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Abstract

Symmetry breaking effects of density gradient on parallel momentum transport is studied via

quasilinear theory. It is shown that finite ρ∗s(≡ ρs/Ln), where ρs is ion sound radius and Ln is

density scale length, leads to symmetry breaking of the ion temperature gradient (ITG) eigenfunc-

tion. This broken symmetry persists even in the absence of mean poloidal (from radial electric field

shear) and toroidal flows. This effect, as explained in the text, originates from the divergence of

polarization particle current in the ion continuity equation. The form of the eigenfunction allows

the microturbulence to generate parallel residual stress via
〈
k‖
〉

symmetry breaking. Comparison

with the ~E × ~B shear driven parallel residual stress, parallel polarization stress and turbulence in-

tensity gradient driven parallel residual stress are discussed. It is shown that this ρ∗s driven parallel

residual stress may become comparable to ~E × ~B shear driven parallel residual stress in small Ln

region. In the regular drift wave ordering, where ρ∗s � 1, this effect is found to be of the same

order as the parallel polarization stress. This ρ∗s driven parallel residual stress can also overtake

the turbulence intensity gradient driven parallel residual stress in strong density gradient region

whereas the later one is dominant in the strong profile curvature region. The parallel momentum

diffusivity is found to remain undisturbed by this ρ∗s effect as long as the turbulence intensity

inhomogenity is not important.
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I. INTRODUCTION

Intrinsic rotation in tokamak plasmas is a subject which attained considerable recent

popularity. It is an interesting problem linked to turbulent momentum transport and the

transition from low (L) to high (H) confinement modes, whose study is of key importance

for an understanding of tokamak operation. This is true, in particular because rotation

plays an important (if not key) role in the L-H transition. The threshold power for L-H

transition depends strongly on the toroidal rotation level [1]. Mean E × B shear, be it

self-generated like zonal flow shear or by external radial electrode biasing, is well known to

suppress turbulence [2–5]. Toroidal rotation couples dynamically to the E × B shear and

thus affects the turbulence suppression mechanism, which is believed to be important for the

L-H transition as well as the formation of internal transport barriers (ITBs) [6]. Toroidal

rotation is also helpful in suppressing certain types of harmful magnetohydrodynamic(MHD)

instabilities, such as resistive wall modes(RWM) [7–10] whose stability is a major concern for

advanced ITER scenerios [11]. RWMs are nothing but the long wavelength MHD kink modes

in the presence of a resistive wall. RWMs stability can facilitate tokamaks to operate at

normalized pressure values beyond the no-wall stabilty limit and rotation plays a significant

role in achieving this. In current generation tokamaks neutral beam injection(NBI) is the

main external driver of rotation. However use of NBI in ITER and other future reactor scale

machines to achieve desired rotation is still debatable because of unvoidable bulky size of

these machines [12–14]. Hence self generated rotation will play a vital role in suppression of

RWMs. Fortunately Rice scaling predicts a toroidal intrinsic rotation Alfven Mach number

of MA ≥ 0.02 for ITER plasma and that appears to be sufficient for stabilization of RWMs

[15]. This suggests that the RWMs in the ITER plasma will probably be self-stabilized

because of spontaneous rotation itself, which would provide an alternative solution to the

NBI problem apart from the active feedback control of RWMs [11]. These findings have

sparked extensive theoretical and experimental studies on intrinsic rotation generation.

While the intrinsic rotation (or rather the intrinsic spin-up during the L-H transition)

was discovered experimentally in a database study[15, 16] and observed in various machines

(e.g. see [17] for a comprehensive review of recent experimental results) in almost all modes

of discharges, consequent theoretical efforts (e.g. [18] and refences therein) has lead to a

certain understanding of the phenomenon mostly as a self-organization process linked to
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the L-H transition. It is understood for instance, that a breaking of the symmetry of the

underlying microturbulence is necessary in order for the turbulence to generate a net wave-

momentum, whose flux is then tied to the transport of the bulk plasma momentum[19].

In addition to a diffusive component, the plasma momentum flux, consists of two seperate

kinds of off-diagonal pieces. The diffusive momentum flux has been studied extensively

both theoretically [20, 21] and experimentally [22] and established momentum diffusivity

χφ ∼ χi, ion thermal diffusivity except with some departure from this scaling noted in

recent gyrokinetic simulation [23]. The effects of curvature in a tokamak, result in a pinch-

like contribution[24–28], mainly via a turbulent equipartition (TEP) mechanism[26]. While

this term transports momentum (especially when the rotation is already sufficiently large),

its effect on rotation itself is not too pronounced. In contrast a residual stress term can

be driven by various different mechanisms including Alfven waves [29], intensity gradients

[30] ,up-down assymmetry of current [31, 32] and toroidicity [33]. And the residual stress

due to a self-consistent E × B shear that feedback from the pressure gradient through the

radial force balance is a possible mechanism that may explain the intrinsic L-H spin-up[34].

Experiments on JT-60U by Yoshida et al [35] also seems to support this pressure gradient

scaling. However the discovery of I mode [36], where particle transport is like L mode and

energy transport is like H mode, and a recent follow up experiment by Rice et al [37] in

Alcator C-Mod suggests that gradient in temperature rather than gradient in pressure is

the main driver of intrinsic rotation. Experiments on the Large Helical Device (LHD) with

ITB also demontrates temperature gradient as the driver of toroidal intrinsic roatation [38].

Recent gyro-kinetic simulations [21, 39, 40] have verified certain aspects of mean E × B

shear driven mechanism and also highlighted the role of the intensity gradient[30] as a

mechanism for driving residual stress. Wang et al [39, 41], in gyrokinetic simulations, have

also demonstrated nonlinear residual stress generation in collissionless trapped electron mode

turbulence. The fundamental similarity underlying all the above mentioned residual stress

generation mechanisms is the symmetry breaking in k‖ (i.e.,
〈
k‖
〉
6= 0 where 〈〉 indicates

average over fluctuation spectrum) by macroscopic gradients. Different means of breaking〈
k‖
〉

symmetry has lead to different mechanisms of residual stress generation. For example,〈
k‖
〉

symmetry breaking by asymmetrizing the eigenfunction via mean E×B shear [34, 42].

A fundamentally different mechanism of residual stress generation based on
〈
k‖kx

〉
symmetry

breaking has also been shown to be driven by polarization drift [42–44] which does not require
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asymmetry in eigenfunction. The residual stress is the key driver of intrinsic rotation be it

toroidal or azimuthal [42]. The connection between azimuthal intrinsic rotation and directly

measured azimuthal residual stress has been demontrated by Yan et al [45] in CSDX plasmas.

The residual stress combined with proper boundary condition can explain intrinsic spin-up

of the core. However a recent experiment [46] shows that all the features of intrinsic rotation

can not be explained just by fluid turbulent stresses.

While the effect of temperature gradient seems to be more pronounced on the experi-

mental observations of intrinsic rotation. The density gradient can also generate residual

stress. Furthermore the mechanism for the generation of this residual stress is more direct,

and the symmetry breaking is more general in the case of drift waves. Here, we will discuss

the effect of finite ρ∗s, and show that the ITG eigenmode has a broken symmetry in the case

of sharp density gradients (e.g. as in an H-mode).

The analytical derivation presented in this paper is performed in simple slab geometry.

This is considered as a local piecewise linear approximation to a small part of the plasma in

the vicinity of the low field side of the tokamak. While this approach does not capture the

exact form of the eigenmode it represents the local processes as long as the microturbulence

is sufficiently small scale with their eigenmodes tightly packed.

The process that leads to symmetry breaking due to finite ρ∗s, arises from the well known

expression for the divergence of polarization current, which enter the quasi-neutrality equa-

tion in the usual dimensionless units (i.e. x→ x/ρi, φ→ eΦ/Ti etc.) as:

∇⊥ ·
[
n
D

Dt
~∇⊥φ

]
+∇‖J‖ = 0

while part of the above perpendicular divergence gives rise to the usual definition of vorticity,

part of it leads to a nonlinear term which survives in the linear limit due to the existence

of the background density gradient. This term is normally small since it involves both the

density gradient and the D/Dt, (and for drift waves D/Dt ∼ ω∗ already). However, it can

become important when the background flow is sufficiently large (i.e. V0k > ω∗) or if the

density gradient is sufficiently large (i.e. an H-mode pedestal for instance). Physically, this

term comes from the fluctuating radial gradient of the polarization current that arise from

the radial gradient of the density of the particles that generate this fluctuating current (by

their fluctuating polarization drift motions). We will show that the inclusion of this term

in the ITG eigenmode calculation, leads to a symmetry breaking in k‖, and therefore a net
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non-zero momentum flux, which has in principle the form of a residual stress. To justify

further the importance of this effect we show the comparisons of this with the residual

stresses driven by Er-shear, parallel polarization residual stresss and the intensity gradient.

It is shown that for fixed Er-shear the ρ∗s induced residual stress may become comparable to

Er-shear driven residual stress in the region of small Ln. ρ∗s induced residual stress turns out

to be of the same order as the parallel polarization stress in the regular drift wave ordering

where ρ∗s ∼ ω/ωci � 1, ω is typical mode frequency and ωci is the ion gyro frequency. And

comparison with turbulence intensity gradient driven residual stress shows that ρ∗s driven

residual stress dominates at the sharp density gradient region whereas the intensity gradient

driven residual stress dominates at the strong profile curvature regions such as head and the

foot of the ITB or the H-mode pedestal.

The rest of the paper is organized as follows. In SectionII, we start with the derivation of

a simple set of reduced fluid equations, and continue with deriving an eigenmode equation

corresponding to this system. In the final part of the SectionII we present the solution of this

eigen-mode equation, which displays a characteristic shift from the mode rational surface

on which it is localized. In SectionIII we discuss the effect of this mode shift on momentum

transport via the symmetry breaking mechanism, and compare this with the effect due to

E×B shear, parallel polarization stress and the turbulence intensity gradient driven residual

stress. We conclude and discuss the implications of our work in SectionIV.

II. RADIAL EIGENMODE ANALYSIS

In this section the linear eigenfunction for electrostatic ITG instability in the presence of

mean flows is derived. A simplified set of fluid equations that describes the ion temperature

gradient driven instability in the electrostatic regime is derived in the presence of poloidal

and toroidal sheared flows. The assumptions made are 1) quasineutrality ˜δne = ˜δni, 2)

constant electron temperature , 3) zero resistivity , 4) zero electron inertia for ci ≤ ω
k‖
<

ce, and 4) ω � ωci, where ci,e =
√

T0i,e
mi,e

is the ion(i)/electron(e) thermal speed, T0i,e are

ion(i)/electron(e) temperatures, mi,e is ion/electron mass, ω is a typical frequency, ωci = eB
mi

is ion cyclotron frequency and ηi = Ln

LTi
is the ratio of density and ion temperature scale

lengths , L−1
n = −d lnn0

dx
and L−1

Tsi
= −d lnTi0

dx
respectively. For concretness we closely follow

the Ref.[42]. We use (x, y.z) orthogonal cartesian coordinate system, with unit vectors
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x̂, ŷ, ẑ, situated at a rational surface. All the equilibrium quantities are considered to vary

in x direction only. We consider a sheared slab configuration of magnetic field ~B in the

neighborhood of a rational surface situated at x0,

~B = B(ẑ +
x− x0

Ls
ŷ) (1)

where L−1
s =

B′y
B

is magnetic shear scale length. We also consider a mean ion flow field ~Vi0

lying in the (x, y) plane. For fluctuations localized on a particular rational surface at x = x0,

the mean ion flow velocity may be expanded as

~Vi0(x) = ~Vi0(x0) + (x− x0)

(
∂~Vi0
∂x

)
+ ..... (2)

We will describe the system of equations in inertial frame moving with constant velocity

~Vi0(x0). The perturbed linearized continuity, momentum and pressure equations for ions

can be obtained as :

(
∂

∂t
+ xV̂ ′E0∇y)(1−∇2

⊥ + ρ∗s∇x)φ+
[
1 +K

(
∇2
⊥ − ρ∗s∇x

)]
∇yφ+∇‖v = 0 (3)

(
∂

∂t
+ xV̂ ′E0∇y)v − V̂ ′‖0∇yφ+∇‖(p+ φ) = 0 (4)

(
∂

∂t
+ xV̂ ′E0∇y)p+K∇yφ+ Γ∇‖v = 0 (5)

where normalizations are chosen such that

x = (x − x0)/ρs, y = y/ρs, z = z/Ln, t = tcs/Ln, φ = (eδφ/Te)(Ln/ρs), ni =

(δni/n0)(Ln/ρs) v = (δv‖i/cs)(Ln/ρs), p = (τiδpi/Pi0)(Ln/ρs), Ln∇‖ ≡ ∇‖ = ∂
∂z

+

xs ∂
∂y

with the nondimensional parameters: ηi = Ln/LT , K = τi(1 + ηi) = τiαi, τi =

T0i/T0e, Γ = γτi, s = Ln/Ls, V̂
′
E0 = (Ln/cs)V

′
E0, V̂ ′‖0 = (Ln/cs)V

′
‖0, ρs = cs/ωci, and

ρ∗s = ρs/Ln. The difference between the above set of linear equations and that obtained in

the past references [42, 47–49] etc. is in the ion continuity Eq.(3) which now contains an

additional term proportional to ρ∗s. However Dubin et al [50] has retained such term in their

gryrokinetic formulation to ensure energy conservation. This term arises from the density

gradient dependent part ~Vpol · ~∇n0 of the divergence of ion polarization current density

~∇ · (n0
~Vpol). As can be obviously seen in the Eq.(3) this term is one order higher in ρ∗s

in the regular drift wave ordering scheme and hence it is normally not considered in drift
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wave theory. But it is clear that this term can become significant in strong particle density

gradient regions such as in the H-mode pedestal. Also the above set of fluid equations are

in fact a subset of the general gyro-fluid system of equations, which can also be derived

by taking the moments of the gyro-kinetic equation[51]. The effect of this ρ∗s term on the

eigenmode structure is derived in the following. We consider the perturbation of the form

f = fk(x)exp(ikyy − iωt) , where ky and ω are normalized as ky = kyρs, ω = ω/(cs/Ln),

the above set of Eqs.(3-5) form an eigenvalue problem in the x direction for the Fourier

amplitude φk

d2φk
dx2

− ρ∗s
dφk
dx

+

[
−k2

y +
ky − ω

τiαiky + ω − xkyV̂ ′E0

+ k2
y

(sx)2

(ω − xkyV̂ ′E0)2 − Γ(sx)2

]
φk

+xky

[
V̂ ′E0

τiαiky + ω − xkyV̂ ′E0

−
V̂ ′‖0

(ω − xkyV̂ ′E0)(τiαiky + ω − xkyV̂ ′E0)

]
φk = 0 (6)

For shearing rate is much smaller than the mode frequency Eq.(6) simplifies to

d2φk
dx2

− ρ∗s
dφk
dx

+

[
−k2

y +
ky − ω

τiαiky + ω
+ k2

y

(xs)2

ω2
+ xky

[
V̂ ′E0

τiαiky + ω
−

V̂ ′‖0
ω(τiαiky + ω)

]]
φk

= 0(7)

which can be written as

d2φk
dx2

− ρ∗s
dφk
dx

+
(
A1 + A2x+ A3x

2
)
φk = 0 (8)

where

A1 =
ky − ω

τiαiky + ω
− k2

y, A2 =
ky

τiαiky + ω

(
V̂ ′E0 − kys

V̂ ′‖0
ω

)
, A3 =

(
kys

ω

)2

(9)

The total eigen function satisfying Equation (8) for the l = 0 radial quantum number, can

be obtained as

φk = Φ0 exp

[
−1

2
i
√
A3

(
x+

A2

2A3

)2
]

exp

[
1

2
ρ∗s

(
x+

A2

2A3

)]
(10)

and the corresponding eigenmode dispersion relation is

ω2
(
1 + k2

y

)
+ ω

(
ky
(
−1 + k2

yτiαi
)

+ is|ky|
)

+ isτiαiky|ky|

= −
ωk2

y

[
ω
sky
V̂ ′E0 − V̂ ′‖0

]2

4 (τiαiky + ω)
− 1

4
ρ∗2s ω (τiαiky + ω) (11)
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Eq.(10) shows that the eigenfunction is shifted off the mode rational surface, even in the

absence of background shear flows, due to finite ρ∗s. In the absence of shear flows the above

equation becomes

φk = Φ0 exp

[
−1

2

(
x− ξ∗k

∆k

)2
]

exp

[
−i1

2
Re
√
A3x

2

]
(12)

where a factor of exp(−ρ∗2s /2Im
√
A3) has been absorbed in the amplitude Φ0. Mode

width ∆−2
k = −Im

√
A3 = |ky|sγ/|ω|2 and mode shift off the rational surface is ξ∗k =

−ρ∗s/2Im
√
A3 = ρ∗s|ω|2/(2|ky|sγ) = ρ∗s∆

2
k/2. Also the real part of the radial wave number

is Re(kx) = −1
2
Re
√
A3x and ω = ωr + iγ.

From dispersion relation Eq.(11) one can pick up a slow mode, on the low ky side of the

spectrum, as

ω =
isτiαi|ky|

1− k2
yτiαi − (1/4)ρ∗2s τiαi

≈ isτiαi|ky| (13)

The dispersion relation Eq.(11) is rewitten in a form where the freqeuncy is normalized by

cs/R and Ls is written as Ls = qR(1/ŝ). Here R is the tokamak major radius, ŝ = rq′/q

is the shear in safety factor q. The resulting dispersion relation with V̂ ′E0 = V̂ ′‖0 = 0 is

solved numerically using the matlab root finding routines. The Fig.(1) shows the plots of

real frequency and growth rates vs ky. Next we computed the eigenfunction Eq.(10) for the

highest growth rate. Fig.(2) shows the shift of eigenmode structure off the mode rational

surface without mean flows.

III. MOMENTUM FLUX BY REYNOLDS STRESSES

The net radial flux of parallel momentum
〈
nvrv‖

〉
is broadly composed of particle flux

driven momentum flux
〈
v‖
〉
〈δnδvr〉, Reynolds stress driven momentum flux 〈n〉

〈
δvrδv‖

〉
and mean radial flow driven momentum flux 〈vr〉

〈
δnδv‖

〉
and triple correlation

〈
δnδvrδv‖

〉
.

Since particle flux vanishes for adiabatic electron response and there are no mean radial

flows, in this section we calculate the momentum flux due to parallel Reynolds stress carried

by fluctuating E × B drift. We first compute the flux driven by only ρ∗s induced sym-

metry breaking of the eigenfunction. Then in the subsequent subsections comparisons are

made with Er shear induced symmetry breaking driven residual stress, parallel polarization

stress and turbulence intensity gradient induced symmetry breaking driven residual stress
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respectively, to gain a feeling for the importance of the new effect reported here. From

Equations(4) and (5) we get the parallel velocity response as

δv‖,k =

(
csρs
Ln

)
ky
ω

[
−V̂ ′‖0 +

k‖
ky

[
1− ω∗pi

ω

]]
φk (14)

The parallel Reynolds stress due to fluctuating E × B drift, using Eq.(14) for the parallel

velocity fluctuation response, is obtained as

〈δvExδv‖〉 = Re

(
csρs
Ln

)2∑
~k

i
k2
y

ω

[
−V̂ ′‖0 +

k‖
ky

[
1− ω∗pi

ω

]]
|φk|2 (15)

where 〈...〉 indicates avaraging over fast space-time scale. From above Eq.(15) the diffusive

parallel momentum flux is

Πdiff
‖,x = mn0〈δvExδv‖〉diff = −χ‖mn0

dV‖
dx

(16)

where the diffusivity is given by

χ‖ =

(
csρs
Ln

)2∑
ky

k2
y

√
π

∆k

Ln
cs
|φ0k|2 (17)

The residual flux is given by

Πres
‖,x = mn0〈δvExδv‖〉res = mn0

(
csρs
Ln

)2∑
~k

kyk‖

[
γ

|ω|2
+
ω∗pi2γωr
|ω2|2

]
|φk|2 (18)

For the particular slow mode Eq.(13), where ωr = 0, the above residual flux expression

becomes

Πres
‖,x = mn0

(
csρs
Ln

)2∑
ky

ky|ky|s
γ

|ω|2
〈k‖〉 (19)

where the spectrum average of k‖ is defined as

〈k‖〉 = 〈k‖|φk|2〉x (20)

where we have made use of
∑

~k(· · ·) =
∑

ky
|ky|s〈(· · ·)〉x =

∑
ky
|ky|s

´ +∞
−∞ dx(· · ·) to evaluate

the summation over ~k for tightly packed modes. Further using k‖ = kysx and 〈x|φk|2〉x =

ξ∗k∆k

√
π|φ0k|2 gives the parallel residual flux as

Πres
‖,x = mn0

(
csρs
Ln

)2∑
ky

1

2
k2
yρ
∗
ss∆k

√
π|φ0k|2 (21)

This clearly shows parallel residual flux generation due to finite ρ∗s effect. The parallel

residual flux to parallel diffusivity ratio is

Πres
‖,x

χ‖
= mn0s

cs
Ln

〈x|φk|2〉x
〈|φk|2〉x

= mn0sξ∗k
cs
Ln

=
1

2
mn0s

cs
Ln
ρ∗s∆

2
k (22)

This demonstrates parallel mean flow generation via microturbulence due to finite ρ∗s effect.
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A. Comparison with fluxes driven by mean radial electric field shear

Following Ref.[42] the slow mode eigenfunction, with mean E × B shear present and

ignoring the ρ∗s term, is given by

φEk = φ0ks exp

[
−1

2

(
x− ξEk

∆ks

)2
]

exp

[
i
|ky|
ky

V̂ ′‖0
2τiαi

x

]
(23)

where ξEk = ∆2
ksV̂

′
E0/2 and ∆2

ks = τiαi. Note that here we correctly obtained the factor

|ky|/ky in the complex exponent in the Eq.(23) which was missing in the Ref.[42]. The slow

mode frequency turns out to be

ω = isτiαi|ky| (24)

In the above and in the following equations the subscript or superscript E indicates corre-

sponding quantities with mean E × B shear only. Using Eq.(15), Eq.(23) and Eq.(24), as

shown in Equation(48) of Ref.[42], the parallel momentum diffusivity χE‖ is given by

χE‖ =

(
csρs
Ln

)2∑
ky

k2
y

√
π

∆ks

Ln
cs
|φ0ks|2 (25)

and the parallel residual momentum flux ΠE,res
‖,x can be written in the form

ΠE,res
‖,x = mn0

(
csρs
Ln

)2∑
ky

ky|ky|s
γ

|ω|2
〈k‖〉E (26)

where

〈k‖〉E = kys〈x|φEk |2〉x = kysξEk∆k

√
π|φ0k|2 (27)

and ξEk = ∆2
ksV̂

′
E0/2. Plugging the above form of 〈k‖〉E and the mode frequency Eq.(24)

gives the form of the residual stress as obtained in the Ref.[42]

ΠE,res
‖,x = mn0

(
csρs
Ln

)2∑
ky

k2
ysξks

√
π/∆ks|φ0ks|2 (28)

Comparing Equations Eq.(17) and Eq.(25) we get

χ‖
χE‖

= 1 (29)

That is the parallel momentum diffusivity remains unaltered. This is because the summand

in the Eq.(17) contains |φk|2 and no other multiples of function of x. Eigenfunction symmetry

11



breaking has no role in determing parallel diffusivity χ‖ as long as the turbulence intensity

is homogenous. Again from Equations Eq.(21) and Eq.(26) we get

Πres
‖,x

ΠE,res
‖,x

=
〈k‖〉
〈k‖〉E

=
ρ∗s

V̂ ′E0

(30)

Here we have made use of ∆ks = ∆k because the mode width is determined by
√
A3 which is

the same in both cases of the momentum flux calculation. Eq.(33) suggests that ρ∗s induced〈
k‖
〉

symmtery breaking driven residual flux may become comparable to Er-shear induced〈
k‖
〉

symmtery breaking driven residual flux in strong density gradient regions such as ITB

and pedestal in H-mode plasma.

Note that, a similar result is expected if one considers the zonal E ×B shear as a source of

symmetry breaking, since in a quasi-steady state, the zonal flow shear level can be roughly

determined by the balance of zonal shear frequency V ′E0 with linear growth rate γ, (that is

V ′E,ZF ≈ γ ∝ ρ∗s). This means that the ρ∗s effect introduced here can be viewed as linked to

the zonal E ×B shear induced symmetry breaking mechanism.

In a more rigorous computation of the ZF shear driven residual stress, since the screening

length of the ZF would be proportional to the poloidal gyro-radius the effect would probably

be more pronounced. A quick way to realize this fact is as follows. V̂ ′E0 may result from the

Rosenbluth Hinton (R H) neoclassical residual zonal flow [52]. The corresponding potential

is
eφ

Ti
=

1

1 + 1.6q2/ε1/2

ˆ
dtSik/

(
k2
⊥a

2
i

)
(31)

where ε = r/R, running minor radius and a2
i = (Ti/mi)/ω

2
ci. Now we estimate the V̂ ′E0, the

E ×B shear required for asymmetric eigenfunction as follows

V̂ ′E0 =
Ln
cs
V ′E0 ≈

Ln
cs

1

L2
φ

csρs

(
eφ

Te

)
(32)

where Lφ is potential scale length. We assume
´

dtSik/ (k2
⊥a

2
i ) = 1. Then the ratio of ρ∗s

induced residual stress to E ×B shear driven residual stress becomes

Πres
‖,x

ΠER.H ,res
‖,x

=
ρ∗s

V̂ ′E0

=
L2
φ

L2
n

1

(eφ/Te)
=
L2
φ

L2
n

(
1 + 1.6q2/ε1/2

)
τi

(33)

where τi = Ti/Te. In neoclassical theory Ln ∼ Lφ, therefore

Πres
‖,x

ΠER.H ,res
‖,x

=

(
1 + 1.6q2/ε1/2

)
τi

> 1 (34)
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This implies that the ρ∗s induced residual stress is stronger than the R H residual zonal

flow driven residual stress. This is as expected because the actual level of zonal flow in the

turbulent case is higher than in the neoclassical case.

To get a feeling for the importance of the ρ∗s induced
〈
k‖
〉

symmetry breaking driven resid-

ual stress relative to the Er-shear induced
〈
k‖
〉

symmetry breaking driven residual stress,

the expression for Πres
‖,x in Eq.(18) is estimated numerically for the highest growing mode

(ky,max, γmax, ωr,max). Here ky,max is the wave number corresponding to the highest growth

γmax and the ωr,max) is the corresponding real frequency. The variation of Πres
‖,x and ΠE,res

‖,x

with Ln/R is shown in the Fig.(3). It shows that for fixed V ′E the term Πres
‖,x can be domi-

nant over the ΠE,res
‖,x term for low values of Ln/R typical to ITBs. The Fig.(4) also conveys

the same messege. Next approximate flow levels generated by the these two stresses are

evaluated separately. Using the no-slip boundary condition V (a) = 0 to the zero net flux

equation

χ‖
dV‖
dx

= Πres
‖,x (35)

yields the intrinsic parallel flow level as

V‖(x) = −
ˆ a

x

dx′
Πres
‖,x(x′)

χ‖(x′)
(36)

This means that the intrinsic parallel flow is determined the synergistic effects of mean

profiles embeded in Πres
‖,x and χ‖. To get numbers for V‖ we used the following crude approx-

imation

|V‖(a/2)| =
Πres
‖,x

χ‖

(a
2

)
(37)

instead of the exact Eq.(36). The typical flow levels thus obtained are shown in Fig.(5).

It is accepted that this estimation is far from rigorous. Anyway the Fig.(5) shows that at

small Ln/R the flow driven by ρ∗s induced 〈k‖〉 symmetry breaking can become comparable

to flow driven by Er-shear induced by 〈k‖〉 symmetry breaking.

B. Comparison with parallel polarization stress/flux

The time asymptotic form of the parallel polarization stress can be obtained as

〈δvpolxδv‖〉 = c2
s

(
ρs
Ln

)3

Re
∑
~k

[
V̂ ′‖0k

∗
xky − k∗xk‖

[
1− ω∗pi

ω

]]
|φk|2 (38)

13



where kx = −i∂xlnφk and Re(...) stands for real part of the expression in (...). The radial

wavenumber kx as obtained from the eigenfunction Eq.(23) is

kx = i
x− ξks

∆2
ks

+
|ky|
ky

V̂ ′‖0
2τiαi

(39)

Now using the Eq.(39) for kx, Eq.(24) for the slow mode eigenfrequency and Eq.(23) for the

slow mode eigenfunction it is straightforward to show that

〈δvpolxδv‖〉 =
∑
ky

c2
s

(
ρs
Ln

)3

k2
ys

[
V̂ ′‖0

2τiαi
V̂ ′‖0∆ks

√
π +

∆ks

2

√
π

]
|φ0ks|2 +O(ε4) (40)

where ε ∼ (ρs/Ln) ∼ (ω/ωci) ∼ (k‖/ky) � 1 in drift wave ordering. Here the diffusive flux

appears to be nonlinear, the diffisivity being proportional to the parallel flow shear, due to

the fact that real part of the radial wavenumber kx is dominantly determined by the parallel

flow shear for the slow mode. Comparing the leading order residual parallel polarization

stress with the ρ∗s induced symmetry breaking driven residual stress Eq.(21) yields

Πres
‖,x

Πpol,res
‖,x

= 1 (41)

This shows that the ρ∗s induced symmetry breaking driven residual flux is of the same order

as to the leading order parallel polarization flux.

C. Comparison with fluxes driven by turbulence intensity gradient

Now suppose that there is gradient in the fluctuation intensity introduced by mean profile

gradients. We will take the following simple minded expansion of fluctuation intensity

|φok|2 ≡ ε(x),

ε(x) = ε(0) + xε(0)′ + ... (42)

In the following we will examine the effect of fluctuation intensity gradient on the paral-

lel diffusivity and residual stress separately. Including Eq.(42) in the parallel diffusivity

expression yields

χ‖ =

(
csρs
Ln

)2∑
ky

k2
y|ky|γs
|ω|2

Ln
cs

(ε(0) + ε(0)′ξ) ∆
√
π (43)

Comparison of diffusivities for the two cases of ρ∗s and ε′ yields

χ‖

χε
′
‖

= 1 (44)
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The residual flux takes the form

Πres
‖,x = mn0〈δvExδv‖〉res = mn0

(
csρs
Ln

)2∑
~k

ky|ky|
[
γ

|ω|2
+
ω∗pi2γωr
|ω2|2

] 〈
k‖
〉

(45)

where 〈
k‖
〉

= kys

(
ε(0)ξ∆

√
π + ε(0)′

(
∆3

√
π

2
+ ∆ξ2

√
π

)
+ ...

)
(46)

In case of no spectral shift and no intensity gradient
〈
k‖
〉

vanish and hence the residual stress

vanish. In case of finite spectral shift and uniform turbulence intensity above expression

recovers the original well know expression for
〈
k‖
〉
. The

〈
k‖
〉

may be enhanced or reduced

over the uniform intensity case depending upon the sign of the turbulence intensity gradient

ε(0)′. Also in the case of vanishing spectral shift the sign of
〈
k‖
〉

is determined by the sign

of ε(0)′ and the sign of
〈
k‖
〉

determines the sign of the residual flux Πres
‖,x . Comparison of

residual stresses equals the comparison of
〈
k‖
〉

for respective cases. So

Πres
‖,x

Πε′,res
‖,x

=

〈
k‖
〉
ρ∗s〈

k‖
〉
ε′

=
ερ∗s
ε′

=
Lε
Ln

(47)

where Lε = ε/ε′ and Ln = −n/n′ are turbulence intensity scale length and density scale

length respectively. Now it will be interesting to see in which region along the equilibrium

profiles these two scale lengths can become comparable. For convenience we will follow the

Ref[30] and write a few steps for clarity. The turbelce intensity is related to equilibrium

profile gradients and so the turbulence itensity gradient is related to profile curvatures. For

example the, differentiating the Ficks law for heat flux

Q = −χ0ε
∂T

∂x
(48)

for constant heat flux Q gives the turbulence intensity scale length as

L−1
ε =

1

ε

∂ε

∂x
=
εχ0

Q

∂2T

∂x2
(49)

Then the flux ratio Eq.(47) turns out to be

Πres
‖,x

Πε′,res
‖,x

=

〈
k‖
〉
ρ∗s〈

k‖
〉
ε′

=
ερ∗s
ε′

=
Lε
Ln
∝ − Q

χ0εn0

n′0
T ′′0

(50)

This shows that the ρ∗s effect can be more important at the center of the pedestal or ITB

where gradient is stronger than curvature. Whereas turbulence intensity gradient driven
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parallel momentum flux can be more important at the pedestal/ITB head and foot. Note

that this curvature dependence could as well have been shown with particle flux but because

electrons are considered adiabatic so it is not attempted. This shows that the ρ∗s induced

symmetry breaking driven residual stress/flux can become comparable to turbulence in-

tensity gradient induced induced symmetry breaking driven residual stress/flux in strong

density gradient region such as ITB or density pedestal in H-mode ( see Fig.(6) ) .

IV. RESULTS AND DISCUSSIONS

We presented a clear derivation of the residual stress arising from the k‖ symmetry break-

ing via the shift of the eigenmode off of a mode rational surface, with a fluid system of

equations in a simple slab geometry. It shows that the physical process which manifests

itself as an asymmetry of the eigenmode in the extended poloidal direction in the balloon-

ing representation or as a radial shift of the eigenmode in a cylindrical formulation, can be

captured in a simple slab model in local fluid approximation. This allows one to focus on

individual effects for which the global mode structure is not expected to be very important.

It is well known that the background density gradient together with fluctuating ion polar-

ization drifts generate a term that accompany plasma vorticity and is proportional to the

density gradient. Being one order higher in ρ∗s this term is usually not considered in the

usual drift wave ordering. We considered the effect of this term using the formulation that

we have developped. This term is expected to be important in the regions where the density

gradient is large such as H mode pedestal or ITBs. Following are the principal results of

this paper.

• The new term considered here leads to the formation of residual parallel Reynolds

stress, via finite ρ∗s driven parallel symmetry breaking. The mode structure shifts

radially off of a resonance surface. Thus when the effects of all neighbouring modes,

which are similarly shifted are considered, it generates a net k‖. This then gives rise

to a net Reynolds stress, which transport momentum even in the absence of any net

momentum. Comparing this term with the more conventional E × B shear driven

residual stress term, we find that the ratio is basically given by the ratio:

Πres
‖,x

ΠE,res
‖,x

∝ ρ∗2s
Ωi

V ′E0
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Note that in the usual gyrokinetic ordering ρ
Ln
∼ ω

Ωi
, and the condition for the shear

supression to become important is roughly ω/V
′
E0 ∼ 1. Which suggests that the term

that we introduce here is an order higher than the E × B shear driven term in terms

of ρ∗s. While it is true that a sharper density gradient will reduce this difference, the

sharper density gradients are also usually accompanied by deeper Er wells.

Nevertheless, the term is important for completeness. It needs to be included in

a detailed analysis. It also has explicit density gradient dependence. As such, it

complements the part of the E ×B shear that comes from the profile gradients in the

radial force balance.

• V ′E may also be interpreted as zonal flow shear which is generated by polarization

current. The ρ∗s effect also originates from the polarization current. The zonal shear

level can be estimated via mixing length as being roughly proportional to ρ∗s, so that

ρ∗s effect introduced here, can be thought of as being linked to the zonal E ×B shear

induced symmetry breaking. The ρ∗s induced residual stress is expected to be stronger

than the R H neoclassical residual zonal flow shear induced residual stress.

• Comparing ρ∗s driven residual stress with the parallel polarization stress shows that

they are of the same order. In particular

Πres
‖,x

Πpol,res
‖,x

= 1

for the slow mode branch.

• Similarly comparison with turbulence gradient induced residual stress shows that

Πres
‖,x

Πε′,res
‖,x

=

〈
k‖
〉
ρ∗s〈

k‖
〉
ε′

=
ερ∗s
ε′

=
Lε
Ln

where Lε and Ln are turbulence intensity gradient length scale and density gradienty

length scale respectively. Lε is decided by the profile curvatures. In the sharp gradient

region Ln is small, curvature is weak and so Lε is large. This means that the ρ∗s driven

residual stress overtakes the turbulence intensity inhomogenity driven residual stress

in the sharp density gradient and weak curvature regions along the mean profiles. In

contrast, near the “corners”, where curvature is large, the intensity gradient term will

be larger.
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• For homogeneous turbulence intensity the parallel momentum diffusivity is found not

to show any response to this new ρ∗s effect reported here. This is because the mo-

mentum diffusivity does not depend on the broken symmetry of the eigenfunction.

However broken symmetry of the eigenfunction together with turbulence intensity

inhomogenity does renormalize the parallel momentum diffusivity (eg., see Eq.(43)).
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FIG. 1. Real frequencies (a) and growth rates (b) vs ky obtained from numerical solution of the

dispersion relation. The dashed-dotted (-.-.-. curve) reperesnts the analytical approximation of

the growth rate on the low ky side of the spectrum only. Parameters: Ln = 0.05m, LT = 0.020m,

ŝ = 2.0, qa/2 = 2.0, R = 1m, a = 0.25m, Te = Ti = 4KeV , mi = 1.6 × 10−27Kg, B = 4.6T ,

r = a/2.
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FIG. 2. Eigenfunction shifts off the resonant surface due to finite ρ∗s. The figure shows Reφ(—

curve) , Imφ(— curve) and |φ|2(— curve). The zoomed-in subplot highlights the mode shift. The

solid vertical line indicates the peak of the shifted eigenfunction. Parameters: ky,max = 0.60400,

γmax = 2.92439, ωr,max = −4.41009 and other parameters are same as in Fig.(1). The mode width

is ∆ = 1.587783421492773, the mode shift is ξ = 5.902033686028580e− 03 and the mode avaraged〈
k‖
〉

= 3.154269879092037e− 03.
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FIG. 3. Variation ofρ∗s induced symmetry breaking driven rasidual stress Π
ρ∗s ,res
x,‖ (— curve) and

Er-shear induced symmetry breaking driven residual stress Π
E′r,res
x,‖ (— curve) with Ln/R. Stresses

are computed corresponding to the highest growing mode for every Ln/R. Parameters: V ′E =

100000s−1 and other parameters same as in Fig.(1).
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FIG. 4. Relative strength of ρ∗s induced symmetry breaking driven rasidual stress to Er-shear

induced symmetry breaking driven residual stress vs Ln/R. Parameters: same as in Fig.(3)

.
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FIG. 5. Approximate parallel flow levels evaluated at the mid-minor radius (a/2) by usign V‖ =

−
´ a
a/2 dx(Πres

x,‖/χ‖) = (Πres
x,‖/χ‖)(a/2). The (—) curve represents ρ∗s driven flow and the (—) curve

represents the E′r driven flow. This shows that at small Ln/R the ρ∗s driven flow may be as

comparable as E′r driven flow.
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FIG. 6. Schematic showing regions of relative importance of ρ∗s induced summetry breaking driven

residual parallel momentum and turbulence intensity gradient induced symmetry breaking driven

parallel residual flux. The vertical dashed-dotted lines are only for roughly highlighting the regoins

where the respective fluxes are dominating.
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