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Abstract — Lattices are considered for sampling and
interpolation of stationary stochastic processes. The
error variance of a linear unbiased estimator (inter-
polator) is calculated as a function of the lattice used
and the covariance function of the process, and the
optimal estimator is characterized. It is shown that
in any dimension, the optimal lattice for very low rate
sampling is the dual of the one for very high rate.

I. Introduction

We consider the problem in multidimensional signal pro-
cessing where a signal is to be discretized, stored, and recon-
structed. We assume that the signal is a realization of a zero-
mean wide-sense stationary stochastic process (Z(x);x ∈ R

d)
with finite second moments. We assume that the (multidimen-
sional) covariance function R(x) = E[Z(y)Z(y+x)] is known
and denote the spectral density, i.e., the Fourier transform of
R, by f . The process is not required to be band-limited in
any direction.

From a geometrical point of view, the multidimensional
signal should be sampled as uniformly as possible, in order to
gain as much information as possible about the signal every-
where in the relevant region. No part of the region should lie
very far from the closest sample point, since this would cause
a relatively large uncertainty in the estimate of the signal in
that part. Therefore, sampling on a lattice is considered [1].

A d-dimensional lattice Λ = Λ(B) is a subset of Rd of the
form {u = BTw : w ∈ Z

n} where B, the generator matrix,
is a matrix with n linearly independent rows [2, Ch. 1]. The
packing radius ρ(B) is half the minimum distance between
two points of the lattice, and the kissing number τ (B) is the
number of lattice points at distance 2ρ. The Voronoi region
Ω(B) of a lattice is the set of all vectors in R

d that are at
least as close to the origin 0 as to any other lattice point. In
the frequency domain, an important role is played by the dual
lattice of Λ(B), scaled by 2π, which we denote by Λ(A). Any
matrix A of the same dimensions as B that satisfies ATB =
2πI can serve as generator for the dual lattice, such as A =
2π(B−1)T if B is square.

II. The interpolation error

Let Ẑ(x) be the best linear unbiased estimator of Z(x)
based on observations (Z(u);u ∈ Λ(B)) on a lattice. Here,

“best” means minimizing the mean square error σ2
Λ(B)(x)

def
=

E[(Z(x) − Ẑ(x))2]. It can be shown [1] that the average in-

terpolation error, σ2
Λ(B)

def
= (volΩ(B))−1

∫
Ω(B)

σ2
Λ(B)(x)dx, is

given by

σ2
Λ(B) = R(0)−

1

(2π)d

∫

Ω(A)

∑
λ∈Λ(A) f

2(ω + λ)
∑

λ∈Λ(A) f(ω + λ)
dω. (1)

We aim to find the lattice that minimizes σ2
Λ(B) among all

lattices with equal volume volΩ(B). Note that 1/ volΩ(B) is
the sampling rate, that is, the limit of the number of points
in Λ(B)∩D divided by volD as the domain D is extended in
all directions.

The following two theorems characterize the two extreme
cases where the sampling rate tends to zero and infinity, resp.,
assuming an isotropic covariance function R. Instead of rescal-
ing the lattice, however, we can equivalently rescale the co-
variance function R and its Fourier transform f . Letting the
sampling rate go to zero is equivalent to concentrating the
covariance near the origin and letting the sampling rate go
to infinity is equivalent to concentrating the spectral density
near the origin. In this sense, the low-rate case corresponds to
processes whose realizations look rough and the high-rate case
to processes that look smooth. In [3], we state both theorems
rigorously and prove that the error in the approximations is
of smaller order.

Theorem 1 For R(x) = R0(β‖x‖) with β → ∞,

σ2
Λ(B) ≈ 1−

R∗2(0)

vol Ω(B)

(
1 + τR2(2ρe)− τR(2ρe)

R∗2(2ρe)

R∗2(0)

)

(2)
where

R∗2(x)
def
=

∫

Rd

R(y)R(x+ y)dy, (3)

ρ = ρ(B), τ = τ (B), and e is an arbitrary unit vector. If
R0(r) ∼ C exp(−rp) for some p > 0 as r →> ∞, for a given
volΩ(B), (2) is minimal for the lattice with the greatest ρ(B).

Theorem 2 For f(ω) = f0(α‖ω‖) with α → ∞,

σ2
Λ(B) ≈

τ

(2π)d

∫

Rd

f(ω)f(2ρe− ω)

f(ω) + f(2ρe− ω)
dω (4)

where now ρ = ρ(A), τ = τ (A) and e is again an arbitrary
unit vector. If f0(r) ∼ C exp(−rp) for some p > 0 as r → ∞,
for a given volΩ(B), (4) is minimal for the lattice with the
greatest ρ(A).

In conclusion, the asymptotically optimal lattice for low-
rate sampling is the one that solves the packing problem, which
is to minimize ρ(B) [2, Ch. 1], and the dual of this lattice is
asymptotically optimal for high-rate sampling.
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