rate, 16 samples per symbol
in this example, the PSD is seen with very little aliasing and
the impact on the spectrum is easy to see. The PSD of a
signal sampled in one of the branches of a PCR using 4-
fold parallelization is plotted in Fig. 2b. Due to the decrease
in sampling rate, the frequency interval is here four times
shorter than in Fig. 2a. In order to discuss the spectrum of
the complete sampled signal, it is helpful to upsample the
signal in one branch to fsamp by zero insertion. The PSD
of the resulting signal is seen in Fig. 2c, and shows the
periodic continuation of the PSD of Fig. 2b. The total signal
is obtained by interleaving the signals sampled in the different
branches. Since this is equivalent to adding four time-shifted
upsampled signals, the spectrum of the interleaved signal is
the superposition of four similar spectra corresponding to the
PSD plotted in Fig. 2c. If the phase shifts of the PCR branches
are all identical, then this results in the PSD from Fig. 2a.
However, with non-ideal phase relation between the branches,
the different spectra do not interfere in the right way. One
example, calculated by using random phase shifts, is seen in
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Fig. 2. (a) The PSD in dBm/(0.1 nm) for a RZ 50% QPSK signal. (b) The
PSD of the signal sampled in one of the PCR branches. (c) The PSD of the
signal from b upsampled by zero insertion. (d) The PSD of the interleaved
signal with random phase shifts applied in the four receiver branches.

Fig. 2d. The result is qualitatively somewhat similar to Fig. 2c,
but far from the correct PSD of Fig. 2a.

To describe the impact on the spectrum theoretically, we
denote the (M × 1) interleaved sampled signal in the absence
of any phase shifts, i.e., sampled by an ideal PCR, by u.
Introducing a phase shift Θn in the nth branch, we set up
a phase shift vector ψ = [eiΘ1 , eiΘ2 , . . . , eiΘN ]T. To a good
approximation, ψ is constant over the time we consider.
Allowing ψe

m, m = 1, . . . , M to be a periodic continuation
of ψ, we can express the sampled signal in the presence of
the phase shifts as ũm = ψe

mum. Since ψe has the period N ,
it can be written as

ψe
m =

N∑
n=1

cneiΩn(m−1), (1)

where Ωn = 2π(n−1)/N is the angular frequency of the nth
Fourier component and the (unknown) Fourier coefficients cn

depend only on the phase shifts Θn. We notice that if the
phase shift is equal in all the PCR branches, then |c1| = 1
and cn = 0, n > 1. However, in the general case, cn 6= 0, ∀n,
such that

ũm = um

N∑
n=1

cneiΩn(m−1). (2)

From this expression, we can identify the impact on the
spectrum from the phase shifts in a PCR: Performing the
discrete Fourier transform (DFT) of ũ from (2), we will find
a superposition of scaled (by cn), frequency translated (by
Ωn) replicas of the spectrum of u. The true spectrum will be
recovered only when the phase shift is equal in all branches.

From (2) and Fig. 2d we understand that EDC will not work
as intended in the presence of phase shifts, since only the part
of the spectrum that is still centered at zero frequency will be
correctly compensated by the parabolic phase shift introduced
by EDC. Phase compensation should therefore be done before
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Fig. 3. A contour plot of the spectral width, corresponding to Fig. 2, as a
function of the phase deviation measured in degrees from the correct value.
The width has been normalized to its minimum value. In this case Θ3 =
Θ4 = 0. The minimum is very close to Θ1 = Θ2 = 0.

EDC is carried out. Anticipating the result of the next section,
we emphasize that CD only affects the spectral phase, not the
amplitude.

IV. THE PHASE STABILIZATION ALGORITHM

The spectral shape of optical signals used in coherent
communication is well known for many digital modulation
formats [13], [14]. One important example is the spectrum of a
return-to-zero quadrature amplitude modulation (QAM) signal,
which has been illustrated for the specific choice of QPSK in
Fig. 2a. As is intuitively clear from Fig. 2d, the phase shifts
in the different PCR branches lead to a spectral broadening.
We therefore suggest that for many modulation formats of
practical importance in coherent optical communication, the
phase stabilization can be done by minimizing the spectral
width. For a continuous signal, the root mean square (RMS)
spectral width is defined from

∆f2
RMS =

∫ ∞

−∞
f2|X(f)|2 df

/ ∫ ∞

−∞
|X(f)|2 df, (3)

where X(f) is the Fourier transform of an arbitrary (trans-
formable) signal x(t).

In order to show that the approach is promising, the spectral
width as a function of the PCR branch phases is seen as a
contour plot in Fig. 3. Without loss of generality, the fourth
phase is set to zero. In this specific case also Θ3 = 0 due to the
difficulty to visualize a three-dimensional function. However,
the result is qualitatively identical for other choices. The drawn
out shape of the contours occurs since the width increases
more slowly when Θ1 = Θ2. By increasing the span of the
deviation phases to [−π, π), it has been found that there is a
unique minimum.

If the spectrum is very flat, the suggested approach can fail.
Unfortunately, we have not been able to find a strict condition
when this will be the case. It is, for example, not sufficient
that the amplitude of the spectrum is monotonically decreasing
with the magnitude of the frequency. An example of this in
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the case N = M = 2 is the spectrum vector [1, 0.9i]T. The
algorithm will in this case be able to shift almost all power to
DC. However, this example is very far from being realistic. In
Section VI, we have investigated the performance numerically
using realistic parameters and the approach is then proven by
the fact that the result is very good.

A. The Minimization Problem

The proposed spectral width minimization will be based on
the analysis of the spectrum of the sampled signal ũ. The aim
is that the corrected version, û, of ũ should be as similar as
possible to the signal u, which would be obtained by sampling
with an ideal PCR. The corrected signal has the corresponding
DFT v̂, and we write the Fourier transformation operation as
the linear transform v̂ = Wû, where the (M×M) matrix W
is given by the definition of the DFT. A discrete counterpart
of (3) is given by (the square of) the normalized RMS width
of the DFT according to

∆f2
RMS = v̂HGv̂/(v̂Hv̂), (4)

where the diagonal matrix G contains the elements Gm,m =
f2

m, and fm is the normalized frequency in the interval
[−1, (M−1)/M ] corresponding to the DFT element v̂m. Since
v̂Hv̂ is not affected by the phase shift, we can choose to define
a cost function for spectral minimization according to

J = v̂HGv̂. (5)

We introduce the (M ×N) matrix Ũ with elements Ũm,n =
Pm,nũm, where

Pm,n =
{

1, m = n + aN for some integer a,
0, otherwise. (6)

In this way, the columns of Ũ contain the signals from the
different branches upsampled to fsamp by zero insertion. As
opposed to Section III, we now introduce deliberate phase
compensation in each branch and denote the phase shift
vector by φ = [eiθ1 , eiθ2 , . . . , eiθN ]T (compare with ψ from
Section III). The corrected vector can then be written û = Ũφ.
Using that

J = (WŨφ)HG(WŨφ), (7)

we can formulate the optimization problem as

φ̂ = arg min
φ

(φHAφ), (8)

where

A = ŨHWHGWŨ. (9)

Here, φ̂ is the optimal phase compensation vector that mini-
mizes the cost function J , and thus also the spectral width (4),
and the (N ×N) Hermitian matrix A is calculated from the
sampled data. It is worth noticing that the columns of WŨ are
the DFTs of the upsampled signals of the individual branches.
The upsampling by zero insertion will simply cause an N -
fold periodic continuation of the spectra, as was illustrated in
Fig. 2c. We point out that although many samples are needed
to set up the A matrix, the resulting matrix is small, (N×N),

and the following calculation of the φ̂ vector does not involve
any further processing of the sampled data.

Before continuing, we remark that (9) takes the entire
spectrum into consideration. One way to avoid the DFT
operations would be to only consider the spectral components
centered at Ωl (defined in the discussion of (1)). These could
be extracted by a bank of bandpass filters and would simplify
the setup of A.

B. Solution by Steepest Descent
The phase compensation vector φ̂ is obtained from (8).

Although it may be possible to find the solution with ana-
lytical methods, we proceed in a simple way by using the
steepest descent method. Since the elements of φ̂ should have
normalized modulus, we extract the phases into the vector
θ̂ = [θ̂1, θ̂2, . . . , θ̂N ]T, which has no such constraints. We then
update θ̂ from iteration k to k + 1 by taking a step in the
opposite direction of the gradient according to

θ̂ k+1 = θ̂ k − µ∇θ̂ J(θ̂ k), (10)

where µ is the step size, and ∇θ̂ is the gradient obtained by
differentiating the cost function with respect to the vector θ̂ ,
with the result

∇θ̂ J = 2 Im[diag(Aφ̂φ̂H)], (11)

where diag extracts the diagonal elements into a column
vector. This allows the vector φ̂ to be estimated and then
tracked by using updated A matrices.

V. SYSTEM ASPECTS

It is an important fact that the suggested algorithm can be
included into the typical chain of DSP in the receiver. To
allow normal operation of the subsequent DSP, the phase shifts
should be compensated early, preferably just after compensa-
tion of branch-specific hardware errors. This is possible since
the phase stabilization can be performed on asynchronously
sampled data and the algorithm is not affected by CD or PMD.
The latter is because only the amplitude of the spectrum is
used, but not the phase. Polarization-dependent loss will also
have no impact as long as it has no frequency dependence.

Furthermore, it is important that the signal after compensa-
tion is such that the subsequent DSP will be able to work as
normal. It is a very difficult question how this will work in
detail since the answer depends on the algorithm choice. For
example, the constant modulus algorithm will not be affected
by the phase distortion since its cost function only depends on
the signal amplitude. On the other hand, the phase synchro-
nization algorithm will obviously be affected, but the impact
may vary depending on the algorithm. Here, we therefore
instead start from the approach that the signal distortion due
to residual phase shifts should be small compared to the noise
typically present in the signal. When this is true, we expect
the impact on the subsequent DSP to be very small, but the
detailed analysis of this is outside the scope of this work.

In order to be able to compare error sources we use the
error vector magnitude (EVM) defined according to

EVM =
√
E |û− u|2, (12)
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where u is the ideal signal, û is the distorted signal, and the
expectation operator is denoted by E. In the case of a noisy
but otherwise ideal signal, we will directly find that û−u = n,
where n is the noise, and we get

EVMnoise =
√

Pnoise, (13)

where Pnoise is the average noise power. Instead looking at an
ideal signal with residual phase distortion, we have that

ûk − uk = ukei∆θκ − uk, (14)

where ∆θκ is the difference of the exact and estimated phases
and κ ∈ [1, N ] is obtained from κ = k + aN for a suitably
chosen integer a. Inserting this into (12), we obtain

EVMphase =
√

Psignal

√
E |ei ∆θκ − 1|2

≈ √
Psignal

√
E |∆θκ|2 =

√
Psignal σ∆θ, (15)

where σ∆θ is the standard deviation of ∆θ and we have used
that ∆θ is a small angle. The ratio of these two amplitude
errors is

η =
EVMphase

EVMnoise
= σ∆θ

√
Psignal

Pnoise
= σ∆θ

√
SNR. (16)

If we set the signal-to-noise ratio (SNR) 9.8 dB, which is
required to obtain a bit error rate (BER) of 10−3 for a QPSK
signal, and a standard deviation σ∆θ = 1◦, we obtain η ≈
0.054. Furthermore, η < 0.1 up to SNR levels that correspond
to BER < 10−8. If we instead consider rectangular 16-QAM,
the SNR requirement at BER = 10−3 increases by roughly
6 dB. Due to the square root in (16), we then obtain η ≈ 0.11
This shows that a standard deviation of 1◦ is a reasonable
accuracy target for practically relevant signals.

VI. NUMERICAL SIMULATIONS

The performance of the proposed algorithm has been tested
in numerical simulations. We first report the results from
simulations where the system has negligible nonlinearities and
the balanced detectors (BDs)/ADCs have sufficient bandwidth
to cause negligible ISI (which here rather should be interpreted
as inter-sample interference due to the parallelization.). These
assumptions are then discussed in Section VII.

We find it convenient to investigate return-to-zero (RZ)
optical signals, since they have a mathematically well-defined
description and therefore do not rely on a specific choice of
pulse-shaping filter [13]. By simulating different duty cycles,
we examine how the required number of samples per symbol is
affected by the spectral width. Random QPSK data has been
used in all cases. The results are valid for arbitrary symbol
rates since this will only cause a rescaling of the spectral
width.

Since the system is linear, the signal quality is fully char-
acterized by the SNR. Furthermore, since the result is not
affected by CD/PMD, the system length does not need to be
selected. The laser phase noise has been neglected since it
has minimal impact on the spectrum amplitude. The reason is
that the linewidth is of the order ∼ 1 MHz, while the signal

bandwidth is likely to be significantly larger than 10 GHz.
Thus, the spectral broadening due to this effect is negligible.

Since the number of samples used to calculate the matrix
A affects the result, we have tested 212, 214, and 216 samples.
The result also depends on the SNR and we have tested two
different cases: one case with negligible noise and one case
where complex additive white Gaussian noise (AWGN) has
been added to make the mean noise power one tenth of the
signal power. (The required SNR at BER = 10−3 is 9.8 dB
for QPSK.)

We have investigated the two cases of 4-fold and 8-fold
parallelization. In the 4-fold case, the initial phases were all set
to zero and then the algorithm was iterated until convergence
was seen. The step size was chosen to be µ = 5/(ṽHṽ),
where ṽ is the DFT of the sampled signal ũ. The necessary
number of iterations varies depending on, e.g., the number
of samples per symbol. Typically, when the final standard
deviation is roughly 1◦, then well under 100 iterations are
necessary. As opposed to the 4-fold case, the algorithm tends
to find local minima in the 8-fold case. This presents a problem
when starting up the algorithm but will not be a problem in the
subsequent tracking of the phase evolution. We have chosen to
work around this by evaluating the cost function for a number
of candidate φ vectors, and then proceed the iteration using
the candidate with the lowest cost. By testing four individually
chosen and equally spaced angles for each branch, we have
been able to eliminate the problem. Typically, a couple of
hundred iterations are needed in the 8-fold case.

To quantify the result, we have calculated the standard
deviation, σ∆θ, of the phase error, i.e., the difference of the
true and estimated phases, averaged over all receiver branches
in 1000 simulations. The receiver branch phases have, in every
simulation, been chosen to be independent and uniformly
random in the interval [−π, π).

The results for 4-fold parallelization are seen in Fig. 4 and
the corresponding results using 8-fold parallelization are seen
in Fig. 5. The three subfigures show, from the top, the results
from using RZ 67%, RZ 50%, and RZ 33%, respectively.
The thick lines indicate the result with noise included and the
different markers indicate the amount of data that has gone into
the calculation of the A matrix, as indicated in the legend. We
have used asynchronous sampling and the number of samples
per symbol is an irrational number. The axes has been chosen
to show the result in the interval 0.1◦–10◦.

VII. DISCUSSION

The results show that a standard deviation σ∆θ = 1◦ can
be reached and that sufficient sampling rate is important for
good performance. In particular, this is true for the modulation
format with largest spectral width (RZ 33%) and is a natural
consequence from the fact that a low sampling rate leads to
aliasing and a flatter spectrum. As expected, the introduction
of noise leads to increased phase standard deviation, but the
impact is rather limited. In all cases, it is possible to increase
the performance by using more data in the computation of the
A matrix. However, for a low sampling rate, the necessary
amount of data can become unpractically large.
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Fig. 4. The resulting phase standard deviation with 4-fold parallelization.
Counted from the top, the figures show RZ 67%, RZ 50%, and RZ 33%
modulation, respectively. The thin lines show the noiseless case. The markers
(see legend) indicate the number of samples used to calculate the A matrix.

The results are qualitatively similar in all cases, also when
comparing the 4-fold and the 8-fold cases. In general, the stan-
dard deviation is higher for the 8-fold case, which is explained
by the fact that in this case we have more unknown parameters
but we use the same amount of data. Since the signal absolute
phase is of no consequence, there are 3 unknown parameters
in the first case and 7 in the second case. As an example, at
2.0 samples per symbol, the simulations in the 8-fold case with
noise included show a standard deviation increase of 1.9–2.3
times compared to the 4-fold case. However, using sufficient
amount of data, accurate estimation of the phases is possible
also with high degree of parallelization.

In order to show the distribution of the residual phase
errors, Fig. 6 shows the numerically obtained histogram for the
selected case of 4-fold parallelization, RZ 50%, 214 samples
obtained at 2 samples per symbol with noise included. In
this case, the standard deviation is 0.96◦, and a fitted normal
distribution has been included for comparison. It is seen that
the probability density function of the residual phase error is
Gaussian, which means that the standard deviation reported
in the numerical simulations contains sufficient statistical
information.

In the numerical simulations, it was assumed that the
BDs/ADCs have sufficient bandwidth to cause negligible ISI.
If this is not the case, the frequency components around ±2
in our example Fig. 2b will be suppressed. In the interleaved
signal, corresponding to Fig. 2a, the effect of the limited
bandwidth will be seen around ±2 and ±6. The impact
can be important at lower sampling rate, say 2 samples per
symbol, since N dips will appear in the spectrum. This is
a general feature of the PCR and will not be discussed in
detail here. However, the impact on the algorithm performance
is important to investigate. By lowpass filtering the signals
in the different receiver branches, we have found that the
algorithm is not very sensitive to this type of filtering. As
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Fig. 5. The resulting phase standard deviation with 8-fold parallelization.
Counted from the top, the figures show RZ 67%, RZ 50%, and RZ 33%
modulation, respectively. The thin lines show the noiseless case. The markers
(see legend) indicate the number of samples used to calculate the A matrix.

an example, we have used a 5th order Butterworth filter with
the cut-off frequency selected as to allow only half of the
spectrum to pass. For the parameters used to produce Fig. 6,
this increased the standard deviation from 0.96◦ to 1.35◦. A
similar effect, i.e., around 40% increase, was also observed
for the other modulation formats. The spectrum is in this case
strongly distorted with 4 wide dips appearing. This suppression
of signal content decreases the information available to the
algorithm and causes the observed increase of the residual
phase errors.

Above, the system was assumed to be linear but as is
well known, the Kerr nonlinearity is an important system
limitation in practice. Unfortunately, it is very hard to describe
the impact of the Kerr nonlinearity generally and a detailed
study of how this will affect the presented algorithm is
outside of the scope of the paper. However, the PCR will
most likely be used at very high symbol rates. It has been
shown that in uncompensated WDM transmission, the Kerr
nonlinearity will cause signal distortion that is statistically
similar to AWGN [15]. This approach has led to a very good
model for WDM transmission [16], and this means that the
Kerr nonlinearity will simply reduce the “effective SNR”.
For this case, the above simulations are still usable. As a
complementary case we consider a single-channel system with
densely spaced optical dispersion compensation. In such a
system, self-phase modulation is the most important nonlinear
distortion. This leads to a broadening of the spectrum and also
reduces the curvature, which leads to larger residual phase
errors. Again, we have found that the impact is weak. In
the case where the maximum nonlinear phase shift is 1 rad
we found a 27% increase of the standard deviation using
the parameters used to produce Fig. 6. Similar results were
obtained for the other modulation formats.
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Fig. 6. The histogram shows the numerically obtained distribution of the
residual phase errors for 4-fold parallelization, RZ 50%, 214 samples obtained
at 2 samples per symbol with noise included. The red curve shows a fitted
normal distribution for comparison.

VIII. CONCLUSION

We have proposed an algorithm for phase stabilization of
the parallel coherent receiver based on minimization of the
spectral width. Numerical simulations have shown that the
phase standard deviation after convergence is small and that
the impact of the residual phase errors is negligible in com-
parison to the noise in many signals of practical importance.
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