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ABSTRACT

The ¢1 norm regularized least square technique has been proposed
as an efficient method to calculate sparse solutions. However, the
choice of the regularization parameter is still an unsolved problem,
especially when the number of nonzero elements is unknown. In
this paper we first design different ML estimators by interpreting
the ¢1 norm regularization as a MAP estimator with a Laplacian
model for data. We also utilize the MDL criterion to decide on the
regularization parameter. The performance of these new methods
are evaluated in the context of estimating the Directions Of Arrival
(DOA) for the simulated data and compared. The simulations show
that the performance of the different forms of the MAP estimator
are approximately equal in the one snapshot case, where MDL may
not work. But for the multiple snapshot case both methods can be
used.

Index Terms— Linear regression, Sparse analysis, DOA esti-
mation, LASSO, Model order selection

I. INTRODUCTION

The problem of estimating the Direction of Arrival (DOA) of the
signals transmitted by a set of sources is a well studied problem.
This estimation is based on the data received by a sensor array.
It has also become an efficient tool in a variety of applications
from radar detection to multi-user communication. Many different
methods have been proposed for such a problem depending on the
physical model of generating the data. Here, we focus on the far
field model of signals received by a Uniform Linear Array (ULA).
In this case, the methods such as Maximum Likelihood (ML) and
subspace techniques have been in the center of research for a long
time. However, it is shown recently that the so-called parameter
selection method of LASSO [1] can be used as an estimation tool
for the DOA estimation problem [2].

The Least Absolute Shrinkage and Selection Operator (LASSO),
also known as Basis Pursuit, is originally a parameter selection
technique for linear regression problems. Looking for a linear
representation of a set of data by the least possible parameters,
it is shown that solving a least square problem regularized by
the ¢1 norm of the unknown parameters gives a proper solution
with many zero parameters. In [2] and [4] it is shown that the
narrowband model of a far-field signal can be expressed by a
linear overcomplete expression with a sparse parameter space as a
solution. This allows the LASSO method to be used for estimating
the DOAs.

The ¢, regularization in the LASSO method can be viewed as
an approximation to the exact Maximum Likelihood (ML), which
can be expressed by the ¢y optimization. In fact, any regularization
with [, (p < 1) can be an approximation. However, with /1 we
benefit from the convexity property. This may help us to implement
the whole method with the fast and robust methods of convex
optimization [2]. In [3] it is shown that for sufficiently sparse
true parameters and in the noiseless case the solution of the ¢;
regularization is identical to this exact ¢y regularization. As a
regularized optimization, the LASSO criterion contains a regu-
larization parameter controlling the importance of the shrinkage
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term (¢1 norm) versus the error term. Note that for the problem of
sparse linear estimation the goal is to minimize the error, while
the number of active parameters is kept as small as possible.
However, to decrease the error level, using more parameters is
inevitable. In this case the regularization parameter controls the
number of active parameters. The choice of this parameter has been
the main difficulty in every implementation of the sparse estimation,
especially when the true number of active parameters is unknown.
A full discussion of the different technical aspects of this method
is given in [4].

From one point of view, the LASSO regularization is a represen-
tation of the Maximum A posteriori Probability (MAP) assuming a
Laplacian prior distribution over the data. Such a method has been
studied in [5] and [6]. In [7] the Bayesian LASSO (BLASSO)
method is introduced as an EM method of estimating the LASSO
regularization parameter. Here, we first derive a different direct
ML estimator by regarding the number of sources as a deterministic
parameter. Next, we generalize the method for a different realization
of the LASSO method. This results in a mismatched MAP estimator
which we empirically show to give a better estimation in the
case of one snapshot. From another point of view, choosing the
regularization parameter is equivalent to the model order selection
problem which has been studied extensively. Many methods such
as General Likelihood Ratio Test (GLRT) [8], General Information
Criterion [9], and Minimum Description Length [10] have been
proposed for this purpose. The relation between these different
methods has also been discussed in [8]. In [11] the application
of different information criteria is also motivated and discussed.
Here, we apply MDL to choose of the regularization parameter
and compare the different methods. Although we presented the
proposed approach in the context of DOA estimation, it is equally
applicable to any sparse reconstruction problem.

II. SYSTEM MODEL

Consider an array with m receiving elements arranged in a Uniform
Linear Array (ULA), and a scenario with n objects that transmit
energy from angles @ = [01,...,0,]. As described in [12], assum-
ing narrowband signals arriving from the far-field, the complete

received data set x(t) = [z1(t), z2(t),...,zm(t)]T € C™ over
the ULA can be modeled as
x(t) = A(0)s(t) +n(t) , M

where A(0) = [a(61),...,a(,)] and a(f;) is the steering vector
describing the signal phase shift of the source 7 at each antenna.
Further, n(¢) is an additive noise vector, which is assumed to be
zero mean Gaussian with the covariance matrix o®I. This noise
term describes the receiver noise, deviations from the signal model
and other unmodeled phenomena.

II-A. One Snapshot Case

Assume that the directions are to be estimated from a finite
(but sufficiently large) grid, G = {Z%,2%,...}, of all possible
directions. Denoting the matrix of all possible steering vectors by

A9 = [a(F),a(%),...], (1) can be written as
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where x, n are short notations of x(1), n(1) respectively, and s9 is
the sparse source vector consisting of the true source components
of s(1) at the indexes corresponding to 61,6s,...,0, and zero
everywhere else. Since (2) does not possess a unique solution, the
task is to minimize the number of nonzero elements (= ||s?||o)
while the magnitude of the noise component, ||n||2 = [|x—A9s9||2
is small enough. This is a regularization problem, and it can be
formulated in many equivalent forms. The following form is often
used.

Z(A) = min [lx — A%s?[l2 + A[[s”[lo ©)

where A is a proper regularization parameter. Choosing A is
discussed in more details in Section IV. It controls the number
of detected active basis vectors in (3). The greater the value
of A, the smaller ||s|jo is chosen by (3). After estimating the
complete source vector, s, one can form a vector of direction
parameters, 0(s) = [01,02,...,6,] C G, corresponding to the
nonzero elements of s known as the active basis,

0(s?) = {6:|s? #0,i=1,...,N} . 4)

II-B. Multiple Snapshots Case

The model of (2) can be easily extended to the case of many
snapshots due to the linear model of (1). The sequence of received
data, X = [x(1),x(2),...,x(T)], and the transmitted one, SY =
[s9(1),89(2),...,s9(T)], are related by a linear model

X =ASY+N | (5)

where N is a sequence of independent noise vectors with variance
o%. The matrix AY is the same dictionary matrix as in (2). In this
case the active basis indexes can be defined as follows:

0(S%) = {03, s (t) # 0} (6)

which means that a certain base is generally active if it is active
at least in one snapshot. Denoting the number of elements of
6(S) by n(S) the goal is to minimize n(S) while the total noise,
S [In(t)|13, is kept as small as possible. Note that minimizing
n(S), the optimization has a tendency to choose the same basis
vectors in different snapshots. Therefore, this algorithm is suitable
wherever the actual basis vectors do not change by time. Now the
regularized criterion can be formed as follows:

Z5(A) = min || X — A’S|l2 + An(S) )

III. /; REGULARIZATION SOLUTION

Because of the complexity of solving (3) and (7) as ¢y regular-
ization problems, it is proposed to use the ¢; norm which gives
a sparse solution as well. Furthermore, because of the convexity
of the /1 norm the optimization can be performed in relatively
low computational time using convex optimization methods. The
following criterion results from substituting ¢ by the ¢; norm in

3).
A (A) = min [lx — A%s?|l2 + Alls”[1 ®)

or
H>(A) = min [[x — A%S|[3 + A1, ©

where [|s?]|1 = SV, |s?|. There are also many different equiv-
alent regularizations. We here only introduced the most popular
versions. For the case of multiple snapshots, in [3] it is proposed
to use the following regularization instead of (7)

2453

N
Hs(A) = min | X — A7S7> + A
1=1

T

st . (10)

t=1

It is observed that (9) and (10) give results for s different
from (3) and (7). However, as discussed in [2], the indexes of
the nonzero elements in (3) and (9) are likely to be identical. In
summary, although (9) does not give a good estimation of the sparse
vector s9(¢), it is a very good estimator of @(s?(t)). In practice,
the numerical optimization methods introduce a small noise to
the solution which decreases the number of nonzero elements.
Thus a thresholding method is needed to decide on the set of
active indexes. However, because of the small magnitude of the
computational error and a great difference between the values of
active and non-active components, choosing a proper threshold is
straightforward in most practical cases.

Both techniques introduced in (9) and (10) give a consistent
estimation of the active basis. Knowing the index of the nonzero
elements of the unknown source vector, A (#) and s(6) in (1) can be
found as a sub matrix and sub vector of AY and s? respectively. For
a small number of objects, A () will be a full column rank matrix,
and from (5) an improved estimation of the nonzero elements of S
can be given by .

S(O(8)) = ATO)X . (11)

where AT(0) is the pseudo inverse of A(6). The procedure in
(11) is often referred to as a debiasing step as introduced in
[13]. Accordingly, we consider the following overall procedure for
estimating the sources.

1) The active basis indexes are estimated using (10). The regu-
larization parameter should be chosen properly. We choose it
using a model order selection criterion explained in Section
Iv.

2) Using the estimated active basis indexes, ¢, the sources are
estimated by (11).

IV. REGULARIZATION PARAMETER SELECTION
IV-A. Maximum A-posteriori Probability interpretation

Now, we introduce a specified technique of selecting the regu-
larization parameter by interpreting (9) as a Maximum A-posteriori
Probability (MAP) estimation assuming the following prior distri-
bution to the data.

w2\™ —u|s9);  the active directions of s¢
fso(s9) = { (§> € is @
0 otherwise
(12)
Where 6 C G is the set of true active basis directions and n is
the number of elements of @, which is also the number of sources.

Then,

— A9gY 2
S fxso(xstip0) = IXZANE L)
MQ
+ mhhwo®’ —nlnt— . (13)
27

In this case the ML estimation of the unknown variable u is
given by minimizing (13), which can be written as follows

lx = ASS B+ Al

= arg rnuin ng;n o mlno
)\2
—nln m 5 (14)

where we introduce A = o2 t02take advantage of the definition
(9). Note that the term —n In 2%4; is also a function of sY. This
can be illustrated by substituting n = ||s?||o. However, as a first



order approximation it is treated as a constant while minimizing
(14) with respect to s?. The claim is that the coefficient In % is
not strong enough to make a jump in the estimated number of
sources n. Furthermore, note that the other unknown parameters
can be substituted by a robust estimation. As we discussed before,
for the active directions 6, and consequently n = [|@||o_solving
the LASSO optimization in (9) gives a robust estimation, O(\) and
7(\). However, the noise level o2, can not be estimated directly
by minimizing (14), because the LASSO method is not a robust
estimator of the waveforms, s. Instead, we propose an ML estimator
using the source estimation in (11)

_Ix—A@s[3 _ IPagxl?

52 (\) — -

(15)

Substituting this result to the new Log likelihood function and using
the definition (9) we achieve the following result as an estimator
of A.
2
A = argmin fT(;)) + (m+27(\))Iné*(\) — A(A) In ;—W
(16)

In the multiple snapshot case the result can be written as

A PR

A = arg m)%n Foy

K(T)X\?
Q(m—l—n)Tln&—nTln% , (17)

where 1 1
K(T) = N — 18
@ Mx3x..x2r-1) T (18)

is a normalization factor for likelihood function and

—A0S2  PasXI3
o = IXZAOSE a0 )
mT mT

IV-B. Mismatched MAP estimator

The exact MAP estimator introduced in the last section is
closely related to the LASSO realization in (9). However, for many
applications the LASSO form in (8) is prefered. To get an estimator
for the regularization parameter in this case we have to neglect the
Gaussian model of the noise and reconstruct the model based on the
LASSO form. This might be a good choice since with one snapshot
it is easy to reinterpret the data. In this case we can assume that

fn(m) oc e @lmllz (20)
Then, the mismatched log-likelihood function can be written as
—In fxsa(x,5%p,0) = afx— A2+ pls|h
2

a 2

2mIn o nln o (21)
Introducing A = £ and following the same procedure as in (16) we
find out the following result as an estimator of the regularization
parameter in (8)

A= argmgnl’g(/\)d(/\) —  (m+2nN)Ina(N)
~ A\ § 7 22)
where R m
O AT )

The new criteria (17) and (22) constitute the main contribution of
this paper.
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IV-C. Minimum Description Length

The Minimum Description Length principle (MDL) is developed
as a rule for measuring the fitness of a model to the received data
[10]. The MDL criterion for a certain model order and data in (1)
can be approximated as ([14]),

X - A@©)S]5 1

L(z) =mTIno” + . +onTIn(mT) . (24)

o
If the noise variance is not known a robust estimation of it is used.

This estimation can be obtained by maximizing the Log Likelihood
function. The result for (24) will be

L(z) =mIn|X — AS|j3 + nlnmT . (25)
The criterion for one snapshot case can be found by putting 7" = 1.

V. NUMERICAL RESULTS

The algorithm introduced in Section III is applied to the sim-
ulated data. First the performance of the direct MAP criterion in
section IV is compared to the mismatched one. It is shown that
the mismatched method gives approximately the same results but
at lower computational cost. Then the mismatched one is compared
to MDL for varying number of snapshots. In all simulation cases
the number of the receiving sensors is equal to 8.

To discuss the performance of different parameter estimation
methods, we use zero mean independent Gaussian random variables
with variance one as the sources. The number and the directions
of the sources are fixed, and the probability of success in detecting
the number of sources is computed by different criteria for many
different realizations of sources.

Figure 1 shows the result of applying the mismatched MAP to a
one snapshot data of 8 sensors, which is generated randomly with
different number of sources. As can be seen the performance of
all methods decrease as the number of sources grows. With the
MAP criterion it is more likely to detect the number of sources
correctly. However, the probability of correctness decreases as the
noise power increases. Figure 1 also shows the result for the direct
MAP. It should be noted that because of the rapid change in the a-
posterior probability with A, the simulation needs much more time
for direct MAP because a higher resolution of A is needed. The
performance of the mismatched MAP criterion is almost the same
as that of the direct MAP.

Figure 2 is related to the detection of the number of sources for
different number of snapshots for a low SNR of 0 dB. As expected,
the performance of both criteria increases for increasing number of
snapshots as well as increasing SNR. However, the MAP approach
can work properly with less number of snapshots or lower SNRs.

VI. CONCLUSION

In this paper, the problem of finding the regularization parameter
in the LASSO-based DOA estimator is discussed. We introduce
two methods by first considering LASSO as a Bayesian estimation
method, and then by interpreting the problem as a model order
selection one. The results show that the Bayesian interpretation may
lead to better results as compared to MDL. Next we showed that
the more popular form of (8) can also be used in a Bayesian setting,
although it leads to a mismatched interpretation of the data. It
might be beneficial, because for the LASSO form of (10) the DOA
estimation is unaffected over a long interval of the regularization
parameter. This means that the method can be performed with less
resolution on this parameter, which results in less computational
time. For a large number of snapshots case there is no remarkable
difference between the introduced methods, and also MDL yields
a satisfactory performance.
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Fig. 1. Probability of correct number of signals estimation v.s. the
noise variance for MDL and mismatched MAP. The star, triangle,
and circle marks are related to 1,2, and 3 sources respectively. The
solid, dashed and dotted line styles are related to mismatched MAP,
direct MAP, and MDL respectively.
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Fig. 2. Probability of correct number of signals estimation v.s. the
number of snapshots for the mismatched MAP and MDL. SNR=0
dB
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