Optimization of Discrete Event Systems using
Extended Finite Automata and Mixed-Integer
Nonlinear Programming

Carl Thorstensson * Sathyamyla Kanthabhabhajeya *
Bengt Lennartson * Petter Falkman *

* Department of Signals and Systems, Chalmers University of Technology,
Gothenburg, Sweden (e-mail: carl.thorstensson@ chalmers.se)

Abstract:

This paper presents a concept for converting a discrete event model, modeled with Extended Finite
Automata (EFA), to mixed-integer linear constraints. The conversion handles the structure of modular
EFAs, synchronization of EFAs using shared events and EFA execution order due to logical transition
conditions. The paper also presents methods to reduce the number of variables and constraints by
automatically analyzing the EFA model and the resulting problem formulation. An example of this is
the special case of transition conditions used to model mutual exclusion of shared resources, where the
conversion results in a significantly reduced problem formulation. The objective function is then built
by summarizing weighted state cost functions and the result is a Mixed-Integer Nonlinear Programming
problem. The main contribution of this paper is hence the combination of the simplicity in modeling
a system with EFAs and an efficient formulation of the optimization problem that can be solved by

standard optimization software.

Keywords: MILP, MINLP, Optimization, Automata, EFA, Scheduling, Discrete event systems

1. INTRODUCTION

Optimization is a way to utilize available resources in an effi-
cient way and to achieve a maximum possible outcome. A va-
riety of methods and tools have been developed to aid decision
makers in their work to increase productivity, sustainability and
efficiency as well as minimizing costs.

Optimization of discrete event systems has been introduced as
a tool for guiding decision makers in designing for instance
cycle-time optimal schedules, see Liljenvall [1998]. The most
common way to model a discrete event system is to use dif-
ferent types of automata, and one optimization technique has
been to find the optimal path by using heuristic graph search
algorithms, see Hart et al. [2007]. Several search algorithms
for solving job-shop scheduling problem using timed automata
have also been introduced, see Abdeddaimi and Maler [2001].
Scheduling based on timed automata has, however, been shown
to often be more beneficial using mixed-integer linear program-
ming (MILP) solvers, compared to graph search algorithms, see
Kobetski et al. [2006], although the efficiency depends on the
characteristics of the system.

Methods to convert timed automata to MILP problems have
been developed, see Panek et al. [2006]. A more complete
framework for translating a general finite automata model with
times to MILP was recently presented by Kobetski and Fabian
[2009], where both event synchronization and the most com-
mon types of specifications were included in the optimization
formulation. MILP has also been used for optimization of hy-
brid automata, see Bayen and Tomlin [2003] and Bemporad
et al. [2005]. Comparing these results with the ones in Kobetski

and Fabian [2009] and this paper, the latter are more focused on
the complexity of the discrete part.

To decrease the gap between the event based automata theory
in academia and the signal based modeling in industry, a finite
automaton extended with variables has been introduced by
Skoldstam et al. [2007]. The automaton is called Extended
Finite Automaton (EFA) and is a powerful framework for
modeling for instance shared resources or zones, which is
a common situation in many industrial applications. EFAs
are similar to Extended Finite State Machines (EFSMs), see
Mannani et al. [2006], with the important difference that guards
and actions are associated with the events in EFSMs. In EFAs,
they are associated with transitions on individual automata,
which is more flexible.

The simplified and compact modeling using EFAs has, in this
paper, been combined with the strength of existing solvers
for mixed-integer linear and nonlinear programming problems.
The result is a concept that makes it easier and more straight
forward to formulate and solve an optimization problem for
a discrete event system. The concept can be divided into two
parts; expressing the mixed-integer linear constraints based on
the EFA model and to formulate an objective function from the
optimization criterion of the system.

The first part of the paper presents the concept of converting
EFAs into constraints. It covers conversion of the EFA struc-
ture, the synchronous behavior due to shared events and effects
from using variables in guards and actions. As a guidance in
formulating the objective function, the second part of the paper
introduces general state cost functions, available for each loca-
tion in the EFAs. The state cost functions model the costs to
visit a location as a nonlinear function of the time spent in the



location and can be used to formulate multi-criteria optimiza-
tion problems with nonlinear objective functions. This kind of
optimization problem is presented further in Miettinen [1998]
and methods for solving it are discussed in Fonseca and Flem-
ing [1995]. In this paper it is shown how cost functions can be
obtained optimizing cycle time but also energy consumption for
industrial robot systems. According to Vergnano et al. [2010]
the energy cost is then expressed as a function of the execution
times for the individual robot operations.

To summarize, the compact and industrially adapted framework
of EFA modeling is shown to be a suitable bridge between dis-
crete event modeling and linear programming. A brief complex-
ity analysis also shows that the approach scales well when there
are many parallel sequences without too many alternatives. This
is a typical scenario for instance in robot cells, where most often
only a few resources are shared among machines and devices.

2. PRELIMINARIES

This paper is built on combining Extended Finite Automata
with Mixed-Integer Nonlinear Programming, and the theoret-
ical base for these two topics are presented here.

2.1 Extended Finite Automata

The general definition of an Extended Finite Automaton is:
Definition 1. An Extended Finite Automaton (EFA) is a 7-tuple
E = <Q X V7Z)gﬂﬂ7 %7 (qu VO)’M>

where the set Q x V is the extended finite set of states, Q is a
finite set of locations and V is the finite domain of definition of
the variables, ¥ is a nonempty finite set of events (the alphabet),
¢ is a set of guard predicates over V, <7 is a collection of action
functions, - C QO X X X ¥4 x & x Q is a state transition relation,
(g0,v0) € Q XV is the initial state, and M C Q x V is a set of
marked desired states c.f Skoldstam et al. [2007].

In this paper, the limitation of not allowing an empty set of
events is relaxed, since events are not crucial for the formulation
of the mixed-integer linear constraints. Introduction of events
is only needed for modeling a synchronized behavior between
multiple automata. It is also assumed that all EFAs are action
consistent, meaning that they do not have contradicting actions,
see Skoldstam et al. [2007].

The state transition relation of an EFA can be written as
(p,v) 2 (g,V'), where p,qg € Q, v € V, V' is the next value of v
after the transition and o € X. This is extended to strings in X*
in the following recursive way:

(p,v) 5 (p,v) forall (p,v) € QxV,
(pv) 2 (q.v) if (p,v) > (ry) and

o

(r,y) = (¢,v) forsome (r,y)€QxV

2.2 Mixed-Integer Nonlinear Programming

Linear programming is the procedure of finding an optimal
value of an objective function that is linear due to a set of real
variables, where the optimum may not conflict a given set of
linear constraints, see Dantzig [1963]. It is a commonly used
part of optimization and can be used to a variety of situations.
A limitation in linear programming is however that it does

not allow alternatives between constraints or in the objective
function, i.e. constraints formulated on the form

N
\/ X, (1)
i=1

where X; is a linear constraint, e.g. x; > x;. The constraints in
(1) can however be expressed by introducing binary decision
variables (BDV), ¥ € Zjg ) and a sufficiently large constant
M € R. Equation (1) can then be reformulated as

xizxj—(l—%)M

& @)
=1
L

When ¥; = 1, (2) is reduced to the original constraint, x; > x;,
and if ¥ = 0, the expression becomes x; > x; — M, which will
not constrain variable x; if M is sufficiently large. An optimiza-
tion formulation on this form is usually referred to as a Mixed-
Integer Linear Programming (MILP) problem, presented in
Schrijver [1986]. It is a common approach in scheduling, where
there might exist multiple paths to choose between. To formu-
late a more sophisticated criterion, the objective function can
instead be a general nonlinear function F(x). This leads to the
more general optimization problem formulated as

min F(x)
st. Ax<b 3)
xeR>g

where A € R"*™ is the constraints matrix for the mixed-integer
linear constraints, b € R" is the constraints vector of constants
and x € R™ is the set of decision variables which can be divided
into two sets as X = [Xr  Xz] where xg € R” is a vector of all
real variables and xz € Z"~" is a vector of all integer variables
in x.

3. CONVERTING EFA TO MIXED-INTEGER LINEAR
CONSTRAINTS

A method to automatically formulate Mixed-Integer Linear
Constraints (MILC) for a discrete event system, modeled by
EFAs is presented in this section. The conversion from EFAs to
MILC is divided into,

(1) EFA structure

(2) Shared events (synchronization)

(3) Logical transition conditions (guards and actions)
(4) Resource allocation for shared resources

Two limitations of this work are that loops in EFAs are ignored
and the logical transition conditions are limited to only include
the basic functionality. These limitations are further discussed
in Section 3.1 and 3.3. All steps are performed separately
and they only depend on previous steps. This simplifies later
extensions of the concept to include more aspects of modeling
with EFAs. Extensions could e.g. be to relax some of the
limitations introduced on the EFAs in this paper. The real and
integer variables generated in this section will be the foundation
for formulating the objective function in Section 4.

3.1 EFA structure

In the first step of formulating MILC from an EFA model, a
reachability analysis is done on each individual EFA to identify
all reachable locations that are also co-reachable from a marked
state. This analysis is performed locally and is hence excluding



any restrictions concerning shared events and guards. It is
important to note that this concept does not include unlimited
loops in the EFAs, where the same location can be visited
infinite number of times.

S0 T=10
a b T=5

S1 S2
Fig. 1. EFA with cost on location SO and on one transition.

For every reachable location in the local EFA, a real variable
is created. The real variable, t,i, models the global time when
the location & in EFA i is left in the schedule. The total system
will hence consist of N = ):?:] N; real variables, where A is the
total number of EFAs in the system and N; is the number of
locations in EFA i. These variables are decision variables in the
optimization problem and hence “tuning” parameters for the
solver to use for finding the optimal schedule. A transition in
EFA i, from location k& to location k + 1 is then modeled by the
linear constraint

fpr 2 0+ T )
where Tk‘ 41 = 0 is the minimal time to spend in location k + 1,
specified by physical constraints. The EFA can have a minimal
execution time on both locations and transitions, as can be seen
in Figure 1. The minimal time to go from location SO to S1 in
Figure 1 will then differ from the minimal time going from SO
to S2. The minimal time allowed to spend in location k in EFA
i is hence T} = T/[location] + T} transition], and will be 10 for
firing event a and 15 for firing event b in Figure 1.

Since every location is allowed to have more than one out-
going transition, there will exist a set of possible and equally
valid paths through the EFA. The solution to the optimization
problem can only include one of these paths and choosing path
through the EFAs is part of solving the optimization problem.
All paths have to start in the initial location and end in one of
the marked locations in the EFA. The EFAs can have multi-
ple marked locations, but are not allowed to have any loops.
Considering this, it is guaranteed that the EFA will only have
a finite number of possible paths that need to be expressed
by constraints. The choice between the different paths through
the EFA can thereby be modeled using path choice variables
defined as:

Definition 2. A path choice variable, 7, is a binary decision
variable having value 1 if path p is chosen for EFA i and 0
otherwise.

In Kobetski and Fabian [2009], another approach was used
where binary variables were created for each location with
multiple outgoing transitions. This made the paths hidden in
the MILC formulation. In this paper, all paths are instead
represented in a more similar way to the representation in Panek
et al. [2004].

To guarantee that the transition constraint in (4) is only con-
straining the solution when that transition is used, a path choice
variable is added to the constraint as described in (2). Since the
transition can be included in multiple paths a more compact
constraint can be formulated. In the case of two involved paths,
a constraint can be expressed as

1 20+ T — (-, — 7, )M (5)

(a) EFA with an infinite
loop.

(b) EFA with the loop is reformulated
to a finite sequence.

Fig. 2. EFAs with several possible paths.

where 7, and 7| are the path choice variables for the two
paths. See (6) for examples with one and three paths. This
compact formulation reduces the number of constraints in the
problem formulation. It can be automatically done by compar-
ing every new constraint with previously created constraints
before adding them to the constraint matrix.

In Figure 2 (a), an EFA with an unlimited loop is presented.
Due to the limitation of not considering any loops in the
system, the event b will not be included in any paths. A finite
looping behavior can be modeled by multiple locations and
time variables, but since the number of variables can not be
infinite, the maximum number of loops has to be specified in
the model. In Figure 2 (b), the loop in (a) is limited to fire at
most one time.

From the EFA in Figure 2 (a), three paths ac, ad, and acf
will be considered. The path ae will not be considered, since
location S3 is blocking. With the reduction of constraints as in
(5), the constraints for the three paths will be

0>

> +1' -1 =] —n) —xh)M
d>i+1n —(1—nl —ah)m

>+ -1 -nhm (6)
t >t2+T4 *(1*”31)

1> 7r1 + 7'L'2 + 7173

1< 7:11 + 7121 + 71731
where 77:}, is the path choice variables for the three paths. t(} > TO1
is a constraints for the minimal time spent in the initial location

and will always be added without any path choice variables,
since the EFA has only one initial location.

3.2 Shared events

If two or more EFAs have the same event in their alphabet, the
event has to be fired synchronously for all those EFAs. By in-
cluding shared events in the problem formulation, the synchro-
nization operator for EFA, defined in Skoldstam et al. [2007],
is included in the conversion to MILC. This was also included
in Kobetski and Fabian [2009], where ordinary automata were



considered. Due to differences in how the automata structure
is handled, the synchronization is modeled differently in this

paper.

A shared event puts the constraints on multiple transitions to
fire simultaneously, if the event is fired. This is formulated by
the following two constraints forcing the solution to have both
events fired at the same time.

S o B
n=n-02-Y ;- ) mM
p=1 p=1

o ro B
i 24— (2= Y, =), m)M
p=1 p=1

The transition with a shared event is fired from location k in
EFA i and location ¢ in EFA j. ):f:": | T, is the sum of all path
choice variables in EFA i that include the transition with the
shared event.

If one shared event is included in all paths for one EFA,
it puts a limitation on the other EFAs to only be able to
execute paths that include that event. By identifying these
situations, some impossible paths can be excluded from the
mathematical formulation. This will reduce the number of path
choice variables and possibly the number of real variables and
transition constraints, if any location or transition is included
only in impossible paths. This reduction is possible to do due
to the suggested conversion method for automata structure, see
Section 3.1.

3.3 Logical transition conditions

EFA modeling includes the possibility to use guard conditions
on firing events. The conditions are logical expressions formed
by integer variables and the variables are changed by actions
on transitions. In this paper, only the most common types of
statements are considered, which is considered to be enough for
modeling common system behaviors. The included statements
are that a variable can be less than (<), greater than (>), less
than or equal to (<), greater than or equal to (>) or equal
to (==) an integer value. These statements can be combined
with AND (A) and OR (V) and this paper assumes that the
statements are on conjunctive normal form, expressed as

N , M
A(V&Q ™
i=1 \j=1

where X; ; is an integer relation expression for a variable, e.g.
x; < c. Observe that negations are expressed by the complement

to the statements (<), (>), (<), (>) or (==).

A guard on the form (7) is suitable for a modeling situation
where AND statements are more common than OR statements.
This is assumed to be the case since guards origin from a
combination of factors and they all have to be considered
simultaneously.

The formulation of MILC from logical transition conditions is
done in two steps

(1) Separation of guards into integer relation expressions by
interpretation of A and V statements.
(2) Relating integer relation expressions to execution order

Interpretation of A statements to MILC is straight forward since
the A statement is already built in the concept of having multi-
ple constraints, which all need to be satisfied simultaneously, cf.

(3). The guard will hence be separated into multiple VI}I:" 1 Xij
statements. These statements are then separated into alternative
X; j statements, as in (2). The binary variables needed for sep-
arating the alternatives are referred to as the alternative choice
variables, f3, defined as:

Definition 3. An alternative choice variable, f3, is a binary
decision variable having value 1 if the corresponding integer
relationship is guaranteed to be valid, in a guard with an
alternative. The value is O otherwise.

The general guard (7), with N =4, M| =M, = M3 =1 and
My =2 will be X711 AXp1 AX31 A (X471 \/X4’2), and can be
reformulated using alternative choice variables as

In the MILC formulation, only guards including V statements
will need alternative choice variables.

In the next step, the integer relation expressions, x; < ¢, are
converted into MILC using the variables introduced in Section
3.1. The integer relations are interpreted as requirements on
the EFAs that change the variable value in their actions. In
this paper, only actions setting the variable to a defined value
is considered, which simplifies the problem. The variable will
then have the specified value, in the schedule, from the time it
is set by one action on one transition until it is set by another
action on another transition. The setting times are specified by
the variables in Section 3.1.

If the integer relation is not an equal statement, there might exist
several values on x; that fulfill the statement. The total number
of combinations will then be the sum of all combinations for
each value. When there exist more than one combination, an
alternative between the combinations will be formulated using
M and a set of combination choice variables, ¢, defined as:

Definition 4. A combination choice variable, «, is a binary de-
cision variable having value 1 if the corresponding combination
of actions is chosen and 0 otherwise.

The combinations are then converted into sets of constraints,
forming the order of execution of the actions. Each constraint
will relate two location variables to each other. One variable
will represent the transition with the guard and one variable will
represent when the action is set. To guarantee that the constraint
is only constraining when both the path for the guard and the
path for the action are included in the schedule, the combination
constraint is formulated as

. P . P .
>t —(1—a)M—(1- Zon;,)M— (1- Zong)M
P= P=
P 3
Y 7>«
p=0

where ZI;:O 71:; and ):1;:0 n,’, are the sums of all path choice
variables enabling the transition with the action and the guard
respectively and « is the combination choice variable for that

combination. The second equation in (8) says that the combina-



SO c d
z=1
a|z=1 x=1
S1 S2
S1 S0
e f
b |z=0 _ 9
z=0 2==0 & x==1
S2 S3 S1
(a) EFA 1. (b) EFA 2. (c) EFA 3.

Fig. 3. EFAs with guards and actions.

tion itself is only valid if one of the paths including the action
is chosen. This constraint is only used for constraints where the
action must happen before the transition with the guard and is
needed to guarantee that a marked state will be reached.

In Figure 3, a system is presented where two EFAs, EFA 1
and EFA 2, have actions for variable x and z and EFA 3 has
a guard for those variables. EFA 2 has two alternative paths and
all actions are in path 71'22. The guard in EFA 3 has two integer
relationships with an A statement and the guard can hence be
converted to

x:h{tg > —(1-n)M

7r2221

i >-(1—-a)M

5 >15—(1—o)M—(1—m)M

>t —(1—a)M

5 >15—(1—op)M—(1—m)M

5 >3- (1—o)M—(1—m)M
ce—0:d 1 = —(1—0a)M

w203

I >o+om+oa3+oy
I <ai+op+oz+oy

The first combination, ¢, is when g is fired before both a and
d and the second combination, &, is when g is fired after b but
before d. All terms (1—a)M, (1-X) o7 )M and Y1 _o 7, > o
from (8) have been removed from the constraints if they are 0.

3.4 Resource allocation

The most common use of variables is to model a mutual
exclusion, e.g. a shared zone between two robots. This situation
is also known as resource allocation and mutual exclusion. It is
a central part of scheduling. Mutual exclusion of a shared zone
z can be modeled on a transition with the guard z == 0 and the
action z := 1 for booking and the guard z == 1 and the action
z:= 0 for unbooking of the shared zone.

The mutual exclusion problem can be reformulated as a prob-
lem forcing a set of booking and unbooking conditions hap-
pening in a sequential order, to prevent concurrent usage of
the zone. With multiple sets of booking and unbooking pairs
of actions, there will be multiple possible sequential orders. To
separate different possible execution orders, a set of combina-
tion choice variables will be introduced, as in Section 3.3.

(a) Sequence.

(b) Alternative.
Fig . 4. Two EFAs with zone bookings and unbookings.

With two EFAs sharing a zone the corresponding constraints
will be

>t —(1—a))M
>t —(1—)M
I1>a+a
1<a+w

where 7} is the time when EFA i books the zone and ! is the
time when the EFA unbooks it.

In theory, the number of possible ways that n pairs of booking
and unbooking actions can be combined to prevent concurrent
usage of a shared zone is n!. This can be a lot of combinations,
which needs to be considered when creating the EFA model.
However, there might be some combinations of booking and
unbooking that obviously will conflict the path constraints. In
Figure 4, two EFAs with two booking and unbooking pairs
each are presented. If no consideration is taken to the path
constraints, there will be 4! = 24 unique combination. However,
since the sequential constraints say that e.g. event ¢ can not
happen before a, a lot of combinations can be neglected and
the remaining combinations that have a potential to be valid are
only six, namely the event sequences

abcdeg, abed fh, abegbc, ab fhbc, egabced, fhabed

The six combinations will be separated by six combination
choice variables, which makes the reduction from 4! variables
an important reduction of the size of the optimization problem
formulation.

By creating combinations globally, for all booking and unbook-
ing transitions, redundancies are avoided compared with the
local approach described in Section 3.3. This makes the global
combinations very suited for scheduling applications.

4. FORMULATING THE OBJECTIVE FUNCTION

This section covers how the variables created in Section 3
can be used when formulating an objective function for the
optimization problem.

4.1 Cycle time optimization

In cycle time optimization, the schedule that minimizes the total
time when executing one cycle is of interest. To find the total
time, a new real variable, #,4;, is introduced together with a set
of constraints on the form

P
Trotal > t;ln[, - (l - Z n[l))M
p=1



where tf,,p is the marked state in the end of path p in EFA i
and ):5

leading to the marked state 7;,

1 77:]"7 is the sum of all path choice variables for all paths

The objective function is then formulated as
min liotal
The solution will be a cycle time optimal schedule, under the

assumption that all EFAs executes once during the work cycle.
4.2 Multi-criteria objective function

Introducing a state cost function fi(ri —1 ), defined as a
function of the time spent in the state, a general nonlinear
objective function can be formulated as

A S ) P )
Y Y (0= X muiti—in)  ©
p=1

i=lk=1

min F(t) =

where cj'{ is the weight coefficient for location k in EFA i,

introduced to rank the importance of fk inF,yP_ 71: is the
sum of the path choice variables for all paths 1nc1ucflng location
k in EFA i. This objective function can express any kind of
condition, but linear cost functions are easier for the solvers to
handle. For nonlinear objective functions convexity is a crucial

property.
4.3 The resulting schedule

The solution of the optimization problem is derived using a
MILP or MINLP solver, and which solver to choose depends on
how the objective function looks like. Information about solvers
can be found in Floudas and Pardalos [2001].

If the solver finds an optimal solution F* = F(x*) that fulfills
all constraints in (3), the values of x* will represent how the
system should be controlled to obtain optimum. It is important
to return the optimal schedule to the user on the same modular
form that was given by the user from the beginning to make it
easier for the user to analyze the result. This can be achieved
by e.g. introducing additional, guards on the original EFAs to
restrict the total system to follow the optimal path.

5. SIZE OF PROBLEM FORMULATION

In this section, it will be discussed how the MILP problem
formulation scales with increasing number of locations, tran-
sitions, branches, guards etc. This is not necessarily directly
related to the computational time for the solver, but it is a
measure of how large the mathematical problem formulation
will be.

The MILP problem will scale linearly with increased se-
quences. For every location, there will be one additional real
variable and one constraint relating the new location to the
previous location in the sequence. When introducing further
parallelism by adding an additional EFA, no new variables
nor constraints are needed to model the parallel relationship.
This makes the problem formulation scale very well for both
increased sequences and parallelism in the model.

The problem size doesn’t scale equally good for alternatives.
This is natural, since an alternative means that there are two or
more options in the EFA model and a mutual exclusions needs
to be included to separate them. The mutual exclusion intro-
duces binary decision variables, which increases the problem

size. It is however important to note that most industrial sce-
narios have quite few alternatives compared to the parallelism.
To handle parallelism in an efficient way is therefore essential
for industrial systems such as robot cells. The main reason for
this is that common zones are rarely shared by more than two
resources.

Adding extra transitions between locations in the model will
increase the number of possible paths through the EFA and
adding path choice variables accordingly. It will however not
add to the number of constraints. Additional transitions is a sign
of more complexity in the system and will inevitable result in a
larger mathematical formulation.

The other binary variables origin from logical statements in
guards. In this paper, this is treated by forming alternatives
between all theoretical ways to fulfill the statements. This will
include alternatives that will not be reachable, which might
increase the problem size unnecessarily. The main advantage
of this is that global reachability is not necessary, which will
save a lot of computational time for the conversion from EFA
to MILC.

6. ILLUSTRATIVE EXAMPLE

Common
zone
2
Common Common
zone zone
1 3

Fig. 5. The example system with four industrial robots working in three shared
zones.

As an example of how the presented method can be used to
formulate optimization problems from discrete event models,
an industrial example has been created, see Figure 5. The
example consists of four robots performing a total of 40 moving
operations in three zones. The robots should move between
predefined coordinates in an order that should be decided by
optimization. Due to the risk of collision, only one robot at a
time is allowed to use a zone. The order that one robot should
perform its moving operations is defined, but it is not given in
which order the robots should use the zones. Robot 1 and 3
even have to visit two zones to complete their sequences and it
is arbitrary for them which of the two zones to visit first.

The whole system was modeled by EFAs, such that all execu-
tion constraints were included as guards and actions on the tran-
sitions. The EFA model was then translated into mixed-integer
linear constraints using an algorithm based on the method pre-
sented in this paper. The result was 349 constraints using 82
real and 32 binary variables. This example can theoretically be
viewed as finding the optimal solutions of 232 nonlinear pro-
grams. However, by knowing the structure of the problem and



how the binary variables were added in groups in the problem
formulation, the number of interesting scenarios can be reduced
to 1280.

The objective function for the optimization problem is a con-
sequence of the criterion for the scheduling. In this example,
the schedule representing the lowest total energy consumption
should be derived. The objective function was hence formulated
as in Vergnano et al. [2010], which resulted in a sum of approx-
imately 80 nonlinear functions of the real variables.

The mixed-integer nonlinear programming problem can be
solved by solving individual programs and compare the solu-
tions. In this case, every program took on average 3 seconds
to solve, which would make a brute force algorithm solve the
problem in about one hour. With a branch and bound technique,
the calculation time would be considerably reduced to a reason-
able level. The result from the optimization was the starting and
stopping times for each robot operation for the optimal sched-
ule. This information can then be used when programming the
robot movements in the real factory.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a method to convert a model of Extended
Finite Automata to mixed-integer linear constraints. The con-
cept includes conversion of the structure for modular EFAs,
synchronized execution from shared event and execution order
due to guards and actions on the transitions. For the special case
of guards and actions used to model shared resources, a reduced
conversion is presented using fewer variables and constraints
than for the case of general guards.

The optimization objective function is then constructed using
real and binary variables. The paper suggests usage of state cost
functions, where the costs for the locations are modeled indi-
vidually as nonlinear functions of the time spent in them. The
optimization problem will then be a mixed-integer nonlinear
programming problem with an objective function constructed
from multiple criteria. The main contribution of this paper is
the concept of combining the easy method of using EFAs to
model a discrete event system with the utilization of powerful
commercial solvers for mixed-integer nonlinear programming
problems.

This mathematical problem formulation shows to be powerful
for systems with a lot of parallelism but a limited number of
alternatives. This is an important contribution to the automa-
tion industry, since for instance robotic systems have a lot of
parallel activities and to optimize such systems is of decisive
importance.

In the future, the conversion could be further improved by
neglecting more impossible situations than presented here. For
instance shared events and order of transitions with guards
and actions can be examined. Another topic could be to use
the resulting matrix representation to analyze the system’s be-
havior even more than suggested in this paper. The matrix
could be used to identify and combine similar constraints to
reduce the number of constraints and binary decision variables.
Finally, it is important to further evaluate in which situations
MILP/MINLP algorithms are preferable compared to graph
search algorithm and vice versa for optimization of EFA mod-
els.

ACKNOWLEDGEMENTS

This work has been carried out within the Sustainable Pro-
duction Initiative, the Wingquist Laboratory VINN Excellence
Centre, and the Production Area of Advance at Chalmers. It
has been supported by the Vinnova and General Motors. This
support is gratefully acknowledged.

REFERENCES

Y. Abdeddaimi and O. Maler. Job-shop scheduling using timed
automata. CAV, LNCS 2102:478-492, 2001.

A. Bayen and C. Tomlin. Real-time discrete control law
synthesis for hybrid systems using MILP: application to
congested airspace. American Control Conference, pages
46204626, 2003.

A. Bemporad, S. Cairano, and J. Jilvez. Event-driven optimal
control of integral continuous-time hybrid automata. Proc.
of the 44th IEEE Conference on Decision and Control, and
the European Control Conference, 2005.

G. B. Dantzig. Linear programming and extensions. Princeton
University Press, Princeton, New Jersey, 1963.

C. Floudas and P. Pardalos. Encyclopedia of optimization.
Kluwer Academic Publishers, Dordrecht, 2001.

C. Fonseca and P. Fleming. An overview of evolitionary
algorithms in multiobjective optimization. Evolutionary
Computations, 3:1-16, 1995.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on systems science and cybernetics, 4:100-107,
2007.

A. Kobetski and M. Fabian. Time-optimal coordination of
flexible manufacturing systems using deterministic finite au-
tomata and mixed integer linear programming. Discrete
Event Dyn Systs, 19:287-315, 2009.

A. Kobetski, D. Spensieri, and M. Fabian. Scheduling algo-
rithms for optimal robot cell coordination - a comparison.
Proc. of IEEE Conference on Automation Science and Engi-
neering, 2006.

T. Liljenvall. Scheduling for production systems. Lic. the-
sis 293L, School of Electrical and Computer Engineering,
Chalmers University of Technology, Gteborg, 1998.

A. Mannani, Y. Yang, and P. Gohari. Distributed extended
finite-state machines: Communication and control. Proc. of
Workshop on Discrete Event Systems, pages 161-167, 2006.

K. Miettinen. Nonlinear multiobjective optimization. Kluwer
Academic Publishers, Dordrecht, 1998.

S. Panek, O. Stursberg, and S. Engell. Job shop scheduling by
combining reachability analysis with linear programming. In
Proc. IFAC workshop on discrete event systems, pages 199—
204, 2004.

S. Panek, O. Stursberg, and S. Engell. Efficient synthesis of
production schedules by optimization of timed automata.
Control Engineering Practice, 14:1183-1197, 2006.

A. Schrijver. Theory of linear and integer programming. Wiley,
Chichester, 1986.

M. Skoldstam, K. Akesson, and M. Fabian. Modeling of
discrete event systems uding finite automata with variables.
Proc. of IEEE Conference on Decision and Control, 2007.

A. Vergnano, C. Thorstensson, B. Lennartson, P. Falkman,
M. Pellicciar, C. Yuan, S. Biller, and F. Leali. Embedding de-
tailed robot energy optimization into high-level scheduling.
IEEE Conference on Automation Science and Engineering,
2010.



