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Abstract—Hierarchical wireless networks have the potential to
provide the needed capacity to a large number of mobile stations
(MSs). According to this system architecture, the MSs are served
by a dense network of fixed relay nodes (RNs) fed by a small
number of large hub base stations (HBSs). In such deployment,
high spectral efficiencies can be achieved if the RNs act as two-
way relays; however this gives rise to co-channel interference
(CCI) which needs to be mitigated. In order to gain insights on
the impact of CCI to this scenario we consider an HBS with
two highly directional antennas communicating with two MSs
via two interfering two-way RNs. We investigate the average
maximum sum-rate of two cooperative strategies. The first is
based on Decode-and-Forward (DF) and network coding and
acts as a baseline. The second strategy is based on Amplify-
and-Forward (AF) and Network MIMO processing over both
the backhaul and access channels. Furthermore we devise some
cooperative protocols that utilize two, three or four time slots.
It is shown that the 2-slot schemes perform generally better and
that the DF strategy achieves superior performance when CCI
is low while AF with Network MIMO is superior when CCI is
high.

Index Terms—Two-way relaying, hierarchical networks,
decode-and-forward (DF), amplify-and-forward (AF), Network
MIMO, network coding.

I. I NTRODUCTION

The use of relay nodes (RNs) has been recognized as a very
promising avenue towards future wireless communications [1],
[2]. RN-enabled communications are seen as cost-effective
means to improve connectivity, transmission reliability and
quality-of-service without requiring a large number of antenna
elements per network node [1]–[3]. RNs can be inexpensive
fixed wireless nodes or even user terminals that relay signals
intended for other users [4], [5]. Recently it has been identified
that RN-enabled networks, apart from achieving the aforemen-
tioned gains, can also greatly increase the achievable capacity
density of the network, measured in bits/sec/km2 [6], [7].

A promising hierarchical architecture for future wireless
systems entails that mobile stations (MSs) are served in a two-
hop fashion via a dense grid of fixed RNs deployed at the
street level. The RNs are fed by a small number of hub base
stations (HBSs) deployed above rooftops [6], [7]. The spectral
efficiency of such systems can be improved with the use of
full-duplex RNs, i.e., RNs that can transmit and receive at
the same time and frequency. However this type of RNs is

hard to implement [8]. Alternatively, spectral efficiency can
be enhanced using two-way relaying with half-duplex RNs
[8]–[12]. Although such technique is promising, the dense RN
deployment of hierarchical networks results in high co-channel
interference (CCI) which limits system performance. In the
literature the issue of CCI has been identified for two-way
relaying systems [12], [13], however its effects have not been
investigated for the hierarchical system architecture of interest.

In this paper we investigate how CCI impacts on hierarchi-
cal networks and propose cooperative strategies that mitigate
CCI. We study the average maximum sum rate (AMSR) per-
formance of a hierarchical network consisting of an HBS with
two highly directional antennas, two interfering two-way RNs
and two MSs. We propose two general cooperative strategies;
the first is based on Decode-and-Forward (DF) with the aid
of network coding and serves as our baseline. The second is
based on Amplify-and-Forward (AF) combined with Network
MIMO processing applied over both the backhaul and the
access networks. Furthermore we devise some communication
protocols requiring two, three or four time slots that are
combined with our proposed strategies. We show that for the
considered system scenario the2-slot protocols perform best.
The DF-based strategy performs better in the low CCI regime
while the AF-based strategy exploits CCI in the uplink and
greatly outperforms DF when CCI is dominant.

The remainder of this paper is structured as follows. In Sec-
tion II the signal and system model is presented. In SectionsIII
and IV the proposed schemes based on DF relaying combined
with network coding and AF relaying coupled with Network
MIMO are presented and discussed. In Section V simulation
results are shown and in Section VI the paper is concluded.

Notations: Vectors and matrices are denoted by boldface
lowercase letters and boldface capital letters respectively.
A [i, j] represents theij-th element of a matrix. The transpose,
transpose conjugate, the inverse and the pseudo-inverse ofa
matrix A are denoted byAT , AH , A−1 and A† respectively.
The XOR operation is denoted by⊕. FurthermoreE [.] denotes
expectation andC (x) , log2 (1 + x).

II. SIGNAL AND SYSTEM MODEL

We consider a hierarchical system consisting of two single-
antenna MSs (nodes1 and2), two half-duplex single-antenna



Fig. 1. The considered system scenario under a2-slot protocol: an HBS
with two directional antennas (nodes3, 4), two MSs (nodes1, 2), and two
RNs (nodes5, 6).

RNs (nodes5 and 6), and an HBS with two directional
antennas which are assumed to create two non-interfering
channels (designated as nodes3 and 4) as shown in Fig. 1.
The MS and RN antennas are assumed to be omni-directional.
The HBS and the MS nodes want to exchange messages via
the RN nodes; node1 with node3 and node2 with node4.
Nodes1 and2 receive/cause interference from/to nodes6 and
5 respectively. The wireless links between the HBS antennas
and the RNs are defined as thebackhaul network, while the
links between the RNs and the MSs are defined as theaccess
network. The wireless channels between any pair of nodes
are assumed to experience flat fading. The channel coefficient
between nodesk andn is

hk,n = Γk,n

√

γ̄k,n (1)

where Γk,n denotes the normalized fading coefficient and
γ̄k,n denotes the average signal-to-noise ratio (SNR) of the
link. Transmission is corrupted by unit variance zero-mean
circularly symmetric additive white Gaussian noise (AWGN).

The MS and HBS nodes are assumed to be transmitting
unit variance symbols grouped in vectorx = [x1, x2, x3, x4]

T .
The RN nodes receive the signal vectoryR = [y5, y6]

T . It
should be noted that the elements of vectorsx andyR can be
transmitted and received in different time slots dependingon
the employed cooperative protocol.

III. DF WITH NETWORK CODING

In this section we present a cooperative strategy and some
communication protocols based on DF. The RNs decode the
wanted signals treating the received interference as noise.
The decoded symbols are combined with the use of the
bitwise XOR operation and forwarded to the destination nodes.
Communication can take place in two, three or four time slots.
As the number of time slots grows, the impact of CCI on
the attained performance becomes less significant. However
increasing the number of slots incurs a pre-log penalty that
limits the achievable capacity.

A. 2-slot DF-XOR

In the first time slot the HBS transmits the symbol vector
xB = [x3, x4]

T and the MSs transmit the symbol vectorxU =
[x1, x2]

T . Node5 decodes symbolsx1, x3 treatingh5,2 x2 as
noise and node6 decodesx2, x4 treatingh6,1 x1 as noise. In
the second time slot nodes5 and 6 transmitx5 = x1 ⊕ x3

andx6 = x2 ⊕ x4 respectively. Nodes1 and3 decodex5 and
retrieve the symbolx3 andx1 respectively. Similarly, nodes2
and4 decodex6 and retrievex4 andx2 respectively.

We define some rate expressions for the multiple access
(MAC) phase of the first time slot in the following, which
will be used as rate constraints later.C15 = 1

2C
(

|h5,1|
2

|h5,2|
2+1

)

,

C35 = 1
2C
(

|h5,3|
2

|h5,2|
2+1

)

, CM5 = 1
2C
(

|h5,1|
2+|h5,3|

2

|h5,2|
2+1

)

,

C26 = 1
2C
(

|h6,2|
2

|h6,1|
2+1

)

, C46 = 1
2C
(

|h6,4|
2

|h6,1|
2+1

)

and CM6 =

1
2C
(

|h6,2|
2+|h6,4|

2

|h6,1|
2+1

)

. The rate expressions for the broadcast
(BC) phase of the second time slot are defined as:C53 =
1
2C
(

|h3,5|
2
)

, C51 = 1
2C
(

|h1,5|
2

|h1,6|
2+1

)

, C62 = 1
2C
(

|h2,6|
2

|h2,5|
2+1

)

andC64 = 1
2C
(

|h4,6|
2
)

.

B. 3-slot DF-XOR

According to this protocol, in the first time slot nodes1 and
3 transmit symbolsx1 andx3 respectively and RN5 decodes
them in the absence of CCI. In the second time slot nodes
2 and 4 transmit symbolsx2 and x4 respectively and RN6
decodes them also in the absence of CCI. In the third time
slot nodes5 and 6 transmitx5 = x1 ⊕ x3 and x6 = x2 ⊕
x4 respectively. Furthermore, nodes1 and 3 decodex5 and
retrieve the symbolx3 andx1 respectively. Similarly, nodes2
and4 decodex6 and retrievex4 andx2 respectively. It should
be noted that nodes1 and2 treath1,6 x6 andh2,5 x5 as noise
while decodingx3 andx4.

The rate expressions for the MAC phase of the3-
slot protocol are the following:C15 = 1

3C
(

|h5,1|
2
)

,

C35 = 1
3C
(

|h5,3|
2
)

, CM5 = 1
3C
(

|h5,1|
2
+ |h5,3|

2
)

,

C26 = 1
3C
(

|h6,2|
2
)

, C46 = 1
3C
(

|h6,4|
2
)

and CM6 =

1
3C
(

|h6,2|
2
+ |h6,4|

2
)

. The rate expressions for the BC phase

are defined as:C53 = 1
3C
(

|h3,5|
2
)

, C51 = 1
3C
(

|h1,5|
2

|h1,6|
2+1

)

,

C62 = 1
3C
(

|h2,6|
2

|h2,5|
2+1

)

andC64 = 1
3C
(

|h4,6|
2
)

.

C. 4-slot DF-XOR

The 4-slot protocol frees the system from CCI and serves
as a performance benchmark. In the first time slot nodes1 and
3 transmit symbolsx1 andx3 respectively and RN5 decodes
them. In the second time slot node5 transmitsx5 = x1 ⊕ x3

and nodes1 and 3 decodex5 and retrieve symbolsx3 and
x1 respectively. Similarly, in the third time slot nodes2 and
4 transmit symbolsx2 andx4 respectively and RN6 decodes
them. In the fourth time slot node6 transmitsx6 = x2 ⊕ x4

and nodes2 and4 decodex6 and retrieve symbolsx2 andx4

respectively



The rate expressions for the MAC phase of the4-
slot protocol are the following:C15 = 1

4C
(

|h5,1|
2
)

,

C35 = 1
4C
(

|h5,3|
2
)

, CM5 = 1
4C
(

|h5,1|
2
+ |h5,3|

2
)

,

C26 = 1
4C
(

|h6,2|
2
)

, C46 = 1
4C
(

|h6,4|
2
)

and CM6 =

1
4C
(

|h6,2|
2
+ |h6,4|

2
)

. The rate expressions for the BC phase

are defined as:C53 = 1
4C
(

|h3,5|
2
)

, C51 = 1
4C
(

|h1,5|
2
)

,

C62 = 1
4C
(

|h2,6|
2
)

andC64 = 1
4C
(

|h4,6|
2
)

.

Let r = [R1, R3, R2, R4]
T be the vector con-

taining the transmit rates of HBS and MS nodes.
Let b1 = [C15, C35, CM5, C26, C46, CM6]

T , b2 =
[C53, C51, C64, C62]

T be the vectors containing the rate con-
straints of the MAC and BC phases respectively. The maxi-
mum sum-rate can be expressed as

RDF = max
r

4
∑

k=1

Rk

s.t. A r ≤ b1

I r ≤ b2

(2)

whereI is the identity matrix and

A =

















1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1

















. (3)

IV. AF WITH NETWORK MIMO

In the present section it is proposed that AF relaying can be
applied combined with Network MIMO in order to mitigate
the effects of CCI. The proposed strategy can utilize two or
three time slots.

A. 2-slot AF

In the first slot MS and HBS nodes transmit their symbols,
grouped in vectorx, and the RNs receive

yR = HR x + nR (4)

wherenR is a vector of AWGN coefficients,E
[

nRnH
R

]

= I ,
and

HR =

[

h5,1 h5,2 h5,3 0
h6,1 h6,2 0 h6,4

]

. (5)

Note that the zero elements inHR reflect the fact that the
HBS antennas (nodes3 and 4) are assumed not to interfere.
In the second time slot both RNs transmit an amplified version
of their received signal and the amplification factors take the
following values for RN nodes5 and6

α5 =
[

|h5,1|
2
+ |h5,2|

2
+ |h5,3|

2
+ 1
]−1/2

α6 =
[

|h6,1|
2
+ |h6,2|

2
+ |h6,4|

2
+ 1
]−1/2

.

(6)

The MS and the HBS antennas receive the signal vectors
yU = [y1, y2]

T and ỹB = [ỹ1, ỹ2]
T respectively, which can

be expressed as

yU = HU HR x + HU nR + nU = H̃U x + ñU

ỹB = HB HR x + HB nR + nB = H̃B x + ñB
(7)

where H̃U = HU HR, H̃B = HB HR, ñU = HU nR + nU ,
ñB = HB nR + nB and

HU =

[

α5 h1,5 α6 h1,6

α5 h2,5 α6 h2,6

]

HB =

[

α5 h3,5 0
0 α6 h4,6

]

.

(8)

The noise covariances are

RñU
= diag

{

∑2
n=1 |HU [1, n]|2 + 1,

∑2
n=1 |HU [2, n]|2 + 1

}

RñB
= diag

{

|HB [1, 1]|2 + 1, |HB [2, 2]|2 + 1
}

.

(9)
As MS nodes are remote they can only process signals

individually. Node1 decodes the message of node3 and node
2 that of node4. For the2-slot protocol the achievable rates
for the transmission of nodes3 and4 are

R3 = 1
2C

(

|H̃U [1,3]|2

|H̃U [1,2]|2+|H̃U [1,4]|2+RñU
[1,1]

)

R4 = 1
2C

(

|H̃U [2,4]|2

|H̃U [2,1]|2+|H̃U [2,3]|2+RñU
[2,2]

)

.

(10)

Note that nodes1 and2 subtract self-interferencẽHU [1, 1]x1

and H̃U [2, 4]x2 respectively. The HBS receives two signals
from nodes3 and 4 containing bothx1 and x2, which are
jointly processed. Let̃HB =

[

H̃B1 H̃B2

]

where

H̃B1 =

[

α5 h3,5 h5,1 α5 h3,5 h5,2

α6 h4,6 h6,1 α6 h4,6 h6,2

]

H̃B2 =

[

α5 h3,5 h5,3 0
0 α6 h4,6 h6,4

]

.

(11)

The sub-matrixHB2 represents self-interference for nodes3
and4 and therefore its effects can be canceled. In consequence
only HB1 affects the achievable rate of nodes1 and2 whose
signals are jointly decoded by nodes3 and4. We assume that
HB1 is fully known by the HBS. In the case of linear detection
a beamforming matrixW = [w1,w2], which is a function
of HB1 representing the global channel state information
(CSI), is designed by the HBS and applied to the received
signals. w1,w2 ∈ C

2×1 denote the beamforming vectors
corresponding to the signals transmitted by nodes1 and 2
respectively. The finally extracted signal can be expressedin
vector form as

yB = W ỹB = W H̃B1 xU + W ñB (12)



where xU = [x1, x2]
T . Let H̃B1 = [h1,h2] where hk

corresponds to nodek. The achievable rate for nodesk = 1, 2
is

Rk =
1

2
C

(

∣

∣wT
k hk

∣

∣

2

∣

∣wT
k hn,n6=k

∣

∣

2
+
∥

∥wT
k

∥

∥

2
RñB

[k, k]

)

(13)

where factors
∣

∣wT
k hn,n6=k

∣

∣

2
and

∥

∥wT
k

∥

∥

2
RñB

[k, k] correspond
to inter-node interference and noise enhancement respectively,
which both have a detrimental effect.

We assume that the HBS obtains perfect global CSI (matrix
HB1) and acts as a Network MIMO central unit [5]. The
beamforming matrix can be based on Zero-Forcing (ZF),
where W = H̃

†

B1, or the Minimum Mean Square Error

(MMSE), whereW =
(

H̃
H

B1H̃B1 + RB

)−1

H̃B1. Detection
can be improved further if it is performed in a successive
fashion, i.e., the detected symbols are subtracted from the
remaining received signal. This frees the signal from some
interference components and can enhance the achieved capac-
ity. The composite channel̃HB1 = [h1,h2] is ordered so that
‖h1‖ ≤ ‖h2‖. The beamforming vectorwk corresponding to

nodek is the first row of matrixWk = Ĥ
†

k for ZF andWk =
(

Ĥ
H

k Ĥk + RB

)−1

Ĥ
H

k for MMSE, whereĤk = [hk,hk+1]
T .

With successive interference cancellation (SIC), each node
expreriences only interference from nodes with higher index.
This results in improved performance compared with linear
detection. The achievable sum-rate is

RAF =
4
∑

k=1

Rk. (14)

B. 3-slot AF

According to this protocol, in the first time slot MS and
HBS nodes transmit their symbols and the received signal by
the RNs is given by (4). In the second time slot RN5 transmits
with the amplification factorα5 and RN6 remains silent. In
the third time slot RN6 transmits with the amplification factor
α6 and RN5 remains silent. The employed RN amplification
factors are given by (6).

The received signals by the MSs and the HBS antennas
(vectorsyU and ỹB respectively), accumulated in the second
and third time slot, are as in (7). It should be noted thatHR,
HB are as in (5) and (8) respectively, whereHU is as follows

HU =

[

α5 h1,5 0
0 α6 h2,6

]

. (15)

The noise covariances are

RñU
= diag

{

|HU [1, 1]|2 + 1, |HU [2, 2]|2 + 1
}

RñB
= diag

{

|HB [1, 1]|2 + 1, |HB [2, 2]|2 + 1
}

.
(16)

The achievable rates for the transmission of nodes3 and4 are

R3 = 1
3C

(

|H̃U [1,3]|2

|H̃U [1,2]|2+RñU
[1,1]

)

R4 = 1
3C

(

|H̃U [2,4]|2

|H̃U [2,1]|2+RñU
[2,2]

)

.

(17)

The HBS receives in the second time slot a signal from node3
and in the third time slot a signal from node4. These signals
are jointly processed in the third time slot with the use of
Network MIMO techniques as above. Therefore achievable
rate for nodesk = 1, 2 is

Rk =
1

3
C

(

∣

∣wT
k hk

∣

∣

2

∣

∣wT
k hn,n6=k

∣

∣

2
+
∥

∥wT
k

∥

∥

2
RñB

[k, k]

)

. (18)

The achievable rates can be enhanced with the application of
SIC techniques as described above.

V. NUMERICAL RESULTS

For simplicity, we assume a symmetric interfering two-way
relay channel; the wireless links of the access network, the
backhaul network and the interfering links experience the same
average SNR, i.e.,̄γ1,5 = γ̄5,1 = γ̄2,6 = γ̄6,2 = γ̄AC , γ̄5,3 =
γ̄3,5 = γ̄4,6 = γ̄6,4 = γ̄BH , and γ̄5,2 = γ̄2,5 = γ̄1,6 = γ̄6,1 =
γ̄I .

Fig. 2 plots the total AMSR versus the average SNRγ̄I for
the considered schemes when backhaul and access networks
experience identical average SNR̄γBH = γ̄AC = 10dB and
Rayleigh fading, i.e.,Γk,n ∼ NC (0, 1). As can be seen from
Fig. 2, in the low CCI regime (̄γI < 0 dB) the 2-slot 2S-DF-
XOR approach performs better. When CCI becomes dominant,
the2-slot AF scheme performs better as it effectively exploits
interference through Network MIMO processing over both the
backhaul and access networks. Amongst the AF schemes, the
ones taking advantage of SIC are superior. Although the3-
slot schemes avoid some interference, they perform worse
than those based on2-slots as the pre-log penalty of13 is
dominant in the considered scenario. The performance of the
4-slot 4S-DF-XOR scheme is not affected by CCI and serves
as a baseline. Fig. 3 plots the AMSR for the downlink (DL)
and uplink (UL) separately, for the2-slot and3-slot DF-XOR
and the2-slot 2S-AF-LMMSE scheme. UL rate is generally
higher as the directional HBS antennas eliminate CCI in the
second time slot. The AMSR deteriorates when CCI becomes
stronger for all cases apart from the UL of the AF scheme.
The UL AMSR of AF improves as̄γI increases because the
HBS jointly processes the received signals by nodes3 and4
using Network MIMO techniques (CCI turns to an advantage).

Fig. 4 plots the total AMSR for the same schemes when the
average SNR of the backhaul network isγ̄BH = 20dB and
that of the access network is̄γBH = 10dB. This is justified by
the fact that the backhaul network can be planned to have links
of high quality as the positions of the RNs relative to the HBS
can be selected appropriately. As expected, the performance
of all schemes improves when the quality of backhaul links
increases. Furthermore the AF protocols perform relatively
better than the case of Fig. 2.
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VI. CONCLUSIONS

In this paper we proposed ways of mitigating CCI in a
simple dual-hop hierarchical network consisting of an HBS

with two directional antennas, two RNs and two MSs. We
considered two general cooperative strategies, one based on
DF with network coding and another based on AF with
Network MIMO. We devised a number of cooperative pro-
tocols based on2, 3 or 4 time slots and compared their
performance as a function of the interference strength. It was
shown that the2-slot protocols perform generally better than
the 3-slot and 4-slot ones. The DF-XOR scheme achieves
superior performance when CCI is weak while the AF with
Network MIMO performs better in the high CCI as it turns
CCI into an advantage. This is due to the fact that Network
MIMO essentially exploits interference at the cost of requiring
accurate CSI at the HBS.
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